Topics in Reinforcement Learning:
AlphaZero, ChatGPT, Neuro-Dynamic Programming,
Model Predictive Control, Discrete Optimization
Arizona State University

Course CSE 691, Spring 2024

Links to Textbooks, Videolectures, and Slides at
http://web.mit.edu/dimitrib/www/RLbook.html

Dimitri P. Bertsekas
dpbertsekas@gmail.com

Lecture 3
Linear Quadratic Problems, Approximation in Value Space, VI, and PI
Visualizations and Newton’s Method
Problem Formulations, Reformulations, and Examples

Bertsekas Reinforcement Learning

1/32

0 Review of Infinite Horizon Linear Quadratic Problems (Visually)
e Approximation in Value Space - One-Step Lookahead (Visually)
@ Muttistep Lookahead and Truncated Rollout

° The Art of Formulating Practical Problems as DP - Examples
e State Augmentation and Other Reformulations

e Multiagent Problems

Bertsekas Reinforcement Learning 2/32

Min-Bellman/Riccati Egs. and L-Bellman/Riccati Egs.

@ System and cost function:

N—1
. 2 2
Xk1 = axk + buy, ngnoc E (gxk + ruk)

k=0
@ The min-Bellman eq. is
J(x) = min [gx® + r? + J(ax + bu)]
It can be solved for J*(x).
@ For linear u(x) = Lx, the L-Bellman eq. is
J(x) = (g + rL?)x* + J((a+ bL)x)

It can be solved for J,,(x).
@ We try quadratic solutions, J(x) = Kx?, to Bellman egs. and obtain the min-Riccati
and L-Riccati egs. (after we cancel x?)
arK
r+ bPK

K =F(K) = +9, K=F(K)=(a+bL’K+q+rl?

Bertsekas Reinforcement Learning 4/32

Graphical Solution of the Min-Riccati and L-Riccati Equations

Optimal Policy

KL

K*:F(K*) KL:FL(KL)

If K* > 0 solves min-Riccati eq., then J*(x) = K*x2, and the optimal policy satisfies
p*(x) = argmin [gx® + rv® + K*(ax + bu)?].

abK*

Itis the linear function of x, 1" (x) = L"x, with L* = — 27>

Bertsekas Reinforcement Learning

5/32

Computational Solution of the L-Q Problem

Value lteration (VI) algorithms

Starting with quadratic Jo(x) = Kox?, the VI iterates for the min-Riccati and L-Riccati
egs. are quadratic: Jx1(x) = Kky1x2 = F(Kx)x?, where {Kx} is generated by

aerk

K = FIK) = T,

+4, K1 = FL(Kk) = (@ + bL)? Kk + q + rL?

Policy lteration (PI) algorithm

Start with a linear policy 1°(x) = Lox. Each iteration consists of two steps: Policy
evaluation and policy improvement

@ Policy evaluation of /X(x) = Lxx: Solve the Lx-Riccati eq.
K = F(K) = (a+ bLx)?K + q + rL%
for the solution K, .
@ Policy improvement: Obtain p***(x) = Li1x from
1 (x) = arg min {g® +r+J,(ax+bu)} = arg min {@x® + 1P+ Ky, (ax+bu)?}

abKLk
LD

Bertsekas Reinforcement Learning 6/32

The new policy is linear of the form p**'(x) = Lx 1 x with L4 =

L-Riccati Equations for Stable and Unstable Policies

Fr(K)=(a+bL)2K + q+ rL?
Fr,(K) for an Unstable and a Stable L

Stable L
a+bL| <1

Unstable L
|a +bL| >

RICCATI EQUATIONS K* = F(K™), K. = Fi(K))
@ For pu(x) = Lx with |a+ bL| < 1, the closed-loop linear system xi.1 = (a+ bL)x
is stable, and we have J,(x) = K.x?, where K solves the L-Riccati equation

@ For u(x) = Lx with |a+ bL| > 1, the system is unstable, and we have J,(x) = co
for all x # 0. (Theory and practical algorithms break down for “unstable" policies.)

Bertsekas Reinforcement Learning 7132

Min-Riccati Operator as Lower Envelope of L-Riccati Operators

V FL(K) = (a+bL)2K + g+ L2
Tangent Riccati / /
Operator at K
— abK j
ey
' \ l E F(K)
‘ I
| I
| I
.
|
. : -
0 K K+ K

F(K)z2 = min {qgc2 + ru? + K (az + bu)?}

= 2 2+ K b
IglelgqfnlLr;{qx +ru? + K (ax + bu)?}

— 2 21 2
ILnelg{qurL + K(a+bL)?}z
or

F(K):gli%FL(K)7 with Fr(K) = (a+bL)2K + g+ rL?
65

Bertsekas Reinforcement Learning 8/32

Approximation in Value Space: Linear Quadratic Problems

At current state Xk, apply control fi(x) = argmin,, {gx? + rv® + K(axx + bu)®} J

ON-LINE Quadratic Cost
PLAY Ap})roxim‘%tion
J(x) = Ka?
— |- aep o SO I >0
OFF-LINE

TRAINING

States |xgt1

NEWTON
STEP
for solving the Bellman Eq. K22 = F(K)z?2 or
K = F(K)

Bertsekas Reinforcement Learning 10/32

Newton’s Method to Solve the Generic Fixed Point Problem y = G(y)

4 Sl =1
ope =

Region of
Attraction of y*

At the typical iteration k
@ We linearize the problem at the current iterate yx with a first order expansion of G,
G(y) = G(yk) + VG (Y — yi),
where V G(yk) is the gradient of G at yx

@ We solve the linearized problem to obtain yx.1:

Y1 = G(¥i) + VGYi) Ykt — Y)

@ Extends to solution of fixed point problem y = min {Gi(y), ..., Gn(y)}

Bertsekas Reinforcement Learning 11/32

Visualization of Approximation in Value Space - One-Step Lookahead -

No rollout

Tangent Riccati

Operator at K ‘ Fy(K)
7 — abf(~ P
T4b K/ \

<

K K* Kj K
A
Off-Line On-Line
Training Play

Given quadratic cost approximation J (z) = K2, we find

L =arg miin F[(R’)

to construct the one-step lookahead policy fi(z) = Lz

and its cost function Jz(x) = Kja?

Bertsekas Reinforcement Learning 12/32

Visualization of Region of Stability of the One-Step Lookahead Policy /i

4 Unstable Policy Stable Policy

Optimal Policy

|
|
|
I
|
|
|
l
I
4 .
KS K* K
Region of stability

also
Region of Attraction of
Newton’s Method

The start of the Newton step must be within the region of stability

Bertsekas Reinforcement Learning

13/32

Visualization of Rollout with Stable Linear Base Policy u: J = J,,

Policy evaluations
for fi and p

\

Policy Improvement with

|

|

4

|

| I
| I

| I

| I

Base Policy u | |
| I

| I

| I

Optimal cost, |

K N Y \

Newton Step

Cost of rollout policy fi Cost of base policy

Preservation of stability: If . is stable, /i is also stable

»
|

K

Bertsekas Reinforcement Learning

14/32

A Fifteen-Minute Break

Catch our breath and think about issues relating to the first half of the lecture.
Ask questions when you return. J

Bertsekas Reinforcement Learning 15/32

Approximation in Value Space: Multistep Lookahead

2-Step Lookahead i S F-->®
Minimization
Truncated Cost Approximjation
Rollout 1
ON-LINE

PLAY i it --->®
e] Quadratic Cost
Approximation

il Sttt --->@®
J(z) = Ka?
Linear Stable]"oli(‘y~\
States g4 OFF-LINE
TRAINING
SF------—-----——-- --->®
States 42
NEWTON Value Iterations
STEP Enhancements to the Starting Point
for Bellman Eq. of Newton Step
Effective Terminal Cost Approximation
Bertsekas rcement Learning 17/32

Visualization of VI

AN
45°Line

Value Iteration: K1 = F(K})
from

Jk+1(x) = Kk+1x2 = F(Kk.)a:2

Bertsekas Reinforcement Learning 18/32

Visualization of Approx. in Value Space - Multi-Step Lookahead

A 2-Step Lookahead Case
No Rollout [=1

A
Off-Line On-Line
Training Play

Multistep lookahead moves
the starting point of the Newton step closer to K*
The longer the lookahead the better

Bertsekas Reinforcement Learning 19/32

Policy lteration for the Linear Quadratic Problem (Repeated Rollout)

Starts with linear policy 1.°(x) = Lox, generates sequence of linear policies
pk(x) = Lxx with a two-step process

@ Policy evaluation:
Jok(x) = Kix®

where
q+r2
K= +—F——F7——
1 — (a+ bLy)?
@ Policy improvement:
P () = Liyax
where
L _ aka
7

@ Rollout is a single Newton iteration
@ Pl is a full-fledged Newton method for solving the Riccati equation K = F(K)
@ An important variant, Optimistic P, consists of repeated truncated rollout iterations

@ Can be viewed as a Newton-SOR method (repeated application of a Newton step,
preceded by first order VIs)

Bertsekas Reinforcement Learning 20/32

Generalization

The Newton step interpretation of approximation in value space generalizes very broadly
See the "Lessons from AlphaZero ..." textbook

v

@ Riccati operators —> Bellman operators

@ Newton’s method for solving the min-Riccati equation —> Newton’s method for
solving the min-Bellman equation

@ A mathematical point: Nondifferentiabilty of the Bellman operator is not an issue (a
form of Newton’s method that can deal with nondifferentiability is used; see the
“Lessons from AlphaZero ..." textbook)

@ Approximation in value space is a single Newton iteration, enhanced by multistep
lookahead (if any), and by truncated rollout (if any)

@ Rollout is a single Newton iteration starting from the cost function of the (stable)
base policy

@ Exact Pl is a full-fledged Newton’s method

@ Multistep lookahead and truncated rollout enhance the stability properties of the
policy produced by approximation in value space

Bertsekas Reinforcement Learning 21/32

How do we Formulate DP Problems in Practice?

An informal recipe: First define the controls, then the stages (and info
available at each stage), and then the states
@ Define as state xx something that “summarizes" the past for purposes of future
optimization, i.e., as long as we know xk, all past information is irrelevant.

@ Rationale: The controller applies action that depends on the state. So the state
must subsume all info that is useful for decision/control.

Some examples

@ In the traveling salesman problem, we need to include all the relevant info in the
state (e.g., the past cities visited, and the current city). Other info, such as the
costs incurred so far, need not be included in the state.

@ In partial or imperfect information problems, we use “noisy" measurements for
control of some quantity of interest yjx that evolves over time (e.g., the
position/velocity vector of a moving object). It is correct to use Ik (the collection of
all measurements up to time k) as state.

@ |t may also be correct to use alternative states; e.g., the conditional probability
distribution Px(yx | Ik). This is called belief state, and subsumes all the information
that is useful for the purposes of control choice.

V.

Bertsekas Reinforcement Learning 23/32

State Augmentation: Delays

Xk+1 = fe(X, Xk—1, Uk, Uk—1, W)

@ Introduce additional state variables yx and s, where yx = Xk_1, Sk = Ux—1. Then

Xk4-1 fx(Xk, Yk, Uk, Sk, Wk)
Yk+1 | = Xk
Sk+1 Uk

@ Define Xx = (Xk, Y, Sk) as the new state, we have
Kicer = (e, Uk, Wi)
@ Reformulated DP algorithm: Start with Jg(xn) = gn(Xn)

Ji (Xk, Xk—1, Uk—1) = min Ewk{gk(xk, U, Wie) 4k 1 (T Xk, Xk—1, Uk, Uk—1, Wi), Xk, U)
Uk € U (Xic)

J (x0) = Uoénul;:’(\XO) Ewo{go(Xo-, Uo, Wo) + Ji (fo(Xm Uo, Wo), Xo, Uo)}

See the textbook for other types of state augmentation (e.g., forecasts of future
uncertainty)

Bertsekas Reinforcement Learning 25/32

Problems with a Cost-Free and Absorbing Terminal (Goal) State

@ Generally, we can view them as infinite horizon problems

@ Another possibility is to convert to a finite horizon problem: Introduce as horizon an
upper bound to the optimal number of stages (assuming such a bound is known)

@ Add BIG penalty for not terminating before the end of the horizon

11 8 5 9 Vehicle 2

Optimal
O Solution

12

Vehicle 1

oo —o dimg
9 6 3 1

Example: Multiple vehicles move simultaneously one step at a time
@ Minimize the number of moves to perform all tasks (i.e., reach the terminal state)
@ How to formulate as DP? States? Controls? Terminal state? Horizon?
@ Problem “size"? Astronomical, even for modest number of tasks and vehicles
@ A good candidate for the multiagent framework to be introduced next

Bertsekas Reinforcement Learning

Multiagent Problems (1960s —)

Environment
Computing Cloud

Info Info Info

m-Component Control

u=(ul,...,um)
Agent 5 ('
ub

@ Multiple agents collecting and sharing information selectively with each other and
with an environment/computing cloud

@ Agent / applies decision v’ sequentially in discrete time based on info received

The major mathematical distinction between problem structures

@ The classical information pattern: Agents are fully cooperative, fully sharing and
never forgetting information. Can be treated by DP

@ The nonclassical information pattern: Agents are partially sharing information, and
may be antagonistic. HARD because it is hard to treat by DP

v

Bertsekas Reinforcement Learning 28/32

Starting Point: A Classical Information Pattern (We Generalize Later)

Sensor Sensor
Info Info

P
. 'l | 3) e x‘ 3;,':1\“"7\ l.f .

Info

At each time: Agents have exact state info; choose their controls as function of state J

Model: A discrete-time (possibly stochastic) system with state x and control u

@ Decision/control has m components u = (u', ..., u™) corresponding to m “agents"

@ “Agents" is just a metaphor - the important math structure is u = (u', ..., u™)
@ The theoretical framework is DP. We will reformulate for faster computation

We first aim to deal with the exponential size of the search/control space
Later we will discuss how to compute the agent controls in distributed fashion (in the
process we will deal in part with nonclassical info pattern issues)

Bertsekas Reinforcement Learning 29/32

Spiders-and-Flies Example

(e.g., Vehicle Routing, Maintenance, Search-and-Rescue, Firefighting)

7 7
7 == 78
78
7 15 spiders move in 4 directions with perfect vision
7% 7/ 3 blind flies move randomly
Zﬂ 4’“
7~ Objective is to
J
78 Catch the flies in minimum time
7 Gl I Kl
,7‘#

@ At each time we must select one out of ~ 5'° joint move choices
@ We will reduce to 5 - 15 = 75 (while maintaining good properties)
@ Idea: Break down the control into a sequence of one-spider-at-a-time moves

@ For more discussion, including illustrative videos of spiders-and-flies problems,
see https://www.youtube.com/watch?v=egbb6vVIN38&t=1654s

Bertsekas Reinforcement Learning 30/32

Reformulation Idea: Trading off Control and State Complexity

(B+T NDP Book, 1996)

Control u™
Random Transition
z = f(z,u,w)

Random Cost
g(I7 ,U’7 w)

Stage

An equivalent reformulation - “Unfolding" the control action

@ The control space is simplified at the expense of m — 1 additional layers of states,
and corresponding m — 1 cost functions

Jou), P u), Jm T (xadt L™

@ Allows far more efficient rollout (one-agent-at-a-time). This is just standard rollout
for the reformulated problem (so it involves a Newton step)

@ The increase in size of the state space does not adversely affect rollout (only one
state and its successors are looked at each stage during on-line play)

@ Complexity reduction: The one-step lookahead branching factor is reduced from
n™ to n- m, where n is the number of possible choices for each component v'

Bertsekas Reinforcement Learning 31/32

About the Next Lecture

We will discuss special types of problem domains and reformulations, including
POMDP, adaptive, and model predictive control J

HOMEWORK 3 (DUE IN ONE WEEK):
EXERCISE 1.2 OF THE LATEST VERSION OF THE CLASS TEXTBOOK J

READ AHEAD SECTION 1.6 OF THE LATEST VERSION OF THE CLASS TEXTBOOK |

This is a good time to watch the summary videolecture at
https://www.youtube.com/watch?v=A70GgpuRnuo (1-hour version)
of the book
Lessons for AlphaZero for Optimal, Model Predictive, and Adaptive Control
Also the multiagent videolecture at
https://www.youtube.com/watch?v=eqbb6vVIN38

Bertsekas Reinforcement Learning 32/32

	Review of Infinite Horizon Linear Quadratic Problems (Visually)
	Approximation in Value Space - One-Step Lookahead (Visually)
	Multistep Lookahead and Truncated Rollout
	The Art of Formulating Practical Problems as DP - Examples
	State Augmentation and Other Reformulations
	Multiagent Problems

