Topics in Reinforcement Learning:
AlphaZero, ChatGPT, Neuro-Dynamic Programming,
Model Predictive Control, Discrete Optimization
Arizona State University

Course CSE 691, Spring 2024

Links to Class Notes, Videolectures, and Slides at
http://web.mit.edu/dimitrib/www/RLbook.html

Dimitri Bertsekas dbertsek@asu.edu, Jamison Weber jwweber@asu.edu

Lecture 12
More on off-line training, parametric architectures, and
their use in approximate value and policy iteration
Aggregation - A different type of parametric architecture

Bertsekas Reinforcement Learning

1/27

0 Review of Off-Line Training with Parametric Architectures
e Off-Line Training in Finite Horizon DP

e Infinite Horizon - Approximate Policy lteration

0 Introduction to Aggregation

e Aggregation with Representative States: A Form of Discretization/Interpolation

Bertsekas Reinforcement Learning 2/27

Recall Approximation in Value Space

Approximate Min . B .,
Multiagent Min First Step Future

Uk

\. N
min E{gk(xk, Uk, Wi)+ (41)}
N

Approximate E{-} Approximate Cost-to-Go Jy11
Problem approximation

Rollout, Model Predictive Control
Parametric approximation

Neural nets

Aggregation

ONE-STEP LOOKAHEAD

Certainty equivalence
Adaptive simulation
Monte Carlo tree search

At State zy

DP minimization

!

kb1
min E {!lk(iﬂkwuk. wy) + Z Gk (T pom (Tm), W) + Jk'+[(-’ﬂk+é)}

Uk s Hg4-150 3 B4£—1 m=k+1

First ¢ Steps “Future”

Cost-to-go

Lookahead Minimization Approximation

MULTISTEP LOOKAHEAD

Bertsekas Reinforcement Learning 4/27

Parametric Approximation of a Target Cost Function

Target Cost
Function

J(x)

Training Data

(zs, J(x%)) i
s=1,

Approximation
Architecture
Parameter r

Approximating
Function

J(x,7)

TRAINING CAN BE DONE WITH SPECIALIZED OPTIMIZATION SOFTWARE
SUCH AS
GRADIENT-LIKE METHODS OR OTHER LEAST SQUARES METHODS

Bertsekas

Reinforcement Learning

5/27

Cost Function Parametric Approximation Generalities

@ We select a class of functions J(x, r) that depend on x and a vector
r=(n,...,rm) of m“unable" scalar parameters.

@ We adjust r to change J and “match” the training data from the target function.
@ Architectures are called linear or nonlinear, if J(x, r) is linear or nonlinear in r.

@ Architectures are feature-based if they depend on x via a feature vector ¢(x) that
captures “major characteristics" of x,

Jx,r) = J(s(x),r),

where J is some function. Intuitive idea: Features capture dominant nonlinearities.

@ A linear feature-based architecture: J(x, r) = 30, rege(x) = r'$(x), where r, and
¢e(x) are the £th components of r and ¢(x).

v

Feature Vector Linear Cost
State Z | Feature Extraction o(x) Linear Approximator ' ¢(z)
: > . —
Mapping Mapping

Bertsekas Reinforcement Learning 6/27

Neural Nets: An Architecture that Automatically Con ts Features

A Cost
pproximation
State x y(2) (e v)
——
State .] -
Encoding II:lnear Ncinhnear Linear
ightin
(May Include (ayert ayer Weighting
“Problem-Specific” vaiu(lf IE)E; Parameter
Features) ’ FEATURES "
Given a set of state-cost training pairs (x°, 3°), s = 1,..., g, the parameters of the

neural network (A, b, r) are obtained by solving the training problem

@ Incremental (backpropagation) methods play a critical role.
@ Universal approximation; with large enough size, we can approximate “anything.”
@ Deep neural network advantage; overparametrization helps.

Bertsekas Reinforcement Learning

7127

Finite Horizon Sequential DP Approximation - Parametric

Approximation at Every Stage (Also Called

Train cost approximations Jy, Jy_1 . . ., Jo, sequentially going backwards

@ Start with Jy = g

@ Given a cost-to-go approximation Jki1, We use one-step lookahead to construct a
large number of state-cost pairs (xi, 85), s =1, ..., q, where

/8;: min E{g(xlfa[*h Wk)+‘]k+1 (fk(X[f,U, Wk)vrk+1)}7 S:1)"'7q

u€ Uy (x§)

@ We “train" an architecture Jx on the training set (x§, 55), s =1,...,q.
@ Each sample involves minimization of an expected value E{-}

Typical approach: We minimize over r

q
> (Jelx@,) — 5)% (+ regularization)
s=1

4

Important advantage: Can be combined with on-line play/approximation in value space,
so the Newton step interpretation applies. However, min, E{-} operation complicates
the collection of samples.

Bertsekas Reinforcement Learning 9/27

Fitted Value lteration with Q-Factors - Model-Free Possibilities

@ Consider sequential DP approximation of Q-factor parametric approximations

@k(xk, U, Fic) ~ E{gk(Xk~, Uy, Wk) + min ék+1 (Xk41, U, I’k+1)}
U€ Uk 41 (Xk41)

@ We obtain Qk(x«, U, r) by training with many pairs ((x§, uf), 5), where 5 is a
sample of the approximate Q-factor of (x¢, uy).

@ A mathematical trick: The order of E{-} and min have been reversed. Each 3; can
use a few-samples approximation of the expected value E{-}.

@ Samples 3; can be obtained in model-free fashion. Sufficient to have a simulator
that generates state-control-cost-next state random samples

((xk, Uk), (Gk (Xi, Uk, W), Xk11))
@ Having computed rx, the one-step lookahead control can be obtained on-line as
fi(x) € arg min Qu(x, U, 1)
u€ Uy (xx)
without the need of a model or expected value calculations.
@ Important advantage: The on-line calculation of the control is simplified.

@ However, the Newton step property is lost. Also on-line replanning is lost.
To address these issues: Use approximation in value space with

Jki1(Xki1) = (or =) muin Qi (Xis1, U, Tt

Bertsekas Reinforcement Learning 10/27

Should we Approximate Q-Factors or Q-Factor Differences?

To compare controls at x, we only need Q-factor differences Q(x, u) — Q(x, u') J

An example of what can happen if we approximate Q-factors:
@ Scalar system and cost per stage:

X1 = X + Uk, g(x,u) = §(x* + 1?), 8 > 0is very small;

think of discretization of continuous-time problem involving dx(t)/dt = u(t)
@ Consider policy u(x) = —2x. Its cost function can be calculated to be

2
Ju(x) = 5%(1 +6)+O(), HUGE relative to g(x, u)

Its Q-factor can be calculated to be

2 2
Qu(x,u) = E D (. S A 0(6%)
4 4 2
@ The important part for policy improvement is §(u® + 3xu). When Q. (x, u) is
approximated by Q,.(x, u; r), it will be dominated by 5x2/4 and will be “lost"
@ |f we approximate Q-factor differences this problem does not arise

Bertsekas Reinforcement Learning 11/27

A More General Issue: Disproportionate Terms in Q-Factor Calculations

Remedy: Subtract state-dependent constants from Q-factors (“baselines")
The constants subtracted should affect the offending terms

Example: Consider (truncated) rollout with policy 1 and terminal cost function
approximation, so J = J,

@ At x, we minimize over u
E{g(x,u, w) + J(f(x,u, w))}

@ Question: How to deal with g(x, u, w) being tiny relative to J(f(x, u, w))? This
happens when we time-discretize continuous-time systems. Another case is when
costs are “sparse"” (e.g., all cost is incurred upon termination).

@ Aremedy: Subtract J(x) from J((x, u, w)).

Other possibilities (see Sections 3.3.4, 3.3.5 of class notes)

@ Learn directly the cost function differences D, (x, X") = J,.(x) — J.(x") with an
approximation architecture. This is known as differential training.

@ Methods known as advantage updating. [Work with relative Q-factors, i.e., subtract
the state-dependent baseline min, Q(x, u’) from Q(x, u).]

y
Bertsekas Reinforcement Learning 12/27

Approximate Policy lteration - a-Discounted Finite-State Problems

Exact Pl in finite-state transition probability notation

@ Policy evaluation: We compute the cost function J,, of current policy p and its
Q-factors,

Qu(i,u) = Zp,,(u) (iyu.f) +adu(f)), i=1,....n, ue U

@ Policy improvement: We compute the new policy iz according to

(i) = arg min j i=1,...,n.
N(’) gUE(IJ(/) Q}A(I7u)7 /))

Approximate Pl

@ Approximate policy evaluation: Introduce a parametric architecture Q,.(/, u, r). We
determine r by generating a large number of training triplets (i°, u®, 5°),
s=1,...,q, and using a least squares fit:

q

7 = argmin > (Qu(i°, %, r) — 5°)
s=1

2

@ Policy improvement: We compute the new policy fi according to

f(i) = arg min Q.(i,u,T), i=1,...,n
A(i) = arg i Qu()

Bertsekas Reinforcement Learning 14/27

Implementation Issues in Approximate Policy lteration

BIG challenges to overcome - Rollout is a piece of cake by comparison J

Architectural issues:
@ To use a linear feature-based architecture, we need to have good features
@ To use a neural network, we need to face harder training issues

@ For problems with changing system parameters, we need on-line replanning,
which may affect the architecture and/or waste the off-line training effort

Inadequate exploration issues:

@ To evaluate a policy 1, we must simulate it, so samples of J,.(x) are obtained
starting from states x frequently visited by .

@ This underrepresents states x that are unlikely to occur under ., and throws off
the policy improvement.

@ Imperfect remedies to this include the use of many short trajectories for generating
samples, and occasionally sample with an “off-policy” (a policy other than)

Oscillation issues: Policies tend to repeat in cycles

Fascinating phenomena may arise, like “chattering” (convergence in the space of
parameters, but oscillation in the space of policies) - they do not arise in aggregation.
_—

Bertsekas Reinforcement Learning 15/27

Aggregation within the Approximation in Value Space Framework

Approximate minimization

First Step “Future”
n B
min ii(w)(g(,u,5) +ad(j
ueU@)j;pU()9(i .) + (7))
Approximations: Computation of J:
Replace E{-} with nominal values Problem approximation
(certainty equivalence) Rollout

Adaptive simulation Approximate PI

Monte Carlo tree search Parametric approximation

Aggregation

@ Aggregation is a form of problem approximation. We approximate our DP problem
with a “smaller/easier" version, which we solve optimally to obtain J.

@ |s related to feature-based parametric approximation (e.g., when Jis piecewise
constant, the features are 0-1 set membership functions).

@ Several versions: finite horizon, multistep lookahead, multiagent, etc ...

@ Can be combined with parametric approximation (like a neural net) in two ways.
Either use the neural net to provide features, or add a local parametric correction
to a J obtained by a neural net (see the class notes).

Bertsekas Reinforcement Learning 17/27

lllustration: A Simple Classical Example of Approximation

Approximate the state space with a coarse grid of states

\ . .
|—— States (Fine Grid)

| — Representative States
(Coarse Grid)

@ Introduce a “small" set of “representative” states to form a coarse grid.

@ Approximate the original DP problem with a coarse-grid DP problem, called
aggregate problem (need transition probs. and cost from rep. states to rep. states).

@ Solve the aggregate problem by exact DP.

@ “Extend" the optimal cost function of the aggregate problem to the original fine-grid
DP problem, i.e., use some form of interpolation.

@ For example extend the solution by a nearest neighbor/piecewise constant
scheme (a fine grid state takes the cost value of the “nearest" coarse grid state).

Bertsekas Reinforcement Learning 18/27

Constructing the Aggregate Problem

Representative States -

Aggregation Probabilities
by
Relate
Original States to

Original State Space - Representative States

@ Introduce a finite subset of “representative states" .4 C {1, ..., n}. We denote
them by x and y.

@ Original system states j are related to rep. states y € A with aggregation
probabilities ¢;, (‘weights" satisfying ¢, >0, >°, 4 ¢ = 1).

@ Aggregation probabilities express “similarity” or “proximity" of original to rep.
states. Can be viewed as interpolation coefficients.

@ Aggregate problem dynamics: Transition probabilities between rep. states x, y
n
Py (U) = py(u)dy
i=1
@ Aggregate problem stage cost at rep. state x under control u:

Q(X, U) = ZPX/(U)Q(X> U,j)

Bertsekas Reinforcement Learning

The Aggregate Problem - A Reduced State Space DP Problem

Original States

pij(u), 9(i,u, 5)
Aggregation

Probabilities
Pjy

| |
| |
| [)”/ Il Z[),/ Il ()/1/ |
| |
| |

n J=1

gz, u) gpn,u g(z,u,j)

o If ry, x € A, are the optimal costs of the aggregate problem, approximate the
optimal cost function of the original problem by

Z dyty, i=1,...,n, (interpolation)
yEA

@ Hard aggregation case: ¢;, = 0 or 1 for all jand y. Then J(j) is piecewise
constant: It is constant on each set

S ={iléy=1}, ye€A (calledthe footprint of y)

Bertsekas Reinforcement Learning 21/27

The Hard Aggregation Case (¢ = 0 or 1 for all /, y)

J(j) = Z,,(A DjyTy

¢jy =0o0r1
for all j and y

Each j connects
to a single x

Footprint Sets

The approximate cost fn J = > yea Piyly is constant at ry within Sy = {j [¢, = 1}. J

Approximation error for the piecewise constant case (¢;, = 0 or 1 for all /, y)
Consider the footprint sets
Sy={jloy=1} yeA
Then the (J* — J) error is small if J* varies little within each S,. In particular,
D) -ID < 5. JjeS.yeA

where € = maxyc.a4 max;jes, |J* (1) — J*(j)| is the max variation of J* within the S,.

Bertsekas Reinforcement Learning 22/27

Solution of the Aggregate Problem

Aggregation
Probabilities
Py

Data of aggregate problem (it is stochastic even if the original is deterministic)
n n

Py(u) =Y py(u)dy, 9(x.u)=>_ py(ualx,u.j), JG) =D eyl

j=1 j=1 yeA

Exact methods

Once the aggregate model is computed (i.e., its transition probs. and cost per stage),
any exact DP method can be used: VI, Pl, optimistic PI, or linear programming.

Model-free simulation methods

Given a simulator for the original problem, we can obtain a simulator for the aggregate
problem. Then use an (exact) model-free method to solve the aggregate problem.

Bertsekas Reinforcement Learning 23/27

Extension: Continuous State Space - POMDP Discretization

Continuous state space - discounted/bounded cost per stage model
@ The rep. states approach applies with no modification.
@ The number of rep. states should be finite.
@ A simulation/model-free approach may still be used for the aggregate problem.

@ We thus obtain a general discretization method for continuous-spaces discounted
problems.

@ Extension to continuous-state stochastic shortest path problems is more delicate
mathematically.

Discounted POMDP with a belief state formulation

@ Discounted POMDP models with belief states, fit neatly into the continuous state
discounted aggregation framework.

@ The aggregate/rep. states POMDP problem is a finite-state MDP that can be
solved for r* with any (exact) model-based or model-free method (VI, PI, etc).

@ The optimal aggregate cost r* yields an approximate cost function
JO) =2 ecatily

@ J defines a one-step or multistep lookahead suboptimal control scheme for the
original POMDP.

Bertsekas Reinforcement Learning 24 /27

Continuous Control Space Discretization

Travel spe¢d ‘ ':::

1 m/se i

EyS]
A A TTIITT
1000 m 1000 m

An example: Discretizing Continuous Motion

@ A self-driving car wants to drive from A to B through obstacles. Find the fastest
route.

@ Car speed is 1 m/sec in any direction.

@ We discretize the space with a fine square grid. Suppose we restrict the directions
of motion to horizontal and vertical.

@ We solve the discretized shortest path problem as an approximation to the
continuous shortest path problem.

@ A challenge question: Is this a good approximation?

Bertsekas Reinforcement Learning 25/27

Answer to the Challenge Question

B B
TTIT

T
Travel spe¢d ‘ ':::

.

1 m/se i

EyS |

s ¢ C o) -
A A TTIITT

1000 m 1000 m

Discretizing Continuous Motion
@ The discretization is FLAWED.
@ Example: Assume all motion costs 1 per meter, and no obstacles.
@ The continuous optimal solution (the straight A-to-B line) has length /2 kilometers.

@ The discrete optimal solution has length 2 kilometers regardless of how fine the
discretization is.

@ The difficulty here is that the state space is discretized finely but the control space
is not.

@ This is not an issue in POMDP (the control space is finite).

Bertsekas Reinforcement Learning 26/27

Aggregation with Representative Features

The main difficulty with rep. states/discretization schemes:

@ |t may not be easy to find a set of rep. states and corresponding piecewise
constant or linear functions that approximate well J*.

@ Too many rep. states may be required for good approximate costs J(j).

Suppose we have a good feature vector F(i): We discretize the feature space
@ We introduce representative features that span adequately the feature space
@ We aim for an aggregate problem whose states are the rep. features.

@ This is a more complicated but also more flexible construction (see the class
notes, Section 3.5).

Bertsekas Reinforcement Learning 27/27

	Review of Off-Line Training with Parametric Architectures
	Off-Line Training in Finite Horizon DP
	Infinite Horizon - Approximate Policy Iteration
	Introduction to Aggregation
	Aggregation with Representative States: A Form of Discretization/Interpolation

