Lecture 4

POMDP, Systems with Changing Parameters, Adaptive Control
Model Predictive Control
Outline

1. Problem Formulations and Examples
2. Partial State Observation Problems
3. Problems with Changing Parameters - Adaptive Control
4. Model Predictive Control
5. What We Have Done - Where We Are Going - What We Will Not Cover
Review: How do we Formulate DP Problems?

An informal recipe: First define the controls, then the stages (and info available at each stage), and then the states

- Define as state x_k something that “summarizes” the past for purposes of future optimization, i.e., as long as we know x_k, all past information is irrelevant.
- **Rationale**: The controller applies action that depends on the state. So the state must subsume all info that is useful for decision/control.

There may be multiple useful ways to define a valid state

- An important example is POMDP (Partial Information Markovian Decision Problems).
- At time k, instead of observing the state x_k, we obtain a measurement z_k that is “related” to x_k.
- Thus at time k all we have is the information vector

$$I_k = (z_0, u_0, z_1, u_1, \ldots, z_k, u_{k-1})$$

- It can serve as state, but there are also other possibilities.
At each time step, move one spot in either direction. Decide to park or not at spot m (if free) at cost $c(m)$. If we have not parked by time N there is a large cost C.

We observe the free/taken status of only the spot we are in. Parking spots may change status at the next time step with some probability.

The free/taken status of the spots is “estimated” in a “probabilistic sense” based on the observations (the free/taken status of the spots visited ... when visited).

What should the “state” be? It should summarize all the info needed for the purpose of future optimization.

First candidate for state: The entire information vector up to the present time.

Another candidate: The “belief state”, i.e., the conditional probabilities of the free/taken status of all the spots: $p(1), p(2), \ldots, p(M)$, conditioned on all the observations so far.
The reformulated DP algorithm has the form

\[J_k^*(b_k) = \min_{u_k \in U_k} \left[\hat{g}_k(b_k, u_k) + E_{z_{k+1}} \left\{ J_{k+1}^* \left(F_k(b_k, u_k, z_{k+1}) \right) \mid b_k, u_k \right\} \right] \]

- \(J_k^*(b_k) \) denotes the optimal cost-to-go starting from belief state \(b_k \) at stage \(k \)
- \(U_k \) is the control constraint set at time \(k \)
- \(\hat{g}_k(b_k, u_k) \) denotes expected cost of stage \(k \): expected stage cost \(g_k(x_k, u_k, w_k) \), with distribution of \((x_k, w_k) \) determined by \(b_k \) and the distribution of \(w_k \)
- **Belief estimator**: \(F_k(b_k, u_k, z_{k+1}) \) is the next belief state, given current belief state \(b_k, u_k \) is applied, and observation \(z_{k+1} \) is obtained
Example: A cruise control-type problem (keep velocity close to a target level)

- Control car velocity evolution: \(x_{k+1} = ax_k + bu_k \) (\(a < 1 \) models friction, wind drag, etc, \(b > 0 \) depends on road, number of passengers, etc)
- Cost over \(N \) stages: \((x_N - \bar{x})^2 + \sum_{k=0}^{N-1} ((x_k - \bar{x})^2 + ru_k^2) \), where \(r > 0 \) is given
- ... but \(a, b, \) and \(\bar{x} \) are changing all the time; they may be measured with error (?)

Adaptive control deals with such situations. Some possibilities:

- Ignore the changes in parameters; design a controller that is robust ("works" for a broad range of parameters).
- Try to estimate the parameters, and use the estimates to modify the controller
 - On-line replanning by optimization; modify the controller to make it optimal for the current set of estimates.
 - On-line replanning by rollout with a base policy whose cost values are computed using the current parameter estimates. This is a simpler (approximate) reoptimization.
- View the adaptive control problem as a POMDP and try to deal approximately.
We ignore the changes in the system
Make no attempt to estimate/learn them
Hope that a fixed controller will yield "acceptable" performance throughout the range of system changes
A simple approach ... if it works

Unsophisticated ... but there is an important time-honored successful example

- **PID control** (Proportional-Integral-Derivative)
- Involves three parameters, which are tuned experimentally/heuristically
- Applies to single input-single output case (output: the error from some "set point")
- No math model of the system is needed
Two-phase alternation: System identification \leftrightarrow Controller reoptimization

- Introduce on-line estimation/identification of changing parameters
- Recompute the controller so it is optimal for the current set of parameters
- This can be time-consuming
- There are some serious issues regarding reliable parameter identification (simultaneously with control); see the class notes
One-dimensional linear-quadratic example:

\[x_{k+1} = x_k + bu_k, \quad \text{Cost} = \lim_{N \to \infty} \sum_{k=0}^{N-1} (x_k^2 + ru_k^2) \]

Quadratic cost coefficient as \(b \) changes. Robust controller is optimal for \(b = 2 \)
On-Line Replanning by Rollout/Approximation in Value Space

Use a robust policy as a base policy for rollout
No controller reoptimization; this is faster

- Introduce new parameter estimates in the lookahead minimization and the rollout
- Continue to use the same base/robust policy
- Possibly recalculate the base/robust policy in the background
Comparison of On-Line Replanning by Reoptimization and by Rollout

Performance comparison of on-line replanning by rollout and by optimization
Note the effect of Newton’s method

One-dimensional linear-quadratic example:

\[x_{k+1} = x_k + bu_k, \quad \text{Cost} = \lim_{N \to \infty} \sum_{k=0}^{N-1} (x_k^2 + ru_k^2) \]

Quadratic cost coefficient as \(b \) changes. Base policy is optimal for \(b = 2 \)
Deterministic system $x_{k+1} = f(x_k, \theta, u_k)$, $\theta \in \{\theta^1, \ldots, \theta^m\}$: unknown parameter

- View θ as part of an augmented state (x_k, θ) that is partially observed
- Belief state: $b_{k,i} = P\{\theta = \theta^i \mid l_k\}$ (estimated on-line), where $l_k = (x_0, \ldots, x_k, u_0, \ldots, u_{k-1})$ is the information vector
- Bellman equation for optimal cost function J^*_k:

$$J^*_k(l_k) = \min_{u_k} \sum_{i=1}^m b_{k,i} \left(g(x_k, \theta^i, u_k) + J^*_{k+1}(l_k, f(x_k, \theta^i, u_k), u_k) \right)$$

- Approximation in value space: Use approximation $\tilde{J}^i(f(x_k, \theta^i, u_k))$ in place of $J^*_{k+1}(l_k, f(x_k, \theta^i, u_k), u_k)$. Minimize over u_k to obtain one-step lookahead policy
- Example 1: \tilde{J}^i is the cost function of the optimal policy corresponding to θ^i
- Example 2: \tilde{J}^i is the cost function of a known policy assuming $\theta = \theta^i$ (this is rollout)
An Example: The Wordle Puzzle

- Find a mystery word θ using a minimal number of successive 5-letter guess words
- View θ as part of an augmented state (x_k, θ) that is partially observed
- Apply rollout with one of several base heuristics
- Joint work with S. Bhambri and A. Bhattacharjee (started as term paper for the 2022 offering of this class); see ArXiv paper on-line
- To be discussed in more detail at a later lecture

Rollout Performance = 3.5231 vs the Optimal = 3.5084 average # of guesses
Within < 0.5% more guesses from the optimal policy - On-line answer within 1-3 secs

IT SCALES WITH PROBLEM SIZE
A Fifteen-Minute Break

Catch our breath and think about issues relating to the first half of the lecture.
Ask questions when you return.
Consider an undiscounted infinite horizon deterministic problem, involved

\[J = x^\prime \alpha x + 2u_1(0 \leq m - k_1 \leq 2x^{\prime\prime\prime} + 2u_1 \leq g_k) \]

Keep the state near some given point

Traditionally 0 (the origin)

\[\theta = 0, \dot{\theta} = 0 \]

REGULATION PROBLEM

Keep the state of the system close to a reference point (usually 0)
FOLLOW A GIVEN TRAJECTORY

Fixed Obstacles

Moving Obstacle

Acceleration Constraints

Must Deal with State and Control Constraints Linear-Quadratic Formulation is Often Inadequate

Keep the state of the system close to a planned trajectory
State constraints can be very important
On-line path replanning may be needed
Consider undiscounted infinite horizon; we want to keep the system near 0

- **Original form of MPC**: We minimize the cost function over the next ℓ stages while requiring $x_{k+\ell} = 0$
- At the current state x_k, we apply the first control of the minimizing sequence, discard the other controls
- This is rollout w/ base heuristic the min that drives $x_{k+\ell}$ to 0 in $(\ell - 1)$ steps
- Well-suited for on-line replanning
- We neglect for the moment (the often very important) state constraints

System: $x_{k+1} = f(x_k, u_k)$

Cost: $g(x_k, u_k) \geq 0$, for all (x_k, u_k)

The system can be kept at the origin at zero cost by some control

Model Predictive Control - A Form of Approximation in Value Space
In a common variant of MPC, we use a nonnegative terminal cost $G(x_{k+\ell})$ in the ℓ-stage MPC problem, instead of driving the state to 0 in ℓ steps:

$$\min_{u_t, t=k,\ldots,k+\ell-1} \left[G(x_{k+\ell}) + \sum_{t=k}^{k+\ell-1} g(x_t, u_t) \right]$$

This can be viewed as approximation in value space with multistep lookahead.

- Truncated rollout with some base policy may also be introduced.
- The problem may also include state constraints, in which case we obtain one of the most general forms of MPC.
- When is the MPC policy stable? G must be in the region of stability; see the class notes. Truncated rollout helps in this respect.
It is often important to deal with additional state constraints of the form $x_k \in X$, where X is some subset of the state space.

Then the MPC problem to be solved at the kth stage must be modified.

Assuming that the current state x_k belongs to X, the MPC problem is

$$
\min_{u_t, t=k,...,k+\ell-1} \left[G(x_{k+\ell}) + \sum_{t=k}^{k+\ell-1} g(x_t, u_t) \right],
$$

subject to the control constraints

$$
u_t \in U(x_t), \quad t = k, \ldots, k + \ell - 1,
$$

and the state constraints

$$x_t \in X, \quad t = k + 1, \ldots, k + \ell
$$

The control \hat{u}_k thus obtained is required to generate a state $x_{k+1} \in X$.

Important difficulty: There is no guarantee that this problem has a feasible solution for all initial states $x_k \in X$.

This is particularly true for unstable systems.
Consider state constraints of the form $x_k \in X$, for all k, where

$$X = \{ x \mid |x| \leq \beta \}$$

If $\beta > 1$, the state constraint cannot be satisfied for all initial states $x_0 \in X$.

Reason: If we take $x_0 = \beta > 1$, then $2x_0 > 2$ and $x_1 = 2x_0 + u_0$ will satisfy $x_1 > x_0 = \beta$ for any value of u_0 with $|u_0| \leq 1$.

Arguing similarly, the entire sequence of generated states $\{x_k\}$ will satisfy

$$x_{k+1} > x_k \quad \text{for all } k, \quad x_k \uparrow \infty.$$

The state constraint can be satisfied only for x_0 in the set $\hat{X} = \{ x \mid |x| \leq 1 \}$

Sets like \hat{X} are called invariant (see the next slide).
Invariance Requirement for the State Constraints

System: $x_{k+1} = 2x_k + u_k$
Control constraint: $|u_k| \leq 1$

To guarantee feasibility of the MPC problem with state constraints $x_k \in X$ for all k, an invariance condition must be satisfied by X

for every $x \in X$, there exists $u \in U(x)$ such that $f(x, u) \in X$

How do we compute an invariant subset of a given constraint set?

This is necessarily an off-line calculation. Cannot be easily performed during on-line play

It turns out that given X, there exists a largest possible invariant subset of X and it can be computed in the limit with an algorithm that resembles value iteration.

There also other/simpler possibilities for computing invariant subsets of X
Overview of What we Have Done

We aimed for an overview of the approximate DP/RL landscape; a foundation for deeper development of other RL topics (and getting you started on your term paper).

We have described in varying levels of depth the following:

- The algorithmic foundation of exact DP in all its major forms: deterministic and stochastic, discrete and continuous, finite and infinite horizon.
- Approximation in value space with one-step and multistep lookahead, the workhorse of RL, which underlies its major success stories, including AlphaZero.
- The fundamental division between off-line training and on-line play in the context of approximation in value space. Their synergy through Newton’s method.
- The fundamental methods of policy iteration and rollout, the former being primarily an off-line method, and the latter being primarily a less ambitious on-line method. Connections with Newton’s method.
- Some major models with a broad range of applications, such as discrete optimization, POMDP, multiagent problems, adaptive control, and model predictive control.
- The use of function approximation, which has been a recurring theme in our presentation. We have hinted at several points some of the principal schemes for approximation, based on neural networks and feature-based architectures.
Overview of What Lies Ahead; What we Will and Will Not Cover

The first chapter of the class notes provides a foundational platform for exploring at a deeper level various algorithmic methodologies, such as:

- **Rollout, its variants, and its applications**: e.g., discrete/deterministic, multiagent, etc; Chapter 2.
- **Sequential decision making in special contexts involving changing system parameters**, sequential estimation, Bayesian optimization, and simultaneous system identification and control; Chapter 2.
- **Off-line training for approximation in value and policy space** using neural networks and other approximation architectures; Chapter 3.
- **Stochastic algorithms**, such as temporal difference methods and Q-learning, used for off-line policy evaluation, in the context of approximate policy iteration.
- **Sampling methods** to collect data for off-line training, in the context of cost and policy approximations.
- **Statistical estimates and efficiency enhancements** of various sampling methods used in simulation-based schemes.
- **A deeper exploration of control system design methodologies** such as model predictive control, and its applications in robotics and automated transportation.
We will cover:

- Deterministic rollout and variations
- Rollout for stochastic problems

Homework to be announced next week

Watch videolecture 5 from 2023 ASU course offering