Topics in Reinforcement Learning:
AlphaZero, ChatGPT, Neuro-Dynamic Programming,
Model Predictive Control, Discrete Optimization
Arizona State University
Course CSE 691, Spring 2024

Links to Class Notes, Videolectures, and Slides at http://web.mit.edu/dimitrib/www/RLbook.html

> Dimitri P. Bertsekas dpbertsekas@gmail.com

Lecture 2
Stochastic Finite and Infinite Horizon DP

Outline

- Finite Horizon Deterministic Problem Approximation in Value Space
- Stochastic DP Algorithm
- 3 Linear Quadratic Problems An Important Favorable Special Case
- Approximation in Value Space A Fundamental RL Approach
- Approximation in Policy Space
- Infinite Horizon An Overview of Theory and Algorithms
- Linear Quadratic Problems in Infinite Horizon

Review - Finite Horizon Deterministic Problem

System

$$x_{k+1} = f_k(x_k, u_k), \qquad k = 0, 1, \dots, N-1$$

where x_k : State, u_k : Control chosen from some set $U_k(x_k)$

- Arbitrary state and control spaces (e.g., vectors, chess positions, word strings)
- Cost function:

$$g_N(x_N) + \sum_{k=0}^{N-1} g_k(x_k, u_k)$$

• For given initial state x_0 , minimize over control sequences $\{u_0, \dots, u_{N-1}\}$

$$J(x_0; u_0, \ldots, u_{N-1}) = g_N(x_N) + \sum_{k=0}^{N-1} g_k(x_k, u_k)$$

• Optimal cost function $J^*(x_0) = \min_{\substack{u_k \in U_k(x_k) \\ k=0,\dots,N-1}} J(x_0; u_0,\dots,u_{N-1})$

Review - DP Algorithm for Deterministic Problems

Go backward to compute the optimal costs $J_k^*(x_k)$ of the x_k -tail subproblems (off-line training - involves lots of computation)

Start with

$$J_N^*(x_N) = g_N(x_N), \quad \text{for all } x_N,$$

and for k = 0, ..., N - 1, let

$$J_k^*(x_k) = \min_{u_k \in U_k(x_k)} \left[g_k(x_k, u_k) + J_{k+1}^* \big(f_k(x_k, u_k) \big) \right], \qquad \text{for all } x_k.$$

Then optimal cost $J^*(x_0)$ is obtained at the last step: $J_0^*(x_0) = J^*(x_0)$.

Go forward to construct optimal control sequence $\{u_0^*, \dots, u_{N-1}^*\}$ (on-line play)

Start with

$$u_0^* \in \arg\min_{u_0 \in U_0(x_0)} \left[g_0(x_0, u_0) + J_1^* \left(f_0(x_0, u_0) \right) \right], \qquad x_1^* = f_0(x_0, u_0^*).$$

Sequentially, going forward, for k = 1, 2, ..., N - 1, set

$$u_k^* \in \arg\min_{u_k \in U_k(x_k^*)} \left[g_k(x_k^*, u_k) + J_{k+1}^* \big(f_k(x_k^*, u_k) \big) \right], \qquad x_{k+1}^* = f_k(x_k^*, u_k^*).$$

Q-Factors for Deterministic Problems

An alternative (and equivalent) form of the DP algorithm

• Generates the optimal Q-factors, defined for all (x_k, u_k) and k by

$$Q_k^*(x_k, u_k) = g_k(x_k, u_k) + J_{k+1}^*(f_k(x_k, u_k))$$

• The optimal cost function J_k^* can be recovered from the optimal Q-factor Q_k^*

$$J_k^*(x_k) = \min_{u_k \in U_k(x_k)} Q_k^*(x_k, u_k)$$

The DP algorithm can be written in terms of Q-factors

$$Q_k^*(x_k, u_k) = g_k(x_k, u_k) + \min_{u_{k+1} \in U_{k+1}(f_k(x_k, u_k))} Q_{k+1}^*(f_k(x_k, u_k), u_{k+1})$$

• Exact and approximate forms of this and other related algorithms, form an important class of RL methods known as Q-learning.

Approximation in Value Space

We replace J_k^* with an approximation \tilde{J}_k during on-line play

Start with

$$\tilde{u}_0 \in \arg\min_{u_0 \in U_0(x_0)} \left[g_0(x_0, u_0) + \tilde{J}_1(f_0(x_0, u_0)) \right]$$

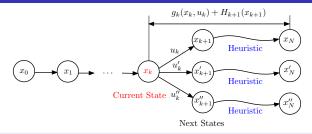
- Set $\tilde{x}_1 = f_0(x_0, \tilde{u}_0)$
- Sequentially, going forward, for k = 1, 2, ..., N 1, set

$$\tilde{u}_k \in \arg\min_{u_k \in U_k(\tilde{x}_k)} \left[g_k(\tilde{x}_k, u_k) + \tilde{J}_{k+1} \left(f_k(\tilde{x}_k, u_k) \right) \right], \qquad \tilde{x}_{k+1} = f_k(\tilde{x}_k, \tilde{u}_k)$$

How do we compute $\tilde{J}_{k+1}(x_{k+1})$? This is one of the principal issues in RL

- Off-line problem approximation: Use as \tilde{J}_{k+1} the optimal cost function of a simpler problem, computed off-line by exact DP
- On-line approximate optimization, e.g., solve on-line a shorter horizon problem by multistep lookahead minimization and simple terminal cost (often done in MPC)
- Parametric cost approximation: Obtain $\tilde{J}_{k+1}(x_{k+1})$ from a parametric class of functions $J(x_{k+1}, r)$, where r is a parameter, e.g., training using data and a NN.
- Rollout with a heuristic: We will focus on this for the moment.

Rollout for Finite-State Deterministic Problems



Optimal cost approximation by running a heuristic from states of interest

Rollout is an on-line play algorithm to generate a trajectory $\{x_0, x_1, \dots, x_N\}$

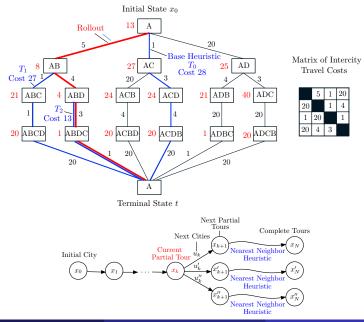
- Upon reaching x_k , we compute for all $u_k \in U_k(x_k)$, the corresponding next states $x_{k+1} = f_k(x_k, u_k)$
- From each of the next states x_{k+1} we run the heuristic and compute the heuristic cost $H_{k+1}(x_{k+1})$
- We apply \tilde{u}_k that minimizes over $u_k \in U_k(x_k)$, the (heuristic) Q-factor

$$g_k(x_k, u_k) + H_{k+1}(x_{k+1})$$

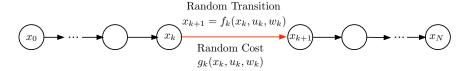
• We generate the next state $x_{k+1} = f_k(x_k, \tilde{u}_k)$ and repeat

Bertsekas Reinforcement Learning 8 / 34

Example of Rollout: Traveling Salesman w/ Nearest Neighbor Heuristic



Stochastic DP Problems - Perfect State Observation (We Know x_k)



- System $x_{k+1} = f_k(x_k, u_k, w_k)$ with random "disturbance" w_k (e.g., physical noise, market uncertainties, demand for inventory, unpredictable breakdowns, etc)
- Cost function: $E\left\{g_N(x_N) + \sum_{k=0}^{N-1} g_k(x_k, u_k, w_k)\right\}$
- Policies $\pi = \{\mu_0, \dots, \mu_{N-1}\}$, where μ_k is a "closed-loop control law" or "feedback policy"/a function of x_k . A "lookup table" for the control $u_k = \mu_k(x_k)$ to apply at x_k .
- An important point: Using feedback (i.e., choosing controls with knowledge of the state) is beneficial in view of the stochastic nature of the problem.
- For given initial state x_0 , minimize over all $\pi = \{\mu_0, \dots, \mu_{N-1}\}$ the cost

$$J_{\pi}(x_0) = E\left\{g_N(x_N) + \sum_{k=0}^{N-1} g_k(x_k, \mu_k(x_k), w_k)\right\}$$

• Optimal cost function: $J^*(x_0) = \min_{\pi} J_{\pi}(x_0)$. Optimal policy: $J_{\pi^*}(x_0) = J^*(x_0)$

The Stochastic DP Algorithm

Produces the optimal costs $J_k^*(x_k)$ of the tail subproblems that start at x_k

Start with $J_N^*(x_N) = g_N(x_N)$, and for k = 0, ..., N-1, let

$$J_k^*(x_k) = \min_{u_k \in U_k(x_k)} E_{w_k} \Big\{ g_k(x_k, u_k, w_k) + J_{k+1}^* \big(f_k(x_k, u_k, w_k) \big) \Big\}, \qquad \text{for all } x_k.$$

- The optimal cost $J^*(x_0)$ is obtained at the last step: $J_0^*(x_0) = J^*(x_0)$.
- The optimal policy component μ_k^* can be constructed (off-line) simultaneously with J_k^* , and consists of the minimizing $u_k^* = \mu_k^*(x_k)$ above.

Alternative (on-line) implementation of the optimal policy, given J_1^*, \ldots, J_{N-1}^*

Sequentially, going forward, for k = 0, 1, ..., N - 1, observe x_k and apply

$$u_k^* \in \arg\min_{u_k \in U_k(x_k)} E_{w_k} \Big\{ g_k(x_k, u_k, w_k) + J_{k+1}^* \big(f_k(x_k, u_k, w_k) \big) \Big\}.$$

Issues: Need to know J_{k+1}^* , compute $E_{w_k}\{\cdot\}$ for each u_k , minimize over all u_k

A Very Favorable Case: Linear-Quadratic Problems

One-dimensional linear-quadratic problem

- System is $x_{k+1} = ax_k + bu_k + w_k$ (a and b are given scalars)
- Cost over N stages: $qx_N^2 + \sum_{k=0}^{N-1} (qx_k^2 + ru_k^2)$, where q > 0 and r > 0 are given scalars
- The DP algorithm starts with $J_N^*(x_N) = qx_N^2$, and generates J_k^* according to

$$J_k^*(x_k) = \min_{u_k} E_{w_k} \{ q x_k^2 + r u_k^2 + J_{k+1}^* (a x_k + b u_k + w_k) \}, \quad k = 0, \dots, N-1$$

- DP algorithm can be carried out in closed form to yield $J_k^*(x_k) = K_k x_k^2 + \text{const}, \ \mu_k^*(x_k) = L_k x_k$: K_k and L_k can be explicitly computed
- $\mu_k^*(x_k)$ does not depend on the distribution of w_k as long as it has 0 mean: Certainty Equivalence (a common approximation idea for other problems)

These results generalize to multidimensional linear-quadratic problems

 $x_k \in \mathbb{R}^n$, $u_k \in \mathbb{R}^m$; the scalars a, b, q, r are replaced by matrices A, B, Q, R.

14/34

Derivation - DP Algorithm starting from Terminal Cost $J_N^*(x_N) = qx_N^2$

$$J_{N-1}^{*}(x_{N-1}) = \min_{u_{N-1}} E\{qx_{N-1}^{2} + ru_{N-1}^{2} + J_{N}^{*}(ax_{N-1} + bu_{N-1} + w_{N-1})\}$$

$$= \min_{u_{N-1}} E\{qx_{N-1}^{2} + ru_{N-1}^{2} + q(ax_{N-1} + bu_{N-1} + w_{N-1})^{2}\}$$

$$= \min_{u_{N-1}} \left[qx_{N-1}^{2} + ru_{N-1}^{2} + q(ax_{N-1} + bu_{N-1})^{2} + 2q\underbrace{E\{w_{N-1}\}}_{=0}(ax_{N-1} + bu_{N-1}) + q\underbrace{E\{w_{N-1}^{2}\}}_{=\sigma^{2}}(ax_{N-1} + bu_{N-1})^{2} + q\underbrace{E\{w_{N-1}^{2}\}}_{=\sigma^{2}}(ax_{N-1} +$$

Minimize by setting to zero the derivative: $0 = 2ru_{N-1} + 2qb(ax_{N-1} + bu_{N-1})$, to obtain

$$\mu_{N-1}^*(x_{N-1}) = L_{N-1}x_{N-1}$$
 with $L_{N-1} = -\frac{abq}{r+b^2q}$

and by substitution, $J_{N-1}^*(x_{N-1}) = K_{N-1}x_{N-1}^2 + q\sigma^2$, where $K_{N-1} = \frac{a^2rq}{r+b^2a} + q$

Similarly, going backwards (starting with $K_N = q$), we obtain for all k:

$$J_k^*(x_k) = K_k x_k^2 + \sigma^2 \sum_{m=k}^{N-1} K_{m+1}, \ \mu_k^*(x_k) = L_k x_k, \quad K_k = \frac{a^2 r K_{k+1}}{r + b^2 K_{k+1}} + q, \ L_k = -\frac{ab K_{k+1}}{r + b^2 K_{k+1}}$$

Linear-Quadratic Problems in General

Observations and generalizations

- The solution does not depend on the distribution of w_k , only on the mean (which is 0), i.e., we have certainty equivalence (the stochastic problem can be replaced by a deterministic problem)
- Generalization to multidimensional problems, nonzero mean disturbances, etc
- Generalization to infinite horizon
- Generalization to problems where the state is observed partially through linear measurements: Optimal policy involves an extended form of certainty equivalence

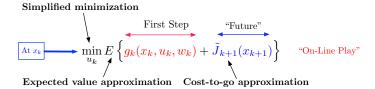
$$L_k E\{x_k \mid \text{measurements}\}$$

where $E\{x_k \mid \text{measurements}\}\)$ is provided by an estimator (e.g., Kalman filter)

- Linear systems and quadratic cost are a starting point for other lines of investigations and approximations:
 - Problems with safety/state constraints [Model Predictive Control (MPC)]
 - Problems with control constraints (MPC)
 - Unknown or changing system parameters (adaptive control)

16/34

Approximation in Value Space - The Three Approximations



Important variants: Use multistep lookahead, use multiagent rollout (for multicomponent control problems)

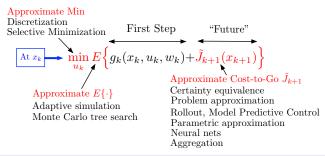
Multistep lookahead (performance - computational overhead tradeoff)

$$\begin{array}{c} \textbf{At State } x_k \\ \textbf{DP minimization} \\ & \downarrow \\ \min_{u_k,\mu_{k+1},...,\mu_{k+\ell-1}} E\Big\{g_k(x_k,u_k,w_k) + \sum_{m=k+1}^{k+\ell-1} g_m\big(x_m,\mu_m(x_m),w_m\big) + \tilde{J}_{k+\ell}(x_{k+\ell})\Big\} \end{array}$$

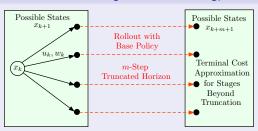
Lookahead Minimization

Cost-to-go Approximation

Constructing Approximations



An example: Truncated rollout with base policy and terminal cost approximation (however obtained, e.g., off-line training)

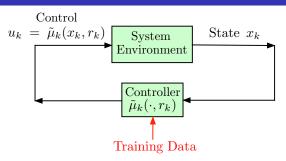


A Fifteen-Minute Break

All our lectures will have a 15-minute break, somewhere in the middle Catch our breath and think about issues relating to the first half of the lecture. A short discussion/questions/answers period will follow each break.

20 / 34

Approximation in Policy Space: The Major Alternative to Approximation in Value Space



- Idea: Select the policy by optimization over a suitably restricted class of policies
- The restricted class is usually a parametric family of policies $\tilde{\mu}_k(x_k, r_k)$, $k = 0, \dots, N-1$, of some form, where r_k is a parameter (e.g., a neural net)
- Methods used for optimization/off-line training: Random search, policy gradient, classification (to be discussed later)
- Important advantage once the parameters r_k are computed: The on-line computation of controls is often much faster ... at state x_k apply $u_k = \tilde{\mu}_k(x_k, r_k)$
- Important disadvantage: It does not allow for on-line replanning ... no Newton step

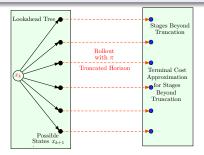
Bertsekas Reinforcement Learning 22 / 34

An Important Conceptual Difference Between Approximation in Value and in Policy Space

$$\min_{u_k} E \left\{ g_k(x_k, u_k, w_k) + \tilde{J}_{k+1}(x_{k+1}) \right\}$$

Approximation in value space is primarily an "on-line play" method

with off-line training used optionally to construct cost function approximations for one-step or multistep lookahead



Approximation in policy space is primarily an "off-line training" method

which may be used optionally to provide a policy for on-line rollout

Bertsekas Reinforcement Learning 23 / 34

From Approximation in Value Space to Approximation in Policy Space

The approximate cost-to-go functions \tilde{J}_{k+1} define a suboptimal policy $\tilde{\mu}_k$ through one-step or multistep lookahead minimization

- Given functions \tilde{J}_{k+1} , how do we simplify the computation of $\tilde{\mu}_k$?
- Idea: Use (off-line) approximation in policy space to "learn" $\tilde{\mu}_k$: Apporximate $\tilde{\mu}_k$ using a training set of a large number of sample pairs (x_k^s, u_k^s) , $s = 1, \ldots, q$, where $u_k^s = \tilde{\mu}_k(x_k^s)$:

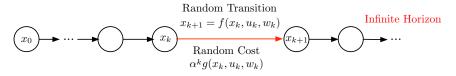
$$u_k^s \in \arg\min_{u \in U_k(x_k)} E\left\{g_k(x_k^s, u, w_k) + \tilde{J}_{k+1}\big(f_k(x_k^s, u, w_k)\big)\right\} \qquad \text{(off-line)}$$

• Example: Introduce a parametric family of randomized policies $\mu_k(x_k, r_k)$, $k = 0, \dots, N-1$, of some form (e.g., a neural net), where r_k is a parameter. Then estimate the parameters r_k by least squares fit:

$$r_k \in \arg\min_r \sum_{s=1}^q \|u_k^s - \mu_k(x_k^s, r)\|^2$$
 (off-line)

• Relation to classification methods ... policy <-> classifier; more on this later.

Infinite Horizon Problems



Infinite number of stages, and stationary system and cost

- System $x_{k+1} = f(x_k, u_k, w_k)$ with state, control, and random disturbance.
- Policies $\pi = \{\mu_0, \mu_1, \ldots\}$ with $\mu_k(x) \in U(x)$ for all x and k.
- Cost of stage k: $\alpha^k g(x_k, \mu_k(x_k), w_k)$.
- $0 < \alpha < 1$ is the discount factor. If $\alpha < 1$ the problem is called discounted.
- Cost of a policy $\pi = \{\mu_0, \mu_1, \ldots\}$: The limit as $N \to \infty$ of the N-stage costs

$$J_{\pi}(x_0) = \lim_{N \to \infty} E_{w_k} \left\{ \sum_{k=0}^{N-1} \alpha^k g(x_k, \mu_k(x_k), w_k) \right\}$$

- Optimal cost function $J^*(x_0) = \min_{\pi} J_{\pi}(x_0)$.
- Problems with $\alpha = 1$ typically include a special cost-free termination state t. The objective is to reach (or approach) t at minimum expected cost.

Infinite Horizon Problems - The Three Theorems

k-stages opt. cost \rightarrow Infinite horizon opt. cost as $k \rightarrow \infty$

• We have $J^*(x) = \lim_{k \to \infty} J_k(x)$, for all x, where for any k, $J_k(x) = k$ -stages optimal cost starting from x, and is generated by

$$J_k(x) = \min_{u \in U(x)} E_w \Big\{ g(x, u, w) + \alpha J_{k-1} \big(f(x, u, w) \big) \Big\}, \quad J_0(x) \equiv 0$$
 (VI)

• Derivation using DP: Let $V_{N-k}(x)$ be the optimal cost-to-go starting at x with k stages to go,

$$V_{N-k}(x) = \min_{u \in U(x)} E_w \Big\{ \alpha^{N-k} g(x, u, w) + V_{N-k+1} \big(f(x, u, w) \big) \Big\}, \quad V_N(x) \equiv 0$$

• Define $J_k(x) = V_{N-k}(x)/\alpha^{N-k}$ to obtain Eq. (VI)

J* satisfies Bellman's equation: Take the limit in Eq. (VI)

$$J^*(x) = \min_{u \in U(x)} E_w \Big\{ g(x, u, w) + \alpha J^* \big(f(x, u, w) \big) \Big\}, \qquad \text{for all } x$$

Optimality condition: Let $\mu^*(x)$ attain the min in the Bellman equation for all x

The policy $\{\mu^*, \mu^*, \ldots\}$ is optimal. (This type of policy is called stationary.)

Infinite Horizon Problems - The Two Algorithms

Value iteration (VI): Generates finite horizon opt. cost function sequence $\{J_k\}$

$$J_k(x) = \min_{u \in U(x)} E_w \Big\{ g(x, u, w) + \alpha J_{k-1} \big(f(x, u, w) \big) \Big\}, \qquad J_0 ext{ is "arbitrary" (?)}$$

Policy Iteration (PI): Generates sequences of policies $\{\mu^k\}$ and their cost functions $\{J_{\mu^k}\}$; μ^0 is "arbitrary"

The typical iteration starts with a policy μ and generates a new policy $\tilde{\mu}$ in two steps:

- ullet Policy evaluation step, which computes J_μ the cost function of the (base) policy μ
- ullet Policy improvement step, which computes the improved (rollout) policy $ilde{\mu}$ using the one-step lookahead minimization

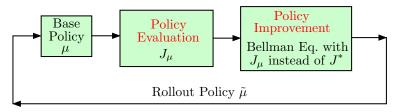
$$ilde{\mu}(x) \in \arg\min_{u \in U(x)} E_w \Big\{ g(x,u,w) + lpha J_\mu ig(f(x,u,w) ig) \Big\}$$

There are several options for policy evaluation to compute J_{μ}

- Solve Bellman's equation for μ [$J_{\mu}(x) = E\{g(x, \mu(x), w) + \alpha J_{\mu}(f(x, \mu(x), w))\}$] by using VI or other method (it is linear in J_{μ})
- Use simulation (on-line Monte-Carlo, Temporal Difference (TD) methods)

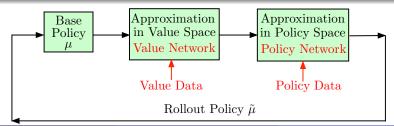
Bertsekas Reinforcement Learning

Exact and Approximate Policy Iteration



Important facts (to be discussed later):

- PI yields in the limit an optimal policy (?)
- PI is faster than VI; can be viewed as Newton's method for solving Bellman's Eq.
- PI can be implemented approximately, with a value and (perhaps) a policy network



Bertsekas Reinforcement Learning

29 / 34

Deterministic Linear Quadratic Problem - Infinite Horizon, Undiscounted

Linear system $x_{k+1} = ax_k + bu_k$; quadratic cost per stage $g(x, u) = qx^2 + ru^2$

Bellman equation: $J(x) = \min_{u} \{qx^2 + ru^2 + J(ax + bu)\}$

Take the limit as $N \to \infty$ in the *N*-step horizon results: $K_k \to K^*$, $L_k \to L^*$

- $J^*(x) = K^*x^2$ where K^* is some positive scalar
- The optimal policy has the form $\mu^*(x) = L^*x$ where L^* is some scalar
- To characterize K^* and L^* , we plug $J(x) = Kx^2$ into the Bellman equation

$$Kx^2 = \min_{u} \{qx^2 + ru^2 + K(ax + bu)^2\} = \cdots = F(K)x^2$$

where $F(K) = \frac{a^2 rK}{r + b^2 K} + q$ with the minimizing u being equal to $-\frac{abK}{r + b^2 K} X$

• Thus the Bellman equation is solved by $J^*(x) = K^*x^2$, with K^* being a solution of the Riccati equation

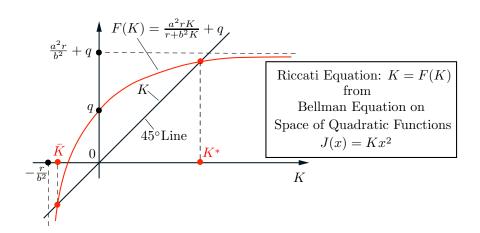
$$K^* = F(K^*) = \frac{a^2 r K^*}{r + b^2 K^*} + q$$

and the optimal policy is linear:

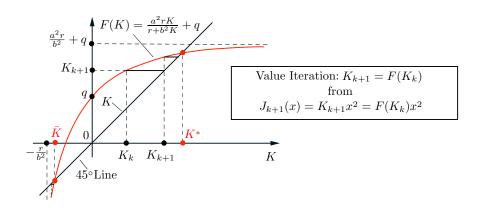
$$\mu^*(x) = L^*x$$
 with $L^* = -\frac{abK^*}{r + b^2K^*}$

Bertsekas Reinforcement Learning 31 / 34

Graphical Solution of the Riccati Equation



32 / 34



About the Next Two Lectures

Linear quadratic problems and Newton step interpretations

- Generally: Approximation in value space as a Newton step for solving the Riccati equation, starting from the cost approximation
- Special case: Rollout as a Newton step starting from the base policy cost
- Policy Iteration as repeated Newton steps

Problem formulations and reformulations

- How do we formulate DP models for practical problems?
- Problems involving a terminal state (stochastic shortest path problems)
- Problem reformulation by state augmentation (dealing with delays, correlations, forecasts, etc)
- Problems involving imperfect state observation (POMDP)
- Multiagent problems Nonclassical information patterns
- Systems with unknown or changing parameters Adaptive control

PLEASE READ AS MUCH OF THE TEXTBOOK/CLASS NOTES AS YOU CAN 2ND HOMEWORK (DUE IN ONE WEEK): Exercise 1.1(b),(c) of the textbook