Topics in Reinforcement Learning:
AlphaZero, ChatGPT, Neuro-Dynamic Programming,
Model Predictive Control, Discrete Optimization
Arizona State University
Course CSE 691, Spring 2024

Links to Class Notes, Videolectures, and Slides at http://web.mit.edu/dimitrib/www/RLbook.html

Dimitri P. Bertsekas dbertsek@asu.edu, Yuchao Li yuchaoli@asu.edu

Lecture 11

We transition from on-line play to off-line training algorithms

Neural Nets, and Other Parametric Architectures

Outline

- Review of What we Have Done and Where we are Going
- Parametric Approximation Architectures for Off-Line Training
- Training of Architectures
- Incremental Optimization of Sums of Differentiable Functions
- Neural Networks

The AlphaZero/MPC Model: Our Starting Point

What We Have Done So Far

We started with four overview/big picture lectures (Chapter 1 of class notes)

- Off-line training, on-line play, Newton step interpretations
- Exact DP, deterministic, stochastic, finite and infinite horizon
- Approximation in value space and rollout
- Problem relations and transformations: State augmentations, termination state problems (e.g., stochastic shortest path), multiagent, POMDP
- Adaptive and model predictive control

Then focused at on-line play algorithms (Chapter 2 of class notes)

- Rollout algorithms for deterministic and stochastic problems; variations (fortified, simplified, constrained, model-free, variance reduction ideas)
- Multistep lookahead search for deterministic problems (pruning, double rollout)
- Multistep lookahead for stochastic problems (certainty equivalence approximations, Monte Carlo tree search)
- Multiagent/multicomponent control problems; variations (autonomous w/ signaling)
- Bayesian optimization, sequential estimation, adaptive control, and rollout

Where We Are Going and What is Left Out

Our plan for the next two lectures (Chapter 3 of class notes)

We will cover in some depth and detail

- Approximation of values and policies using neural nets and other architectures
- Training of approximation architectures with incremental gradient methods
- Approximate value and policy iteration with approximation architectures
- Aggregation

The 2019-2021 course videolectures, the 2019 RL book, and the 2012/2017 DP book deal with additional topics:

- More on the theory of infinite horizon problems
- Stochastic training methods for approximation in value space: TD(Lambda), other TD methods for policy evaluation, Q-learning
- Specialized methods for approximation in policy space: policy gradient methods, random search methods

6/30

Recall Approximation in Value Space for On-Line Control Selection

ONE-STEP LOOKAHEAD

At State
$$x_k$$
 DP minimization w/ approximations First ℓ Steps "Future"
$$\min_{u_k,\mu_{k+1},...,\mu_{k+\ell-1}} E\left\{g_k(x_k,u_k,w_k) + \sum_{m=k+1}^{k+\ell-1} g_k\big(x_m,\mu_m(x_m),w_m\big) + \tilde{J}_{k+\ell}(x_{k+\ell})\right\}$$
 Cost-to-go Approximation

MULTISTEP LOOKAHEAD

Off-Line Training: Types of Approximations

There are two types of off-line approximations in RL:

- Cost approximation in finite and infinite horizon problems
 - Optimal cost function $J_k^*(x_k)$ or $J^*(x)$, optimal Q-function $Q_k^*(x_k, u_k)$ or $Q^*(x, u)$
 - Cost function of a policy $J_{\pi,k}(x_k)$ or $J_{\mu}(x)$, Q-function of a policy $Q_{\pi,k}(x_k,u_k)$ or $Q_{\mu}(x,u)$
- Policy approximation in finite and infinite horizon problems
 - Approximation of an optimal policy $\mu_k^*(x_k)$ or $\mu^*(x)$
 - Approximation of a given policy $\mu_k(x_k)$ or $\mu(x)$

We will focus on parametric approximations $\tilde{J}(x,r)$ and $\tilde{\mu}(x,r)$

- These are functions of x that depend on a parameter vector r
- An example is neural networks (*r* is the set of weights)

Parametric Approximation of a Target Cost Function

TRAINING CAN BE DONE WITH SPECIALIZED OPTIMIZATION SOFTWARE SUCH AS

GRADIENT-LIKE METHODS OR OTHER LEAST SQUARES METHODS

Parametric Policy Approximation - Finite Control Space

- If the control has continuous/real-valued components, the training is similar to the cost function case
- If the control comes from a finite control space $\{u^1, \ldots, u^m\}$, an alternative approach is possible and is commonly used
- View a policy μ as a classifier: A function that maps x into a "category" $\mu(x)$
- Some classifiers introduce randomized policies
- Then the output of the classifier is "control probabilities"

TRAINING CAN BE DONE WITH CLASSIFICATION SOFTWARE

Randomized policies have continuous components
This helps algorithmically

Cost Function Parametric Approximation Generalities

- We start with a class of functions $\tilde{J}(x,r)$ that depend on x and on a vector $r=(r_1,\ldots,r_m)$ of m "tunable" scalar parameters.
- ullet We adjust r to change \tilde{J} and "match" the training data from the target function.
- The training algorithm is the algorithm that chooses *r* (typically regression-type).
- Architectures are called linear or nonlinear, if $\tilde{J}(x,r)$ is linear or nonlinear in r.
- Architectures are feature-based if they depend on x via a feature vector $\phi(x)$ that captures "major characteristics" of x,

$$\tilde{J}(x,r) = \hat{J}(\phi(x),r),$$

where \hat{J} is some function. Intuitive idea: Features capture dominant nonlinearities.

• A linear feature-based architecture: $\tilde{J}(x,r) = \sum_{\ell=1}^{m} r_{\ell} \phi_{\ell}(x) = r' \phi(x)$, where r_{ℓ} and $\phi_{\ell}(x)$ are the ℓ th components of r and $\phi(x)$.

Bertsekas Reinforcement Learning 12 / 30

A Simple Example of a Linear Feature-Based Architecture

Piecewise constant approximation

• Partition the state space into subsets S_1, \ldots, S_m . The ℓ th feature is defined by membership in the set S_ℓ , i.e., the indicator function of S_ℓ ,

$$\phi_{\ell}(x) = \begin{cases} 1 & \text{if } x \in S_{\ell} \\ 0 & \text{if } x \notin S_{\ell} \end{cases}$$

The architecture

$$\widetilde{J}(x,r) = \sum_{\ell=1}^m r_\ell \phi_\ell(x),$$

is piecewise constant with value r_{ℓ} for all x within the set S_{ℓ} .

Bertsekas Reinforcement Learning 13 / 30

Generic Polynomial Architectures

Quadratic polynomial approximation

- Let $x = (x^1, ..., x^n)$
- Consider features

$$\phi_0(x) = 1, \qquad \phi_i(x) = x^i, \qquad \phi_{ii}(x) = x^i x^j, \quad i, j = 1, \dots, n,$$

and the linear feature-based approximation architecture

$$\tilde{J}(x,r) = r_0 + \sum_{i=1}^n r_i x^i + \sum_{i=1}^n \sum_{j=i}^n r_{ij} x^j x^j$$

• Here the parameter vector r has components r_0 , r_i , and r_{ii} .

General polynomial architectures: Polynomials in the components x^1, \ldots, x^n

An even more general architecture: Polynomials of features of x

A linear feature-based architecture is a special case

Examples of Problem-Specific Feature-Based Architectures

Tetris

Architectures with Partitioned State Space

A simple method to construct complex approximation architectures:

- Partition the state space into several subsets and construct a separate cost approximation in each subset.
- It is often a good idea to use features to generate the partition. Rationale:
 - We want to group together states with similar costs
 - We hypothesize that states with similar features should have similar costs
 - A manifestation of this idea arises in feature-based aggregation (next lecture)

Neural Networks: An Architecture that Works with No Knowledge of Features

A SINGLE LAYER NEURAL NETWORK

Training of Architectures

Least squares regression

- Collect a set of state-cost training pairs (x^s, β^s) , s = 1, ..., q, where β^s is equal to the target cost $J(x^s)$ plus some "noise".
- r is determined by solving the problem

$$\min_{r} \sum_{s=1}^{q} \left(\tilde{J}(x^{s}, r) - \beta^{s} \right)^{2}$$

• Sometimes a quadratic regularization term $\gamma ||r||^2$ is added to the least squares objective, to facilitate the minimization (among other reasons - issue of overfitting).

Training of linear feature-based architectures can be done exactly

- If $\tilde{J}(x,r) = r'\phi(x)$, where $\phi(x)$ is the *m*-dimensional feature vector, the training problem involves quadratic minimization and can be solved in closed form.
- The exact solution of the training problem is given by

$$\hat{r} = \left(\sum_{s=1}^{q} \phi(x^s)\phi(x^s)'\right)^{-1} \sum_{s=1}^{q} \phi(x^s)\beta^s$$

• This requires a lot of computation for a large *m* and data set; may not be best.

Training of Nonlinear Architectures

The main training issue

How to exploit the structure of the training problem

$$\min_{r} \sum_{s=1}^{q} \left(\tilde{J}(x^{s}, r) - \beta^{s} \right)^{2}$$

to solve it efficiently.

Key characteristics of the training problem

- Possibly nonconvex with many local minima, horribly complicated graph of the cost function (true when a neural net is used).
- Many terms in the least least squares sum; standard gradient and Newton-like methods are essentially inapplicable.
- Incremental iterative methods that operate on a single term $(\tilde{J}(x^s, r) \beta^s)^2$ at each iteration have worked well enough (for many problems).

20 / 30

Incremental Gradient Methods (Invented in the 80s, and Analyzed/Extended in the 90s to the Present)

Generic sum of terms optimization problem

Minimize

$$f(y) = \sum_{i=1}^m f_i(y)$$

where each f_i is a differentiable scalar function of the n-dimensional vector y (this is the parameter vector in the context of parametric training).

The ordinary gradient method generates y^{k+1} from y^k according to

$$y^{k+1} = y^k - \gamma^k \nabla f(y^k) = y^k - \gamma^k \sum_{i=1}^m \nabla f_i(y^k)$$

where $\gamma^k > 0$ is a stepsize parameter.

The incremental gradient counterpart

Choose an index i_k and iterate according to

$$y^{k+1} = y^k - \gamma^k \nabla f_{i_k}(y^k)$$

Bertsekas Reinforcement Learning 22 / 30

The Advantage of Incrementalism: An Interpretation from the NDP Book

Minimize
$$f(y) = \frac{1}{2} \sum_{i=1}^{m} (c_i y - b_i)^2$$

Compare the ordinary and the incremental gradient methods in two cases

- When far from convergence: Incremental gradient is as fast as ordinary gradient with 1/m amount of work.
- When close to convergence: Incremental gradient gets confused and requires a diminishing stepsize for convergence.

Bertsekas Reinforcement Learning 23 / 30

Incremental Aggregated and Stochastic Gradient Methods

Incremental aggregated method aims at acceleration

- Evaluates gradient of a single term at each iteration.
- Uses previously calculated gradients as if they were up to date

$$y^{k+1} = y^k - \gamma^k \sum_{\ell=0}^{m-1} \nabla f_{i_{k-\ell}}(y^{k-\ell})$$

• Has theoretical and empirical support, and it is often preferable.

Stochastic gradient method (also called stochastic gradient descent or SGD)

- Applies to minimization of $f(y) = E\{F(y, w)\}$ where w is a random variable
- Has the form

$$y^{k+1} = y^k - \gamma^k \nabla_y F(y^k, w^k)$$

where w^k is a sample of w and $\nabla_y F$ denotes gradient of F with respect to y.

• The incremental gradient method with random index selection is the same as SGD [convert the sum $\sum_{i=1}^{m} f_i(y)$ to an expected value, where i is random with uniform distribution].

Implementation Issues of Incremental Methods - Alternative Methods

- How to pick the stepsize γ^k (usually $\gamma^k = \frac{\gamma}{k+1}$ or similar).
- How to deal (if at all) with region of confusion issues ("detect" being in the region of confusion and reduce the stepsize).
- How to select the order of terms to iterate (cyclic, random, other).
- Diagonal scaling (a different stepsize for each component of y).
- Alternative methods (more ambitious): Incremental Newton method, extended Kalman filter (see the class notes and references therein).

Neural Nets: An Architecture that Automatically Constructs Features

Given a set of state-cost training pairs (x^s, β^s) , s = 1, ..., q, the parameters of the neural network (A, b, r) are obtained by solving the training problem

$$\min_{A,b,r} \sum_{s=1}^{q} \left(\sum_{\ell=1}^{m} r_{\ell} \sigma \left(\left(Ay(x^{s}) + b \right)_{\ell} \right) - \beta^{s} \right)^{2}$$

- Incremental gradient is typically used for training.
- Universal approximation property (can approximate "any" target function, arbitrarily well, with sufficiently large network size).

Bertsekas Reinforcement Learning 27 / 30

Rectifier and Sigmoidal Nonlinearities

The rectified linear unit (ReLU) $\sigma(\xi) = \ln(1 + e^{\xi})$. It is the function $\max\{0, \xi\}$ with its corner "smoothed out."

Sigmoidal units: The hyperbolic tangent function $\sigma(\xi) = \tanh(\xi) = \frac{e^{\xi} - e^{-\xi}}{e^{\xi} + e^{-\xi}}$ is on the left. The logistic function $\sigma(\xi) = \frac{1}{1+e^{-\xi}}$ is on the right.

On The "Mystery" of Deep Neural Networks

- Extensive research has gone into explaining why they are more effective than shallow neural nets for some problems.
- Recent research strongly suggests that overparametrization (many more parameters than data) is the main reason.
- Generally the ratio

$$R = \frac{\text{Number of parameters/weights}}{\text{Number of data points}}$$

affects the quality of the trained architecture (overparametrization if R > 1).

- If $R \approx 1$, the architecture tends to fit very well the training data (overfitting), but do poorly at states outside the data set. This is well-known in machine learning.
- For *R* considerably larger than 1 this problem can be overcome.
- See the extensive research literature.

About the Next Lecture

We will cover:

- Value and policy iteration using neural networks
- Introduction to aggregation