
Topics in Reinforcement Learning:
AlphaZero, ChatGPT, Neuro-Dynamic Programming,

Model Predictive Control, Discrete Optimization
Arizona State University

Course CSE 691, Spring 2024

Links to Class Notes, Videolectures, and Slides at
http://web.mit.edu/dimitrib/www/RLbook.html

Dimitri Bertsekas dbertsek@asu.edu, Jamison Weber jwweber@asu.edu

Lecture 13
Approximate Linear Programming;

Policy Gradient and Random Search Methods

Bertsekas Reinforcement Learning 1 / 27

Outline

1 Linear Programming: Another Approach to Approximation in Value Space

2 Approximation in Policy Space: Motivation

3 Training of Policies by Cost Optimization - Random Search

4 Training of Policies by Cost Optimization - Policy Gradient Methods

5 Implementation Issues of Policy Gradient Methods

Bertsekas Reinforcement Learning 2 / 27

Exact Solution of Discounted DP by Linear Programming

Approx. Policy Evaluation J t ⌥⇧ (J t+1, µt+1)

Policy µ Policy µ� (a) (b) rµ = 0 Rµ Rµ⇤

rµ⇤ ⌅ c

1 � �
,

c

�
rµ = 0

1 2

k Stages j1 j2 jk

rµ1 rµ2 rµ3 rµk+3

Rµ1 Rµ2 Rµ3 Rµk+3

Controllable State Components Post-Decision States

State-Control Pairs: Fixed Policy µ Case (j, v) P ⇤ |A|

j⇥0 j⇥1 j⇥k j⇥k+1 j⇥0 u p(z | j) g(i, u,m) m m = f(i, u) q(j | m)

j0 j1 jk jk+1 i0 i1 ik ik+1

u p(z | j) g(i, u,m) m m = f(i, u) q(j | m)

(i, y) (j, z) States j g(i, y, u, j) pij(u) g(i, u, j) v µ(j)
�
j, µ(j)

⇥

f̄�
2,Xk

(�⇥)

x̃1 x̃2 x̃3 x̃4 Slope: x̃k+1 Slope: x̃i, i ⇥ k

f�(⇥)

Constant � f�
1 (⇥) f�

2 (�⇥) F �
2,k(�⇥)F �

k (⇥)

⇤
(g(x), f(x)) | x ⌃ X

⌅

M =
⇤
(u, w) | there exists x ⌃ X

2

m j k i i + 1 ⇤i(u), pij(u) ⇤j(u), pjk(u) ⇤k(u), pki(u)

Transition probabilities for the ith queue when service is provided

�i(u)pij(u)
�

�j(u)pjk(u)
�

�k(u)pki(u)
�

J(2) = g(2, u2) + �p21(u2)J(1) + �p22(u2)J(2)

J(i) ⇥ g(i, u) + �

n�

j=1

pij(u)J(j)

J(i) ⇥ g(i, u) + �

n�

j=1

pij(u)J(j)

J(i) ⇥ g(i, u) + �

n�

j=1

pij(u)J(j)

1 � �j(u)
� 1 � �i(u)

� 1 � �k(u)
�

1 � µi

µ
µi

µ

Cost = 2⇥� J0

R + g(1) + �

n�

j=1

p1jJ�(j)

i� i� � 1

g(i) + �

n�

j=1

pijJ�(j)

Do not Replace Set SR i 1 n Value Iterations J1 = TJ0 = Tµ0J0

J1 = T 2
µ0J0

J0 J1 = TJ0 J2 = T 2J0 J J� = TJ� TJ Tµ1J Jµ0 = Tµ0Jµ0 Tµ0J

x0 x2 x1 = R(x0) J2 = TJ1 x x� = R(x�) TJ Tµ1J Jµ1 = Tµ1Jµ1

S(0) S(k) S(k + 1) J� J = (J1, J2) TJ = (T1J, T2J)

1

m j k i i + 1 ⇤i(u), pij(u) ⇤j(u), pjk(u) ⇤k(u), pki(u)

Transition probabilities for the ith queue when service is provided

�i(u)pij(u)
�

�j(u)pjk(u)
�

�k(u)pki(u)
�

J(2) = g(2, u2) + �p21(u2)J(1) + �p22(u2)J(2)

J(2) = g(2, u1) + �p21(u1)J(1) + �p22(u1)J(2)

J(1) = g(1, u2) + �p11(u2)J(1) + �p12(u2)J(2)

J(1) = g(1, u1) + �p11(u1)J(1) + �p12(u1)J(2)

1 � �j(u)
� 1 � �i(u)

� 1 � �k(u)
�

1 � µi

µ
µi

µ

Cost = 2⇥� J0

R + g(1) + �
n�

j=1

p1jJ�(j)

i� i� � 1

g(i) + �
n�

j=1

pijJ�(j)

Do not Replace Set SR i 1 n Value Iterations J1 = TJ0 = Tµ0J0

J1 = T 2
µ0J0

J0 J1 = TJ0 J2 = T 2J0 J J� = TJ� TJ Tµ1J Jµ0 = Tµ0Jµ0 Tµ0J

x0 x2 x1 = R(x0) J2 = TJ1 x x� = R(x�) TJ Tµ1J Jµ1 = Tµ1Jµ1

S(0) S(k) S(k + 1) J� J = (J1, J2) TJ = (T1J, T2J)

J1 Policy Improvement J2 Policy Improvement J1 Policy Evaluation
R(x)

1

m j k i i + 1 ⇤i(u), pij(u) ⇤j(u), pjk(u) ⇤k(u), pki(u)

Transition probabilities for the ith queue when service is provided

�i(u)pij(u)
�

�j(u)pjk(u)
�

�k(u)pki(u)
�

J(2) = g(2, u2) + �p21(u2)J(1) + �p22(u2)J(2)

J(2) = g(2, u1) + �p21(u1)J(1) + �p22(u1)J(2)

J(1) = g(1, u2) + �p11(u2)J(1) + �p12(u2)J(2)

J(1) = g(1, u1) + �p11(u1)J(1) + �p12(u1)J(2)

1 � �j(u)
� 1 � �i(u)

� 1 � �k(u)
�

1 � µi

µ
µi

µ

Cost = 2⇥� J0

R + g(1) + �

n�

j=1

p1jJ�(j)

i� i� � 1

g(i) + �

n�

j=1

pijJ�(j)

Do not Replace Set SR i 1 n Value Iterations J1 = TJ0 = Tµ0J0

J1 = T 2
µ0J0

J0 J1 = TJ0 J2 = T 2J0 J J� = TJ� TJ Tµ1J Jµ0 = Tµ0Jµ0 Tµ0J

x0 x2 x1 = R(x0) J2 = TJ1 x x� = R(x�) TJ Tµ1J Jµ1 = Tµ1Jµ1

S(0) S(k) S(k + 1) J� J = (J1, J2) TJ = (T1J, T2J)

J1 Policy Improvement J2 Policy Improvement J1 Policy Evaluation
R(x)

1

m j k i i + 1 ⇤i(u), pij(u) ⇤j(u), pjk(u) ⇤k(u), pki(u)

Transition probabilities for the ith queue when service is provided

�i(u)pij(u)
�

�j(u)pjk(u)
�

�k(u)pki(u)
�

J(2) = g(2, u2) + �p21(u2)J(1) + �p22(u2)J(2)

J(2) = g(2, u1) + �p21(u1)J(1) + �p22(u1)J(2)

J(1) = g(1, u2) + �p11(u2)J(1) + �p12(u2)J(2)

J(1) = g(1, u1) + �p11(u1)J(1) + �p12(u1)J(2)

1 � �j(u)
� 1 � �i(u)

� 1 � �k(u)
�

1 � µi

µ
µi

µ

Cost = 2⇥� J0

R + g(1) + �

n�

j=1

p1jJ�(j)

i� i� � 1

g(i) + �
n�

j=1

pijJ�(j)

Do not Replace Set SR i 1 n Value Iterations J1 = TJ0 = Tµ0J0

J1 = T 2
µ0J0

J0 J1 = TJ0 J2 = T 2J0 J J� = TJ� TJ Tµ1J Jµ0 = Tµ0Jµ0 Tµ0J

x0 x2 x1 = R(x0) J2 = TJ1 x x� = R(x�) TJ Tµ1J Jµ1 = Tµ1Jµ1

S(0) S(k) S(k + 1) J� J = (J1, J2) TJ = (T1J, T2J)

J1 Policy Improvement J2 Policy Improvement J1 Policy Evaluation
R(x)

1

m j k i i + 1 ⇤i(u), pij(u) ⇤j(u), pjk(u) ⇤k(u), pki(u)

Transition probabilities for the ith queue when service is provided

�i(u)pij(u)
�

�j(u)pjk(u)
�

�k(u)pki(u)
�

J(2) = g(2, u2) + �p21(u2)J(1) + �p22(u2)J(2)

J(2) = g(2, u1) + �p21(u1)J(1) + �p22(u1)J(2)

J(1) = g(1, u2) + �p11(u2)J(1) + �p12(u2)J(2)

J(1) = g(1, u1) + �p11(u1)J(1) + �p12(u1)J(2)

1 � �j(u)
� 1 � �i(u)

� 1 � �k(u)
�

1 � µi

µ
µi

µ

Cost = 2⇥� J0

R + g(1) + �

n�

j=1

p1jJ�(j)

i� i� � 1

g(i) + �

n�

j=1

pijJ�(j)

Do not Replace Set SR i 1 n Value Iterations J1 = TJ0 = Tµ0J0

J1 = T 2
µ0J0

J0 J1 = TJ0 J2 = T 2J0 J J� = TJ� TJ Tµ1J Jµ0 = Tµ0Jµ0 Tµ0J

x0 x2 x1 = R(x0) J2 = TJ1 x x� = R(x�) TJ Tµ1J Jµ1 = Tµ1Jµ1

S(0) S(k) S(k + 1) J� J = (J1, J2) TJ = (T1J, T2J)

J1 Policy Improvement J2 Policy Improvement J1 Policy Evaluation
R(x)

1

m j k i i + 1 ⇤i(u), pij(u) ⇤j(u), pjk(u) ⇤k(u), pki(u)

Transition probabilities for the ith queue when service is provided

�i(u)pij(u)
�

�j(u)pjk(u)
�

�k(u)pki(u)
�

J(2) = g(2, u2) + �p21(u2)J(1) + �p22(u2)J(2)

J(2) = g(2, u1) + �p21(u1)J(1) + �p22(u1)J(2)

J(1) = g(1, u2) + �p11(u2)J(1) + �p12(u2)J(2)

J(1) = g(1, u1) + �p11(u1)J(1) + �p12(u1)J(2)

1 � �j(u)
� 1 � �i(u)

� 1 � �k(u)
�

1 � µi

µ
µi

µ

Cost = 2⇥� J0

R + g(1) + �

n�

j=1

p1jJ�(j)

i� i� � 1

g(i) + �

n�

j=1

pijJ�(j)

Do not Replace Set SR i 1 n Value Iterations J1 = TJ0 = Tµ0J0

J1 = T 2
µ0J0

J0 J1 = TJ0 J2 = T 2J0 J J� = TJ� TJ Tµ1J Jµ0 = Tµ0Jµ0 Tµ0J

x0 x2 x1 = R(x0) J2 = TJ1 x x� = R(x�) TJ Tµ1J Jµ1 = Tµ1Jµ1

S(0) S(k) S(k + 1) J� J = (J1, J2) TJ = (T1J, T2J)

J1 Policy Improvement J2 Policy Improvement J1 Policy Evaluation
R(x)

1

m j k i i + 1 ⇤i(u), pij(u) ⇤j(u), pjk(u) ⇤k(u), pki(u)

Transition probabilities for the ith queue when service is provided

�i(u)pij(u)
�

�j(u)pjk(u)
�

�k(u)pki(u)
�

J(2) = g(2, u2) + �p21(u2)J(1) + �p22(u2)J(2)

J(2) = g(2, u1) + �p21(u1)J(1) + �p22(u1)J(2)

J(1) = g(1, u2) + �p11(u2)J(1) + �p12(u2)J(2)

J� =
�
J�(1), J�(2)

⇥

1 � �j(u)
� 1 � �i(u)

� 1 � �k(u)
�

1 � µi

µ
µi

µ

Cost = 2⇥� J0

R + g(1) + �

n⇤

j=1

p1jJ�(j)

i� i� � 1

g(i) + �
n⇤

j=1

pijJ�(j)

Do not Replace Set SR i 1 n Value Iterations J1 = TJ0 = Tµ0J0

J1 = T 2
µ0J0

J0 J1 = TJ0 J2 = T 2J0 J J� = TJ� TJ Tµ1J Jµ0 = Tµ0Jµ0 Tµ0J

x0 x2 x1 = R(x0) J2 = TJ1 x x� = R(x�) TJ Tµ1J Jµ1 = Tµ1Jµ1

S(0) S(k) S(k + 1) J� J = (J1, J2) TJ = (T1J, T2J)

J1 Policy Improvement J2 Policy Improvement J1 Policy Evaluation
R(x)

1

Key idea: J∗ is the “largest” J that satisfies the constraint

J(i) ≤
n

∑
j=1

pij(u)(g(i,u, j) + αJ(j)), for all i = 1, . . . ,n and u ∈ U(i),

so that J∗ = (J∗(1), . . . , J∗(n)) maximizes ∑n
i=1 J(i) subject to the above constraint.

Proof: Generate sequence {Jk} with VI, starting from any J = J0 satisfying the
constraint, which implies that J0 ≤ J1. Since Jk = T k J0 and T is monotone, we have
J = J0 ≤ Jk ≤ Jk+1 → J∗. So any J satisfying the constraint also satisfies J ≤ J∗.

Bertsekas Reinforcement Learning 4 / 27

Linear Programming with Approximation in Value Space

Difficulty of the exact LP algorithm for large problems
Too many variables (n) and too many constraints (the # of state-control pairs).

Introduce a linear feature-based architecture J∗(i) ≈ J̃(i , r) = ∑m
`=1 r`φ`(i)

Replace J(i) with J̃(i, r) to reduce the number of variables.

Introduce constraint sampling to reduce the number of constraints.

Maximize ∑i∈Ĩ J̃(i, r) subject to

J̃(i, r) ≤
n

∑
i=1

pij(u)(g(i,u, j) + αJ̃(j, r)), i ∈ Ĩ, u ∈ Ũ(i)

This is a linear program.

Ĩ is a set of “representative states", Ũ(i) is a set of “representative controls".

Sampling with some known suboptimal policies is typically used to select a subset
of the constraints to enforce; progressively enrich the subset as necessary.

The approach has not been used widely, but has been successful on substantive
test problems (see Van Roy and De Farias’ works, among others).

Capitalizes on the reliability of large-scale LP software.

Bertsekas Reinforcement Learning 5 / 27

General Framework for Approximation in Policy Space

Parametrize stationary policies with a parameter vector r ; denote them by µ̃(r),
with components µ̃(i, r), i = 1, . . . ,n. Each r defines a policy.

The parametrization may be problem-specific, or feature-based, or may involve a
neural network.

The idea is to optimize some measure of performance with respect to r .

An example of problem-specific/natural parametrization: Supply chains,
inventory control

Production
Center

Delay Retail
Storage

Demand

Retail center places orders to the production center, depending on current stock;
there may be orders in transit; demand and delays can be stochastic.

State is (current stock, orders in transit, ++). Can be formulated by DP but can be
very difficult to solve exactly.

Intuitively, a near-optimal policy is of the form: When the retail inventory goes
below level r1, order an amount r2. Optimize over the parameter vector r = (r1, r2).
Extensions to a network of production/retail centers, multiple products, etc.

Bertsekas Reinforcement Learning 7 / 27

Another Example: Policy Parametrization Through Value
Parametrization

Indirect parametrization of policies through cost features

Suppose J̃(i, r) is a cost function parametric approximation.

J̃ may be a linear feature-based architecture that is natural for the given problem.

Define
µ̃(i, r) ∈ arg min

u∈U(i)

n

∑
j=1

pij(u)(g(i,u, j) + J̃(j, r))

This is useful when we know a good parametrization in value space, but we want
to use a method that works well in policy space, and results in an easily
implementable policy.

Tetris example: There are good linear parametrizations through features. Great
success has been achieved by indirect approximation in policy space.

Bertsekas Reinforcement Learning 8 / 27

Working Break: When Would you Use Approximation in Policy Space?

Think about at least six contexts where approximation in policy space is either
essential or is helpful

Problems with natural policy parametrizations (like the supply chain problem)

Problems with natural value parametrizations (like the tetris problem), where a
good policy training method works well.

Approximation in policy space on top of approximation in value space.

Learning from a software or human expert.

Unconventional information structures (limited memory, etc) - Conventional DP
breaks down.

Multiagent systems with local information (not shared with other agents).

Bertsekas Reinforcement Learning 9 / 27

Policy Approximation on Top of Value Approximation

Compute approximate cost-to-go function J̃ using an approximation in value space
scheme.

This defines the corresponding suboptimal policy µ̂ through one-step lookahead,

µ̂(i, r) ∈ arg min
u∈U(i)

n

∑
j=1

pij(u)(g(i,u, j) + J̃(j, r))

or a multistep lookahead version.

Approximate µ̂ using a training set consisting of a large number q of sample pairs
(is,us), s = 1, . . . ,q, where us = µ̂(is).
In particular, introduce a parametric family of policies µ̃(i, r). Then obtain r by

min
r

q

∑
s=1
∥us − µ̃(is, r)∥2.

Bertsekas Reinforcement Learning 10 / 27

Learning from a Software or Human Expert

Suppose we have a software or human expert that can choose a “good" or
“near-optimal" control us at any state is.

We form a sample set of representative state-control pairs (is,us), s = 1, . . . ,q.

We introduce a parametric family of policies µ̃(i, r). Then obtain r by

min
r

q

∑
s=1
∥us − µ̃(is, r)∥2.

This approach is known as expert supervised training.

It has been used (in various forms) in backgammon and in chess.

It can be used, among others, for initialization of other methods.

Bertsekas Reinforcement Learning 11 / 27

Unconventional Information Structures

Approximation in value space is based on a DP formulation, so the controller has
access to the exact state (or a belief state in case of partial state information).

In some contexts this may not be true. There is a DP-like structure, but no full
state or belief state is available.

Example 1: The controller “forgets" information, e.g., “limited memory".

Example 2: Some control components may be chosen on the basis of different
information that others.

Example: Multiagent systems with local agent information
Suppose decision making and information gathering is distributed among multiple
autonomous agents.

Each agent’s action depends only on his/her local information.

Agents may be receiving delayed information from other agents.

Then conventional DP and much of the approximation in value space methodology
breaks down.

Approximation in policy space is still applicable.

Bertsekas Reinforcement Learning 12 / 27

Optimization/Training Framework

System
Environment

Cost

Uncertainty

Control

Controller

Current State

I u = µ̃(I, r) µ̃(·, r)
Corrected J̃ J̃ J* Cost J̃µ

�
F (i), r

�
of i ⇡ Jµ(i) Jµ(i) Feature Map

J̃µ

�
F (i), r

�
: Feature-based parametric architecture State

r: Vector of weights Original States Aggregate States

Position “value” Move “probabilities” Simplify E{·}
Choose the Aggregation and Disaggregation Probabilities

Use a Neural Network or Other Scheme Form the Aggregate States
I1 Iq

Use a Neural Scheme or Other Scheme

Possibly Include “Handcrafted” Features

Generate Features F (i) of Formulate Aggregate Problem

Generate “Impoved” Policy µ̂ by “Solving” the Aggregate Problem

Same algorithm learned multiple games (Go, Shogi)

Aggregate costs r⇤` Cost function J̃0(i) Cost function J̃1(j)

Approximation in a space of basis functions Plays much better than
all chess programs

Cost ↵kg(i, u, j) Transition probabilities pij(u) Wp

Controlled Markov Chain Evaluate Approximate Cost J̃µ of

Evaluate Approximate Cost J̃µ

�
F (i)

�
of

F (i) =
�
F1(i), . . . , Fs(i)

�
: Vector of Features of i

J̃µ

�
F (i)

�
: Feature-based architecture Final Features

If J̃µ

�
F (i), r

�
=
Ps

`=1 F`(i)r` it is a linear feature-based architecture

(r1, . . . , rs: Scalar weights)

Wp: Functions J � Ĵp with J(xk) ! 0 for all p-stable ⇡

Wp0 : Functions J � Ĵp0 with J(xk) ! 0 for all p0-stable ⇡

W+ =
�
J | J � J+, J(t) = 0

VI converges to J+ from within W+

Cost: g(xk, uk) � 0 VI converges to Ĵp from within Wp

1

i u = µ̃(i, r) µ̃(·, r)
Corrected J̃ J̃ J* Cost J̃µ

�
F (i), r

�
of i ⇡ Jµ(i) Jµ(i) Feature Map

J̃µ

�
F (i), r

�
: Feature-based parametric architecture State

r: Vector of weights Original States Aggregate States

Position “value” Move “probabilities” Simplify E{·}
Choose the Aggregation and Disaggregation Probabilities

Use a Neural Network or Other Scheme Form the Aggregate States
I1 Iq

Use a Neural Scheme or Other Scheme

Possibly Include “Handcrafted” Features

Generate Features F (i) of Formulate Aggregate Problem

Generate “Impoved” Policy µ̂ by “Solving” the Aggregate Problem

Same algorithm learned multiple games (Go, Shogi)

Aggregate costs r⇤` Cost function J̃0(i) Cost function J̃1(j)

Approximation in a space of basis functions Plays much better than
all chess programs

Cost ↵kg(i, u, j) Transition probabilities pij(u) Wp

Controlled Markov Chain Evaluate Approximate Cost J̃µ of

Evaluate Approximate Cost J̃µ

�
F (i)

�
of

F (i) =
�
F1(i), . . . , Fs(i)

�
: Vector of Features of i

J̃µ

�
F (i)

�
: Feature-based architecture Final Features

If J̃µ

�
F (i), r

�
=
Ps

`=1 F`(i)r` it is a linear feature-based architecture

(r1, . . . , rs: Scalar weights)

Wp: Functions J � Ĵp with J(xk) ! 0 for all p-stable ⇡

Wp0 : Functions J � Ĵp0 with J(xk) ! 0 for all p0-stable ⇡

W+ =
�
J | J � J+, J(t) = 0

VI converges to J+ from within W+

Cost: g(xk, uk) � 0 VI converges to Ĵp from within Wp

1

i u = µ̃(i, r) µ̃(·, r)
Corrected J̃ J̃ J* Cost J̃µ

�
F (i), r

�
of i ⇡ Jµ(i) Jµ(i) Feature Map

J̃µ

�
F (i), r

�
: Feature-based parametric architecture State

r: Vector of weights Original States Aggregate States

Position “value” Move “probabilities” Simplify E{·}
Choose the Aggregation and Disaggregation Probabilities

Use a Neural Network or Other Scheme Form the Aggregate States
I1 Iq

Use a Neural Scheme or Other Scheme

Possibly Include “Handcrafted” Features

Generate Features F (i) of Formulate Aggregate Problem

Generate “Impoved” Policy µ̂ by “Solving” the Aggregate Problem

Same algorithm learned multiple games (Go, Shogi)

Aggregate costs r⇤` Cost function J̃0(i) Cost function J̃1(j)

Approximation in a space of basis functions Plays much better than
all chess programs

Cost ↵kg(i, u, j) Transition probabilities pij(u) Wp

Controlled Markov Chain Evaluate Approximate Cost J̃µ of

Evaluate Approximate Cost J̃µ

�
F (i)

�
of

F (i) =
�
F1(i), . . . , Fs(i)

�
: Vector of Features of i

J̃µ

�
F (i)

�
: Feature-based architecture Final Features

If J̃µ

�
F (i), r

�
=
Ps

`=1 F`(i)r` it is a linear feature-based architecture

(r1, . . . , rs: Scalar weights)

Wp: Functions J � Ĵp with J(xk) ! 0 for all p-stable ⇡

Wp0 : Functions J � Ĵp0 with J(xk) ! 0 for all p0-stable ⇡

W+ =
�
J | J � J+, J(t) = 0

VI converges to J+ from within W+

Cost: g(xk, uk) � 0 VI converges to Ĵp from within Wp

1

Training by Cost Optimization

Each r defines a stationary policy µ̃(r), with components µ̃(i, r), i = 1, . . . ,n.

Determine r through the minimization

min
r

Jµ̃(r)(i0)

where Jµ̃(r)(i0) is the cost of the policy µ̃(r) starting from initial state i0.

More generally, determine r through the minimization

min
r

E{Jµ̃(r)(i0)}

where the E{⋅} is with respect to a suitable probability distribution of i0.
Bertsekas Reinforcement Learning 14 / 27

Training by Random Search

Random search methods apply to the general minimization minr∈R F(r)

They generate a parameter sequence {r k} aiming for cost reduction.

Given r k , points are chosen in some random fashion in a neighborhood of r k , and
some new point r k+1 is chosen within this neighborhood.

In theory they have good convergence properties. In practice they can be slow.

They are not affected as much by local minima (as for example gradient-type
methods).

They don’t require a differentiable cost function, and they apply to discrete as well
as continuous minimization.

There are many methods and variations thereoff.

Some examples
Evolutionary programming.

Tabu search.

Simulated annealing.

Cross entropy method.

Bertsekas Reinforcement Learning 15 / 27

Cross-Entropy Method - A Sketch

rk rk+1 Ek Ek+1 i u = µ̃(i, r) µ̃(·, r)
Corrected J̃ J̃ J* Cost J̃µ

(
F (i), r

)
of i ≈ Jµ(i) Jµ(i) Feature Map

J̃µ

(
F (i), r

)
: Feature-based parametric architecture State

r: Vector of weights Original States Aggregate States

Position “value” Move “probabilities” Simplify E{·}
Choose the Aggregation and Disaggregation Probabilities

Use a Neural Network or Other Scheme Form the Aggregate States
I1 Iq

Use a Neural Scheme or Other Scheme

Possibly Include “Handcrafted” Features

Generate Features F (i) of Formulate Aggregate Problem

Generate “Impoved” Policy µ̂ by “Solving” the Aggregate Problem

Same algorithm learned multiple games (Go, Shogi)

Aggregate costs r∗
ℓ Cost function J̃0(i) Cost function J̃1(j)

Approximation in a space of basis functions Plays much better than
all chess programs

Cost αkg(i, u, j) Transition probabilities pij(u) Wp

Controlled Markov Chain Evaluate Approximate Cost J̃µ of

Evaluate Approximate Cost J̃µ

(
F (i)

)
of

F (i) =
(
F1(i), . . . , Fs(i)

)
: Vector of Features of i

J̃µ

(
F (i)

)
: Feature-based architecture Final Features

If J̃µ

(
F (i), r

)
=

∑s
ℓ=1 Fℓ(i)rℓ it is a linear feature-based architecture

(r1, . . . , rs: Scalar weights)

Wp: Functions J ≥ Ĵp with J(xk) → 0 for all p-stable π

Wp′ : Functions J ≥ Ĵp′ with J(xk) → 0 for all p′-stable π

W+ =
{
J | J ≥ J+, J(t) = 0

}

VI converges to J+ from within W+

Cost: g(xk, uk) ≥ 0 VI converges to Ĵp from within Wp

1

rk rk+1 Ek Ek+1 i u = µ̃(i, r) µ̃(·, r)
Corrected J̃ J̃ J* Cost J̃µ

(
F (i), r

)
of i ≈ Jµ(i) Jµ(i) Feature Map

J̃µ

(
F (i), r

)
: Feature-based parametric architecture State

r: Vector of weights Original States Aggregate States

Position “value” Move “probabilities” Simplify E{·}
Choose the Aggregation and Disaggregation Probabilities

Use a Neural Network or Other Scheme Form the Aggregate States
I1 Iq

Use a Neural Scheme or Other Scheme

Possibly Include “Handcrafted” Features

Generate Features F (i) of Formulate Aggregate Problem

Generate “Impoved” Policy µ̂ by “Solving” the Aggregate Problem

Same algorithm learned multiple games (Go, Shogi)

Aggregate costs r∗
ℓ Cost function J̃0(i) Cost function J̃1(j)

Approximation in a space of basis functions Plays much better than
all chess programs

Cost αkg(i, u, j) Transition probabilities pij(u) Wp

Controlled Markov Chain Evaluate Approximate Cost J̃µ of

Evaluate Approximate Cost J̃µ

(
F (i)

)
of

F (i) =
(
F1(i), . . . , Fs(i)

)
: Vector of Features of i

J̃µ

(
F (i)

)
: Feature-based architecture Final Features

If J̃µ

(
F (i), r

)
=

∑s
ℓ=1 Fℓ(i)rℓ it is a linear feature-based architecture

(r1, . . . , rs: Scalar weights)

Wp: Functions J ≥ Ĵp with J(xk) → 0 for all p-stable π

Wp′ : Functions J ≥ Ĵp′ with J(xk) → 0 for all p′-stable π

W+ =
{
J | J ≥ J+, J(t) = 0

}

VI converges to J+ from within W+

Cost: g(xk, uk) ≥ 0 VI converges to Ĵp from within Wp

1

rk rk+1 Ek Ek+1 i u = µ̃(i, r) µ̃(·, r)
Corrected J̃ J̃ J* Cost J̃µ

(
F (i), r

)
of i ≈ Jµ(i) Jµ(i) Feature Map

J̃µ

(
F (i), r

)
: Feature-based parametric architecture State

r: Vector of weights Original States Aggregate States

Position “value” Move “probabilities” Simplify E{·}
Choose the Aggregation and Disaggregation Probabilities

Use a Neural Network or Other Scheme Form the Aggregate States
I1 Iq

Use a Neural Scheme or Other Scheme

Possibly Include “Handcrafted” Features

Generate Features F (i) of Formulate Aggregate Problem

Generate “Impoved” Policy µ̂ by “Solving” the Aggregate Problem

Same algorithm learned multiple games (Go, Shogi)

Aggregate costs r∗
ℓ Cost function J̃0(i) Cost function J̃1(j)

Approximation in a space of basis functions Plays much better than
all chess programs

Cost αkg(i, u, j) Transition probabilities pij(u) Wp

Controlled Markov Chain Evaluate Approximate Cost J̃µ of

Evaluate Approximate Cost J̃µ

(
F (i)

)
of

F (i) =
(
F1(i), . . . , Fs(i)

)
: Vector of Features of i

J̃µ

(
F (i)

)
: Feature-based architecture Final Features

If J̃µ

(
F (i), r

)
=

∑s
ℓ=1 Fℓ(i)rℓ it is a linear feature-based architecture

(r1, . . . , rs: Scalar weights)

Wp: Functions J ≥ Ĵp with J(xk) → 0 for all p-stable π

Wp′ : Functions J ≥ Ĵp′ with J(xk) → 0 for all p′-stable π

W+ =
{
J | J ≥ J+, J(t) = 0

}

VI converges to J+ from within W+

Cost: g(xk, uk) ≥ 0 VI converges to Ĵp from within Wp

1

rk rk+1 Ek Ek+1 i u = µ̃(i, r) µ̃(·, r)
Corrected J̃ J̃ J* Cost J̃µ

(
F (i), r

)
of i ≈ Jµ(i) Jµ(i) Feature Map

J̃µ

(
F (i), r

)
: Feature-based parametric architecture State

r: Vector of weights Original States Aggregate States

Position “value” Move “probabilities” Simplify E{·}
Choose the Aggregation and Disaggregation Probabilities

Use a Neural Network or Other Scheme Form the Aggregate States
I1 Iq

Use a Neural Scheme or Other Scheme

Possibly Include “Handcrafted” Features

Generate Features F (i) of Formulate Aggregate Problem

Generate “Impoved” Policy µ̂ by “Solving” the Aggregate Problem

Same algorithm learned multiple games (Go, Shogi)

Aggregate costs r∗
ℓ Cost function J̃0(i) Cost function J̃1(j)

Approximation in a space of basis functions Plays much better than
all chess programs

Cost αkg(i, u, j) Transition probabilities pij(u) Wp

Controlled Markov Chain Evaluate Approximate Cost J̃µ of

Evaluate Approximate Cost J̃µ

(
F (i)

)
of

F (i) =
(
F1(i), . . . , Fs(i)

)
: Vector of Features of i

J̃µ

(
F (i)

)
: Feature-based architecture Final Features

If J̃µ

(
F (i), r

)
=

∑s
ℓ=1 Fℓ(i)rℓ it is a linear feature-based architecture

(r1, . . . , rs: Scalar weights)

Wp: Functions J ≥ Ĵp with J(xk) → 0 for all p-stable π

Wp′ : Functions J ≥ Ĵp′ with J(xk) → 0 for all p′-stable π

W+ =
{
J | J ≥ J+, J(t) = 0

}

VI converges to J+ from within W+

Cost: g(xk, uk) ≥ 0 VI converges to Ĵp from within Wp

1

At the current iterate r k , construct an ellipsoid Ek centered at r k .

Generate a number of random samples within Ek . “Accept" a subset of the
samples that have “low" cost.

Let r k+1 be the sample “mean" of the accepted samples.

Construct a sample “covariance" matrix of the accepted samples, form the new
ellipsoid Ek+1 using this matrix, and continue.

Limited convergence rate guarantees. Success depends on domain-specific
insight and the skilled use of implementation heuristics.

Simple and well-suited for parallel computation. Resembles a “gradient method".
Bertsekas Reinforcement Learning 16 / 27

Policy Gradient Method for Deterministic Problems

Consider the minimization of Jµ̃(r)(i0) over r by using the gradient method

r k+1 = r k − γk∇Jµ̃(rk)(i0)

assuming that Jµ̃(r)(i0) is differentiable with respect to r .

The difficulty is that the gradient ∇Jµ̃(rk)(i0) may not be explicitly available.

Then the gradient must be approximated by finite differences of cost function
values Jµ̃(rk)(i0).
When the problem is deterministic the gradient method may work well.

When the problem is stochastic, the cost function values may be computable only
through Monte Carlo simulation. Very hard to get accurate gradients by
differencing function values.

Bertsekas Reinforcement Learning 18 / 27

Policy Gradient Method for Stochastic Problems

Consider the generic optimization problem minz∈Z F(z)

We take an unusual step: Convert this problem to the stochastic optimization problem

min
p∈PZ

Ep{F(z)}

where

z is viewed as a random variable.

PZ is the set of probability distributions over Z .

p denotes the generic distribution in PZ .

Ep{⋅} denotes expected value with respect to p.

How does this relate to our infinite horizon DP problems?
For this framework to apply to a stochastic DP context, we must enlarge the set of
policies to include randomized policies, mapping a state i into a probability
distribution over the set of controls U(i).
Note that in our DP problems, optimization over randomized policies gives the
same results as optimization over ordinary/nonrandomized policies.

In the DP context, z is the state-control trajectory: z = {i0,u0, i1,u1, . . .}.
Bertsekas Reinforcement Learning 19 / 27

Gradient Method for Approximate Solution of minz∈Z F(z)

Parametrization of the probability distributions

We restrict attention to a parametrized subset P̃Z ⊂ PZ of probability distributions
p(z; r), where r is a continuous parameter.

In other words, we approximate the problem minz∈Z F(z) with the restricted
problem

min
r

Ep(z;r){F(z)}

We use a gradient method for solving this problem:

r k+1 = r k − γk∇(Ep(z;rk){F(z)})

Key fact: There is a useful formula for the gradient, which involves the gradient
with respect to r of the natural logarithm log (p(z; r k)).

Bertsekas Reinforcement Learning 20 / 27

The Gradient Formula (Reverses the Order of E{⋅} and ∇)

Assuming that p(z; r k
) is a discrete distribution, we have

∇(Ep(z;rk){F(z)}) = ∇(∑
z∈Z

p(z; r k)F(z))

=∑
z∈Z

∇p(z; r k)F(z)

=∑
z∈Z

p(z; r k)∇p(z; r k)
p(z; r k)

F(z)

= Ep(z;rk){∇(log (p(z; r k)))F(z)}

Sample-Based Gradient Method for Parametric Approximation of minz∈Z F(z)

At r k obtain a sample zk according to the distribution p(z; r k).

Compute the sample gradient ∇(log (p(zk ; r k)))F(zk).

Use it to iterate according to

r k+1 = r k − γk∇(log (p(zk ; r k)))F(zk)

Bertsekas Reinforcement Learning 21 / 27

Policy Gradient Method - Discounted Problem

Denote by z the infinite horizon state-control trajectory:

z = {i0,u0, i1,u1, . . .}.

We consider a parametrization of randomized policies p(u ∣ i; r) with parameter r ,
i.e., the control at state i is generated according to a distribution p(u ∣ i; r) over
U(i).
Then for a given r , the state-control trajectory z is a random trajectory with
probability distribution denoted p(z; r).
The cost corresponding to the trajectory z is

F(z) =
∞
∑
m=0

αmg(im,um, im+1),

and the problem is to minimize Ep(z;r){F(z)}, over r .

The gradient needed in the gradient iteration

r k+1 = r k − γk∇(log (p(zk ; r k)))F(zk)

is given by ∇(log (p(zk ; r k))) =
∞
∑
m=0

∇(log (p(um ∣ im; r k)))

Bertsekas Reinforcement Learning 22 / 27

Unusual Aspects of the Policy Gradient Method

It involves the cost function of the discounted problem, but not its gradient ... In
fact the cost per stage g may be nondifferentiable!

The problem solved is a randomized version of the original ... so if r k → r̄ and the
distribution p(z, r̄) is not atomic, a solution has to be extracted from this
distribution.

Some of the implementation issues

How to collect the trajectory samples zk to strike a balance between convenient
implementation and exploration of the search space.

How to reduce the large noise in the cost calculation F(zk).
Use of baseline b, i.e., iterate according to

r k+1 = r k − γk∇(log (p(zk ; r k)))(F(zk) − b)

instead of
r k+1 = r k − γk∇(log (p(zk ; r k)))F(zk)

There is theoretical basis for this (see the next slide).

Bertsekas Reinforcement Learning 24 / 27

Cost Shaping Technique - Can Serve for Noise Reduction

Introduce an equivalent “variational" problem (known since the 1960s)

Subtract any known function V(x) from J∗(x):

Ĵ(x) = J∗(x) − V(x), x = 1, . . . ,n

Replace the cost per stage g(x ,u, y) with

ĝ(x ,u, y) = g(x ,u, y) + αV(y) − V(x), x = 1, . . . ,n

Then the original problem’s Bellman’s equation is written as another Bellman
equation

Ĵ(x) = min
u∈U(x)

n

∑
y=1

pxy(u)(ĝ(x ,u, y) + αĴ(y)), x = 1, . . . ,n

Ĵ is the optimal cost of another problem: g(x ,u, y) is replaced by ĝ(x ,u, y)
The reformulated problem is equivalent as far as exact solution is concerned

BUT Ĵ may have more favorable “shape" for approximation, i.e., policy gradient
and other methods may work better for the reformulated problem

Example: If V ≈ J∗, approximation methods can capture more easily small scale
variations in J∗ ... compare with the discussion on advantage updating (Lecture 8)

Bertsekas Reinforcement Learning 25 / 27

Robustness of Policy Gradient Methods

There is a generic difficulty with using a fixed policy on-line:
It is all-training no on-line play. (This could be good but could be very bad.)

It does not adapt to changes in the problem’s parameters.

So approximation in policy space may not work well in adaptive control contexts.

Also it does not yield the benefit of on-line lookahead minimization/rollout.

Approximation in value space, and rollout may work much better (e.g., in
AlphaZero).

An alternative use of approximation in policy space methods (including policy
gradient)
It can provide a base policy for use in (truncated) rollout or can be used in Monte Carlo
Tree Search. This is what is done in AlphaZero.

Bertsekas Reinforcement Learning 26 / 27

About the Next Lecture

We will cover approximation in value space by aggregation.

Check videolectures 11 and 12 from 2019 ASU class

Bertsekas Reinforcement Learning 27 / 27

	Linear Programming: Another Approach to Approximation in Value Space
	Approximation in Policy Space: Motivation
	Training of Policies by Cost Optimization - Random Search
	Training of Policies by Cost Optimization - Policy Gradient Methods
	Implementation Issues of Policy Gradient Methods

