Topics in Reinforcement Learning:
AlphaZero, ChatGPT, Neuro-Dynamic Programming,
Model Predictive Control, Discrete Optimization
Arizona State University

Course CSE 691, Spring 2024

Links to Class Notes, Videolectures, and Slides at
http://web.mit.edu/dimitrib/www/RLbook.html

Dimitri P. Bertsekas dbertsek@asu.edu, Yuchao Li yuchaoli@asu.edu

Lecture 11
We transition from on-line play to off-line training algorithms
Neural Nets, and Other Parametric Architectures

Bertsekas Reinforcement Learning 1/30

0 Review of What we Have Done and Where we are Going

e Parametric Approximation Architectures for Off-Line Training
e Training of Architectures

0 Incremental Optimization of Sums of Differentiable Functions

e Neural Networks

Bertsekas Reinforcement Learning 2/30

The AlphaZero/MPC Model: Our Starting Point

Lookahead I r-->®

Minimization

Tg;ﬁfiid Cost Approximafion
ON-LINE
PLAY i i --->®
— .
—fmmmm e --->@

Rollout Policy

. . Terminal Cost
Policy Network :

Value Network

\J)FF-LINE

. [TRAINING

States zj4o

States j41]

NEWTON
STEP
for Bellman Eq.

Bertsekas Reinforcement Learning 4/30

What We Have Done So Far

We started with four overview/big picture lectures (Chapter 1 of class notes)
@ Off-line training, on-line play, Newton step interpretations
@ Exact DP, deterministic, stochastic, finite and infinite horizon
@ Approximation in value space and rollout

@ Problem relations and transformations: State augmentations, termination state
problems (e.g., stochastic shortest path), multiagent, POMDP

@ Adaptive and model predictive control

Then focused at on-line play algorithms (Chapter 2 of class notes)

@ Rollout algorithms for deterministic and stochastic problems; variations (fortified,
simplified, constrained, model-free, variance reduction ideas)

@ Multistep lookahead search for deterministic problems (pruning, double rollout)

@ Multistep lookahead for stochastic problems (certainty equivalence
approximations, Monte Carlo tree search)

@ Multiagent/multicomponent control problems; variations (autonomous w/ signaling)

@ Bayesian optimization, sequential estimation, adaptive control, and rollout

Bertsekas Reinforcement Learning 5/30

Where We Are Going and What is Left Out

Our plan for the next two lectures (Chapter 3 of class notes)
We will cover in some depth and detalil

@ Approximation of values and policies using neural nets and other architectures
@ Training of approximation architectures with incremental gradient methods
@ Approximate value and policy iteration with approximation architectures

@ Aggregation

The 2019-2021 course videolectures, the 2019 RL book, and the 2012/2017
DP book deal with additional topics:
@ More on the theory of infinite horizon problems

@ Stochastic training methods for approximation in value space: TD(Lambda), other
TD methods for policy evaluation, Q-learning

@ Specialized methods for approximation in policy space: policy gradient methods,
random search methods

Bertsekas Reinforcement Learning 6/30

Recall Approximation in Value Space for On-Line Control Selection

Approximate Min

i “ »
Multiagent Min First Step Future

\. -
min E{gk(wk, g, W)+ S 1 (T)}
X

Uk
Approximate E{-} Approximate Cost-to-Go Jy11
Certainty equivalence Problem approximation
Adaptive simulation Rollout, Model Predictive Control
Monte Carlo tree search Parametric approximation
Neural nets
Aggregation

ONE-STEP LOOKAHEAD

At State xzp

DP minimization) .
w/ approximations First ¢ Steps “Future”

k-1
min E {yk(lfk, g, i) + Z Gk (T pom (Tm), W) + Jk+z(rk+z)}

U sk 1o Mt 01 m=k+1

Cost-to-go

Lookahead Minimization Approximation

MULTISTEP LOOKAHEAD

Bertsekas Reinforcement Learning 7130

Off-Line Training: Types of Approximations

There are two types of off-line approximations in RL:
@ Cost approximation in finite and infinite horizon problems
Optimal cost function J (xk) or J*(x), optimal Q-function Qj (xk, ux) or Q*(x, u)

Cost function of a policy J k(Xk) or Ju(x), Q-function of a policy Q. x(xk, ux) or
OM(Xv U)

@ Policy approximation in finite and infinite horizon problems
Approximation of an optimal policy p; (xx) or p*(x)
Approximation of a given policy pu(Xx) or p(x)

We will focus on parametric approximations J(x, r) and fi(x, r)
@ These are functions of x that depend on a parameter vector r

@ An example is neural networks (r is the set of weights)

Bertsekas Reinforcement Learning 9/30

Parametric Approximation of a Target Cost Function

Target Cost
Function

J(x)

Training Data

(zs, J(x%)) i
s=1,

Approximation
Architecture
Parameter r

Approximating
Function

J(x,7)

TRAINING CAN BE DONE WITH SPECIALIZED OPTIMIZATION SOFTWARE
SUCH AS
GRADIENT-LIKE METHODS OR OTHER LEAST SQUARES METHODS

Bertsekas

Reinforcement Learning

10/30

Parametric Policy Approximation - Finite Control Space

@ [f the control has continuous/real-valued components, the training is similar to the
cost function case

@ If the control comes from a finite control space {u', ..., u™}, an alternative
approach is possible and is commonly used

@ View a policy p as a classifier: A function that maps x into a “category” p(x)
@ Some classifiers introduce randomized policies
@ Then the output of the classifier is “control probabilities"

Approximating
Classifier Randomized Policy
Target Policy | Training Data Assigns State z to ™ Max
() (@, j(z)) Class/Control u o Operation[*
s=1,....q Parameter r Control Probabilities

aar), .o g (e, r)

TRAINING CAN BE DONE WITH CLASSIFICATION SOFTWARE

Randomized policies have continuous components
This helps algorithmically

Bertsekas Reinforcement Learning 11/30

Cost Function Parametric Approximation Generalities

@ We start with a class of functions J(x, r) that depend on x and on a vector
r=(n,...,rm) of m“unable" scalar parameters.

@ We adjust r to change J and “match" the training data from the target function.
@ The training algorithm is the algorithm that chooses r (typically regression-type).
@ Architectures are called linear or nonlinear, if J(x, r) is linear or nonlinear in r.

@ Architectures are feature-based if they depend on x via a feature vector ¢(x) that
captures “major characteristics" of x,

J(x,r) = J(s(x),r),

where J is some function. Intuitive idea: Features capture dominant nonlinearities.

@ A linear feature-based architecture: J(x, r) = 30, rege(x) = r'$(x), where r, and
¢e(x) are the £th components of r and ¢(x).

v

Feature Vector Linear Cost
State = | Feature Extraction o(x) Linear Approximator 1/¢(z)
H L . S — >
Mapping Mapping

Bertsekas Reinforcement Learning 12/30

A Simple Example of a Linear Feature-Based Architecture

T(a,r) = X5 rede(x)

S1 ’ Se o Sm
Piecewise constant approximation

@ Partition the state space into subsets Si, ..., Spn. The /(th feature is defined by
membership in the set S, i.e., the indicator function of S,

. 1ifxe S,
$ulx) = {o ifx¢S

@ The architecture

J(x,r) = Zfzcﬁz

is piecewise constant with value r, for all x within the set S,.

Bertsekas Reinforcement Learning 13/30

Generic Polynomial Architectures

Quadratic polynomial approximation
@ Let x = (x° X7
@ Consider features
do() =1, si(x)=x, g(x)=x¥, ij=1,...n,
and the linear feature-based approximation architecture

J(x, r)_ro+Zr,x +ZZ/’,,XX’

i=1 j=i

@ Here the parameter vector r has components ry, r;, and r;.

General polynomial architectures: Polynomials in the components x', ..., x” J
An even more general architecture: Polynomials of features of x
A linear feature-based architecture is a special case J

Bertsekas Reinforcement Learning 14/30

Examples of Problem-Specific Feature-Based Architectures

Features:
Material Balance,
Mobility, "
R Safety, etc Poslmqn
. . Feature | Weighting of Evaluation
g Extraction Features .
B swy ozl
Chess

Tetris

Bertsekas Reinforcement Learning 15/30

Architectures with Partitioned State Space

Feature Ky
Extraction

»
!

State Space Feature Space

A simple method to construct complex approximation architectures:

@ Partition the state space into several subsets and construct a separate cost
approximation in each subset.
@ ltis often a good idea to use features to generate the partition. Rationale:

We want to group together states with similar costs
We hypothesize that states with similar features should have similar costs

A manifestation of this idea arises in feature-based aggregation (next lecture)

Bertsekas Reinforcement Learning

16/30

Neural Networks: An Architecture that

z,v
= 7|£ o1(z,v) A Cost)
pproximation
State x y(a:l Ay(z) +b 7|£ d2(x,v) ' (x,v)
Lt 7|¢ ¢m (iL', ’U)
State Li] -
Encoding Llnear N(inhnear WLuLear
ayer ayer eighting
“Pﬁg)?gn{—nscll)i(clfﬁc” Paran;letgr Parameter
Features) v=(4) FEATURES T

A SINGLE LAYER NEURAL NETWORK

17/30

Bertsekas Reinforcement Learning

Training of Architectures

Least squares regression

@ Collect a set of state-cost training pairs (x°, 8°), s = 1,..., g, where 3° is equal to
the target cost J(x°) plus some “noise".

@ ris determined by solving the problem
q
min > (J(x*, r) - °)°
s=1

@ Sometimes a quadratic regularization term ~||r||? is added to the least squares
objective, to facilitate the minimization (among other reasons - issue of overfitting)

v

Training of linear feature-based architectures can be done exactly

o If J(x,r) = r'¢(x), where ¢(x) is the m-dimensional feature vector, the training
problem involves quadratic minimization and can be solved in closed form.

@ The exact solution of the training problem is given by
q -1 q
P= (Z ¢(x5)¢<x5)’> > o(x)s°
s=1 s=1

@ This requires a lot of computation for a large m and data set; may not be best.

Bertsekas Reinforcement Learning 19/30

Training of Nonlinear Architectures

The main training issue

How to exploit the structure of the training problem
J 2
i T vS s
mran1(J(x ,r) = B%)
S=

to solve it efficiently.

Key characteristics of the training problem

@ Possibly nonconvex with many local minima, horribly complicated graph of the cost
function (true when a neural net is used).

@ Many terms in the least least squares sum; standard gradient and Newton-like
methods are essentially inapplicable.

@ Incremental iterative methods that operate on a single term (J(x°,r) — [35)2 at
each iteration have worked well enough (for many problems).

Bertsekas Reinforcement Learning 20/30

Incremental Gradient Methods (Invented in the 80s, and

Analyzed/Extended in the 90s to the Present)

Generic sum of terms optimization problem
Minimize
m

y) = Z fi(y)

where each f; is a differentiable scalar function of the n-dimensional vector y (this is
the parameter vector in the context of parametric training).

The ordinary gradient method generates y**! from y* according to

Yy =y i) =y —kaVf

where v¥ > 0 is a stepsize parameter.

The incremental gradient counterpart
Choose an index i, and iterate according to
Y =y =V (V)

Bertsekas Reinforcement Learning

22/30

The Advantage of Incrementalism: An Interpretation from the NDP Book

(ciy —bi)?
. \
— min; y; R MaxX; Y
| = - — .
FAROUT REGION REGION OF CONFUSION FAROUT REGION

Minimize f(y) = 3 31", (ciy — bi)?

Compare the ordinary and the incremental gradient methods in two cases

@ When far from convergence: Incremental gradient is as fast as ordinary gradient
with 1/m amount of work.

@ When close to convergence: Incremental gradient gets confused and requires a
diminishing stepsize for convergence.

Bertsekas Reinforcement Learning 23/30

Incremental Aggregated and Stochastic Gradient Methods

Incremental aggregated method aims at acceleration
@ Evaluates gradient of a single term at each iteration.
@ Uses previously calculated gradients as if they were up to date

m—1

yk+1 _ yk o ﬁ/k Z Vfik,é(ykié)

£=0

@ Has theoretical and empirical support, and it is often preferable.

Stochastic gradient method (also called stochastic gradient descent or SGD)

@ Applies to minimization of f(y) = E{F(y. w)} where w is a random variable
@ Has the form
yk+1 _ yk o ’YKVyF(,Vk, Wk)
where w¥ is a sample of w and V, F denotes gradient of F with respect to y.

@ The incremental gradient method with random index selection is the same as SGD
[convert the sum 37, fi(y) to an expected value, where i is random with uniform
distribution].

Bertsekas Reinforcement Learning 24/30

Implementation Issues of Incremental Methods - Alternative Methods

@ How to pick the stepsize v* (usually v* = 25 or similar).

@ How to deal (if at all) with region of confusion issues (“detect" being in the region
of confusion and reduce the stepsize).

@ How to select the order of terms to iterate (cyclic, random, other).
@ Diagonal scaling (a different stepsize for each component of y).

@ Alternative methods (more ambitious): Incremental Newton method, extended
Kalman filter (see the class notes and references therein).

Bertsekas Reinforcement Learning 25/30

Neural Nets: An Architecture that Automatically Constructs Features

T,v
7'4 91(@) A Cost
pproximation
State = y(x) Ay(z) + b 7|4 ¢a(z,v) r'¢(x,v)
7'4 ¢m(1’7 U)
State .] -
Encoding [ﬂncar Nonlinear Linear
Layer Weightin
(May Include p %% y ghting
“Problem—Speciﬁc” va‘ia’r(nAe g)r Parameter
Features) ’ FEATURES 7
Given a set of state-cost training pairs (x°, 3°), s = 1,..., g, the parameters of the

neural network (A, b, r) are obtained by solving the training problem
m 2
<Z reo ((Ay(x®) + b),) — 5S>
=1

@ Incremental gradient is typically used for training.

q
min
A,b,r
s=1

@ Universal approximation property (can approximate “any" target function,

arbitrarily well, with sufficiently large network size).

Bertsekas Reinforcement Learning 27/30

Rectifier and Sigmoidal Nonlinearities

max{0, €} (&) =In(1 +€f)

The rectified linear unit (ReLU) o(¢) = In(1 + €°). It is the function max{0, £} with its
corner “smoothed out."

Sigmoidal units: The hyperbolic tangent function o(¢) = tanh(¢) = ‘:Z;j:f is on the
left. The logistic function o(¢) = ;1= is on the right.

Bertsekas Reinforcement Learning 28/30

On The “Mystery" of Deep Neural Networks

5
—
> | .
S[m.C Linear Nonlinear Linear Nonlinear Linear
Encoding Layer Layer Layer Layer Weighting

@ Extensive research has gone into explaining why they are more effective than
shallow neural nets for some problems.

@ Recent research strongly suggests that overparametrization (many more
parameters than data) is the main reason.

@ Generally the ratio

R_ Number of parameters/weights
- Number of data points

affects the quality of the trained architecture (overparametrization if R > 1).

@ If R = 1, the architecture tends to fit very well the training data (overfitting), but do
poorly at states outside the data set. This is well-known in machine learning.

@ For R considerably larger than 1 this problem can be overcome.
@ See the extensive research literature.

Bertsekas Reinforcement Learning 29/30

About the Next Lecture

We will cover:
@ Value and policy iteration using neural networks
@ Introduction to aggregation

Bertsekas Reinforcement Learning 30/30

	Review of What we Have Done and Where we are Going
	Parametric Approximation Architectures for Off-Line Training
	Training of Architectures
	Incremental Optimization of Sums of Differentiable Functions
	Neural Networks

