Topics in Reinforcement Learning:
AlphaZero, ChatGPT, Neuro-Dynamic Programming,
Model Predictive Control, Discrete Optimization
Arizona State University

Course CSE 691, Spring 2024

Links to Class Notes, Videolectures, and Slides at
http://web.mit.edu/dimitrib/www/RLbook.html

Dimitri P. Bertsekas
dpbertsekas@gmail.com

Lecture 4

POMDP, Systems with Changing Parameters, Adaptive Control
Model Predictive Control

Bertsekas Reinforcement Learning 1/29

0 Problem Formulations and Examples

e Partial State Observation Problems

e Problems with Changing Parameters - Adaptive Control
0 Model Predictive Control

e What We Have Done - Where We Are Going - What We Will Not Cover

Bertsekas Reinforcement Learning 2/29

Review: How do we Formulate DP Problems?

An informal recipe: First define the controls, then the stages (and info
available at each stage), and then the states
@ Define as state xx something that “summarizes" the past for purposes of future
optimization, i.e., as long as we know xg, all past information is irrelevant.

@ Rationale: The controller applies action that depends on the state. So the state
must subsume all info that is useful for decision/control.

There may be multiple useful ways to define a valid state

@ An important example is POMDP (Partial Information Markovian Decision
Problems).

@ Attime k, instead of observing the state xx, we obtain a measurement z, that is
“related" to x.

@ Thus at time k all we have is the information vector

Ik = (Zo,Uo,Z1,U1,...,Zk,Uk_1)

@ It can serve as state, but there are also other possibilities.

Bertsekas Reinforcement Learning 4/29

Parking with a Deadline: An Example of Partial State Observation

Parked/Termination State

@ At each time step, move one spot in either direction. Decide to park or not at spot
m (if free) at cost c(m). If we have not parked by time N there is a large cost C

@ We observe the free/taken status of only the spot we are in. Parking spots may
change status at the next time step with some probability.

@ The free/taken status of the spots is “estimated" in a “probabilistic sense" based
on the observations (the free/taken status of the spots visited ... when visited)

@ What should the “state" be? It should summarize all the info needed for the
purpose of future optimization

@ First candidate for state: The entire information vector up to the present time.

@ Another candidate: The “belief state", i.e., the conditional probabilities of the

free/taken status of all the spots: p(1), p(2), ..., p(M), conditioned on all the
observations so far

Bertsekas Reinforcement Learning 6/29

Partial State Observation Problems: Reformulation via Belief State

Observationlszrl

Belief Estimator
Belief State System | Belief State by
| Okt1 = Fre(br, uk, 2k41)

Belief State is a
“Probabilistic Estimate”
of the Unknown State

Cost gk(bk, uk)

Control of
Belief State

Controller
ik

Control ug, = pu (b)

The reformulated DP algorithm has the form

Je (b)) = min | Gk(bx, uk) + Ez, {JZ+1 (Fi(br tk, 2+1)) | bkﬂk}}
ug €Uy

@ J; (bx) denotes the optimal cost-to-go starting from belief state by at stage k

@ Uy is the control constraint set at time k

@ O«x(bx, ux) denotes expected cost of stage k: expected stage cost gk (Xk, Uk, Wk),
with distribution of (xx, wix) determined by b, and the distribution of wj

@ Belief estimator: Fx(bx, Uk, Zx+1) is the next belief state, given current belief state

bk, uk is applied, and observation zx, ¢ is obtained

Bertsekas Reinforcement Learning

7129

nging Problem Parameters: Adaptive Control (1960s —)

Example: A cruise control-type problem (keep velocity close to a target level)

@ Control car velocity evolution: xx.1 = axk + buk (a < 1 models friction, wind drag,
etc, b > 0 depends on road, number of passengers, etc)

@ Cost over N stages: (xy — X)* + S 1o ((xk — X)? + ruf), where r > 0 is given

@ ... but a, b, and x are changing all the time; they may be measured with error (?)

v

Adaptive control deals with such situations. Some possibilities:

@ Ignore the changes in parameters; design a controller that is robust (“works" for a
broad range of parameters).
@ Try to estimate the parameters, and use the estimates to modify the controller

On-line replanning by optimization; modify the controller to make it optimal for the
current set of estimates.

On-line replanning by rollout with a base policy whose cost values are computed using
the current parameter estimates. This is a simpler (approximate) reoptimization.

@ View the adaptive control problem as a POMDP and try to deal approximately.

Bertsekas Reinforcement Learning 9/29

Robust Control

Input | Changing Output

(Control) System [(Function of|the State)

Fixed
Controller

@ We ignore the changes in the system
@ Make no attempt to estimate/learn them

@ Hope that a fixed controller will yield “acceptable" performance throughout the
range of system changes

@ A simple approach ... if it works

Unsophisticated ... but there is an important time-honored successful example
@ PID control (Proportional-Integral-Derivative)
@ Involves three parameters, which are tuned experimentally/heuristically
@ Applies to single input-single output case (output: the error from some “set point")
@ No math model of the system is needed

Bertsekas Reinforcement Learning 10/29

On-Line Replanning by Optimization (Indirect Adaptive Control)

Data

> System

State

Controller |«

f

Parameter
Estimation

Control

Two-phase alternation: System identification <—> Controller reoptimization
@ Introduce on-line estimation/identification of changing parameters
@ Recompute the controller so it is optimal for the current set of parameters
@ This can be time-consuming

@ There are some serious issues regarding reliable parameter identification
(simultaneously with control); see the class notes

Bertsekas Reinforcement Learning 11/29

Comparison of Robust Control and On-Line Replanning

24
2270 Robust
,| © Controller
Cost | o /
1.8+ 0
<IN 9%
16 N ~o
N 0
N vCﬁ
141 oy ‘”DO .
e 0p
Exactly ~.%0,
127 s 2000,
Reoptimized 20000000000
1 —Poliey : : : —@ :
0.6 0.8 1 1.2 1.4 1.6 1.8 2 22 24
b
One-dimensional linear-quadratic example:
N—1
X1 = Xk + bug, Cost= lim Z(xﬁ +)
N— oo =

Quadratic cost coefficient as b changes. Robust controller is optimal for b = 2

Bertsekas Reinforcement Learning 12/29

On-Line Replanning by Rollout/Approximation in Value Space

Changing System,
Cost, and Constraint

Parameters
Lookahead 5
I\'Ti(rll(i)miz:(tlion Rollout with C::t
Base Policy [Approximation|
------------------ »Q®---4---»@
R e bt »@-4-1---»@
Possible States S »@-{-1---»@
Tk+1

Use a robust policy as a base policy for rollout
No controller reoptimization; this is faster

@ Introduce new parameter estimates in the lookahead minimization and the rollout
@ Continue to use the same base/robust policy
@ Possibly recalculate the base/robust policy in the background

Bertsekas Reinforcement Learning 13/29

Comparison of On-Line Replanning by Reoptimization and by Rollout

24
22 Robust
ol © Base Policy
o
Cost| o

v X "o :\ppl'()xilnn‘r(\l_\'

L Reoptimized
N, O Rollout Policy

141 M
12l Exactly -
“IReoptimized i $6666000
1 —Poliesy : : : —
06 12 14 16 18 2 22

Performance comparison of on-line replanning by rollout and by optimization

Note the effect of Newton’s method

One-dimensional linear-quadratic example:

Xk41 = Xk + bug,

N—1

k=0

N 2 2
Cost = A’ILmOOZ(Xk + rug)

Quadratic cost coefficient as b changes. Base policy is optimal for b = 2

Bertsekas

Reinforcement Learning

14/29

A (More Principled) POMDP Approach to Adaptive Control

Control St/;ite
wp = pi(y, b) System Lk
State @y, _’—l
Parameter 6 > :
Belief
Estimator
Tk "
-+ Controller [* B%l]lcef
Deterministic system xk;1 = f(Xk, 0, uk), 0 € {0",...,0™}: unknown parameter

@ View 0 as part of an augmented state (xx, 6) that is partially observed

o Belief state: bx; = P{0 = 0’ | I} (estimated on-line), where
Ik = (X0, - .-, Xk, Ug, - - ., Uk—1) is the information vector

@ Bellman equation for optimal cost function J;:
m
Ji(l) = min > bk,,-(g(xk, 0", uk) + Jisa (e, (X, 0, U), uk))
i=1

@ Approximation in value space: Use approximation J’(f(xk, o', ux)) in place of
Ji1 (I, f(xk, 0", uk), ux) . Minimize over u to obtain one-step lookahead policy
@ Example 1: J' is the cost function of the optimal policy corresponding to ¢’
@ Example 2: J' is the cost function of a known policy assuming 6 = ¢’ (this is rollout)

Bertsekas Reinforcement Learning 15/29

An Example: The Wordle Puzzle

»vofolis v ool v o o]

1111 S S

EEEEniEEEEEl - - -
| L]

0: the unknown mystery word
wp: list of possible mystery words (given the guesses so far)
ug: guess word selected at time k
@ Find a mystery word 6 using a minimal number of successive 5-letter guess words
@ View 0 as part of an augmented state (xx, #) that is partially observed
@ Apply rollout with one of several base heuristics

@ Joint work with S. Bhambri and A. Bhattacharjee (started as term paper for the
2022 offering of this class); see ArXiv paper on-line

@ To be discussed in more detail at a later lecture

Rollout Performance = 3.5231 vs the Optimal = 3.5084 average # of guesses
Within < 0.5% more guesses from the optimal policy - On-line answer within 1-3 secs
IT SCALES WITH PROBEM SIZE

Bertsekas Reinforcement Learning 16/29

A Fifteen-Minute Break

Catch our breath and think about issues relating to the first half of the lecture.
Ask questions when you return. J

Bertsekas Reinforcement Learning 17/29

Classical Control Problem I: Control Around a Reference Point

REGULATION PROBLEM
Keep the state near some given point
Traditionally 0 (the origin)
0=0,0=0

Keep the state of the system close to a reference point (usually 0)

Bertsekas Reinforcement Learning

19/29

Classical Control Problem II: Path Planning

FOLLOW A
GIVEN TRAJECTORY

Acceleration
Constraints

Moving Obstacle

Fixed Obstacles

Must Deal with
State and Control Constraints
Linear-Quadratic Formulation is
Often Inadequate

Constraints

Keep the state of the system close to a planned trajectory
State constraints can be very important
On-line path replanning may be needed

Bertsekas Reinforcement Learning 20/29

Model Predictive Control - A Form of Approximation in Value Space

Next States
Th41

Current State State

(¢ — 1)-Stages Tpte =0 System: wx1 = f (g, ur)

Minimization Cost: g(xg,ur) >0, forall (xy,u)

The system can be kept at the origin
at zero cost by some control

Stage k i Stages
E+1,... k+£-1

Consider undiscounted infinite horizon; we want to keep the system near 0 J

@ Original form of MPC: We minimize the cost function over the next ¢ stages while
requiring Xx+» = 0

@ At the current state xx, we apply the first control of the minimizing sequence,
discard the other controls

@ This is rollout w/ base heuristic the min that drives xx., to 0 in (¢ — 1) steps
@ Well-suited for on-line replanning

@ We neglect for the moment (the often very important) state constraints

Bertsekas Reinforcement Learning 21/29

Model Predictive Control with Terminal Cost Approximation

(-Step > m-Step Truncated > Terminal Cost
Lookahead Rollout with Aermmf“ t(?s
Minimization Stable Policy u pprogma on

@ In a common variant of MPC, we use a nonnegative terminal cost G(xx-¢) in the
£-stage MPC problem, instead of driving the state to 0 in £ steps:

k+£—1

G(xere) + Y g(xt, ur)

min
u, t=kK,..., k+2—1 =

@ This can be viewed as approximation in value space with multistep lookahead
@ Truncated rollout with some base policy may also be introduced

@ The problem may also include state constraints, in which case we obtain one of
the most general forms of MPC

@ When is the MPC policy stable? G must be in the region of stability; see the class
notes. Truncated rollout helps in this respect.

Bertsekas Reinforcement Learning 22/29

Model Predictive Control with State Constraints

@ It is often important to deal with additional state constraints of the form xi € X,
where X is some subset of the state space

@ Then the MPC problem to be solved at the kth stage must be modified
@ Assuming that the current state xx belongs to X, the MPC problem is

k+0—1
G(Xere) + Y Q(Xr,Ur)}

min ; [
ug, t=k,....k+£—
! + t=k

subject to the control constraints
ur € U(xt), t=k,....,k+£—1,
and the state constraints
Xt € X, t=k+1,....,k+¢
@ The control I thus obtained is required to generate a state xx.1 € X

@ Important difficulty: There is no guarantee that this problem has a feasible solution
for all initial states xx € X

@ This is particularly true for unstable systems

Bertsekas Reinforcement Learning 23/29

A One-Dimensional Example for MPC with State Constraints

Iy Largest Invariant Set ,SyStCm: Thi1 = 2ax £ u
Control constraint: |uy| <1
0 k
T

@ Consider state constraints of the form xx € X, for all k, where
X={x|Ix| <B}
@ If 8 > 1, the state constraint cannot be satisfied for all initial states xo € X.

@ Reason: If we take xo = 8 > 1, then 2xp > 2 and x; = 2xp + up Wwill satisfy
X1 > Xo = 3 for any value of uy with |ug| < 1.

@ Arguing similarly, the entire sequence of generated states {xx} will satisfy
Xk+1 > Xk for all k, Xk T oo.

@ The state constraint can be satisfied only for x; in the set X = {x||x] <1}

@ Sets like X are called invariant (see the next slide)

Bertsekas Reinforcement Learning

24/29

Invariance Requirement for the State Constraints
z /
W 1S_y’sl,em: Ths1 = 21 + ug
Control constraint: |ug| <1
0 k
-3 /

-1

™

@ To guarantee feasibility of the MPC problem with state constraints xx € X for all k,
an invariance condition must be satisfied by X

for every x € X, there exists u € U(x) such that f(x, u) € X

@ How do we compute an invariant subset of a given constraint set?

@ This is necessarily an off-line calculation. Cannot be easily performed during
on-line play

@ It turns out that given X, there exists a largest possible invariant subset of X and it
can be computed in the limit with an algorithm that resembles value iteration.

@ There also other/simpler possibilities for computing invariant subsets of X

Bertsekas Reinforcement Learning 25/29

Overview of What we Have Done

We aimed for an overview of the approximate DP/RL landscape; a foundation for
deeper development of other RL topics (and getting you started on your term paper).

We have described in varying levels of depth the following:

@ The algorithmic foundation of exact DP in all its major forms: deterministic and
stochastic, discrete and continuous, finite and infinite horizon.

@ Approximation in value space with one-step and multistep lookahead, the
workhorse of RL, which underlies its major success stories, including AlphaZero.

@ The fundamental division between off-line training and on-line play in the context
of approximation in value space. Their synergy through Newton’s method.

@ The fundamental methods of policy iteration and rollout, the former being primarily
an off-line method, and the latter being primarily a less ambitious on-line method.
Connections with Newton’s method.

@ Some major models with a broad range of applications, such as discrete
optimization, POMDP, multiagent problems, adaptive control, and model predictive
control.

@ The use of function approximation, which has been a recurring theme in our
presentation. We have hinted at several points some of the principal schemes for
approximation, based on neural networks and feature-based architectures.

Bertsekas Reinforcement Learning 27/29

Overview of What Lies Ahead; What we Will and Will Not Cover

The first chapter of the class notes provides a foundational platform for exploring at a
deeper level various algorithmic methodologies, such as:

@ Rollout, its variants, and its applications; e.g., discrete/deterministic, multiagent,
etc; Chapter 2.

@ Sequential decision making in special contexts involving changing system
parameters, sequential estimation, Bayesian optimization, and simultaneous
system identification and control; Chapter 2.

@ Off-line training for approximation in value and policy space using neural networks
and other approximation architectures; Chapter 3.

@ Stochastic algorithms, such as temporal difference methods and Q-learning, used
for off-line policy evaluation, in the context of approximate policy iteration.

@ Sampling methods to collect data for off-line training, in the context of cost and
policy approximations.

@ Statistical estimates and efficiency enhancements of various sampling methods
used in simulation-based schemes.

@ A deeper exploration of control system design methodologies such as model
predictive control, and its applications in robotics and automated transportation.

4

Bertsekas Reinforcement Learning 28/29

About the Next Lecture

We will cover:
@ Deterministic rollout and variations
@ Rollout for stochastic problems

Homework to be announced next week y

Watch videolecture 5 from 2023 ASU course offering)

Bertsekas Reinforcement Learning 29/29

	Problem Formulations and Examples
	Partial State Observation Problems
	Problems with Changing Parameters - Adaptive Control
	Model Predictive Control
	What We Have Done - Where We Are Going - What We Will Not Cover

