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Review: How do we Formulate DP Problems?

An informal recipe: First define the controls, then the stages (and info
available at each stage), and then the states

Define as state xk something that “summarizes" the past for purposes of future
optimization, i.e., as long as we know xk , all past information is irrelevant.

Rationale: The controller applies action that depends on the state. So the state
must subsume all info that is useful for decision/control.

There may be multiple useful ways to define a valid state
An important example is POMDP (Partial Information Markovian Decision
Problems).

At time k , instead of observing the state xk , we obtain a measurement zk that is
“related" to xk .

Thus at time k all we have is the information vector

Ik = (z0, u0, z1, u1, . . . , zk , uk−1)

It can serve as state, but there are also other possibilities.
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Parking with a Deadline: An Example of Partial State Observation

V Correction (piecewise constant or piecewise linear) s t j̄1 j̄2 j̄` j̄`�1 j̄1

Corrected V Nodes j 2 A(j̄`) Path Pj , Length Lj · · ·

Disaggregation probabilities dxi Aggregation probabilities �iy

Transition probabilities pij(u)

States i 2 I0 States j 2 I1 States x 2 A States y 2 A

n 0 1 i � 1 C c(1) c(i) c(n)

Transition probabilities Cost g(i, u, j) Cost �V (i) Cost V (j)

Is di + aij < UPPER � hj?

�jf̄ = 1 if j 2 If̄ x0 a 0 1 2 t b C Destination

J(xk) ! 0 for all p-stable ⇡ from x0 with x0 2 X and ⇡ 2 Pp,x0 Wp+ = {J 2 J | J+  J} Wp+ from

within Wp+

Prob. u Prob. 1 � u Cost 1 Cost 1 �p
u

J(1) = min
�
c, a + J(2)

 

J(2) = b + J(1)

J⇤ Jµ Jµ0 Jµ00Jµ0 Jµ1 Jµ2 Jµ3 Jµ0

f(x; ✓k) f(x; ✓k+1) xk F (xk) F (x) xk+1 F (xk+1) xk+2 x⇤ = F (x⇤) Fµk
(x) Fµk+1

(x)

Improper policy µ

Proper policy µ

1

V Correction (piecewise constant or piecewise linear) s t j̄1 j̄2 j̄` j̄`�1 j̄1

Corrected V Nodes j 2 A(j̄`) Path Pj , Length Lj · · ·

Disaggregation probabilities dxi Aggregation probabilities �iy

Transition probabilities pij(u)

States i 2 I0 States j 2 I1 States x 2 A States y 2 A

n 0 1 i � 1 C c(1) c(i) c(n)

Transition probabilities Cost g(i, u, j) Cost �V (i) Cost V (j)

Is di + aij < UPPER � hj?

�jf̄ = 1 if j 2 If̄ x0 a 0 1 2 t b C Destination

J(xk) ! 0 for all p-stable ⇡ from x0 with x0 2 X and ⇡ 2 Pp,x0 Wp+ = {J 2 J | J+  J} Wp+ from

within Wp+

Prob. u Prob. 1 � u Cost 1 Cost 1 �p
u

J(1) = min
�
c, a + J(2)

 

J(2) = b + J(1)

J⇤ Jµ Jµ0 Jµ00Jµ0 Jµ1 Jµ2 Jµ3 Jµ0

f(x; ✓k) f(x; ✓k+1) xk F (xk) F (x) xk+1 F (xk+1) xk+2 x⇤ = F (x⇤) Fµk
(x) Fµk+1

(x)

Improper policy µ

Proper policy µ

1

V Correction (piecewise constant or piecewise linear) s t j̄1 j̄2 j̄` j̄`�1 j̄1

Corrected V Nodes j 2 A(j̄`) Path Pj , Length Lj · · ·

Disaggregation probabilities dxi Aggregation probabilities �iy

Transition probabilities pij(u)

States i 2 I0 States j 2 I1 States x 2 A States y 2 A

n 0 1 i � 1 C c(1) c(i) c(n) Termination State t

Transition probabilities Cost g(i, u, j) Cost �V (i) Cost V (j)

Is di + aij < UPPER � hj?

�jf̄ = 1 if j 2 If̄ x0 a 0 1 2 t b C Destination

J(xk) ! 0 for all p-stable ⇡ from x0 with x0 2 X and ⇡ 2 Pp,x0 Wp+ = {J 2 J | J+  J} Wp+ from

within Wp+

Prob. u Prob. 1 � u Cost 1 Cost 1 �p
u

J(1) = min
�
c, a + J(2)

 

J(2) = b + J(1)

J⇤ Jµ Jµ0 Jµ00Jµ0 Jµ1 Jµ2 Jµ3 Jµ0

f(x; ✓k) f(x; ✓k+1) xk F (xk) F (x) xk+1 F (xk+1) xk+2 x⇤ = F (x⇤) Fµk
(x) Fµk+1

(x)

Improper policy µ

Proper policy µ

1

V Correction (piecewise constant or piecewise linear) s t j̄1 j̄2 j̄` j̄`�1 j̄1

Corrected V Nodes j 2 A(j̄`) Path Pj , Length Lj · · ·

Disaggregation probabilities dxi Aggregation probabilities �iy

Transition probabilities pij(u)

States i 2 I0 States j 2 I1 States x 2 A States y 2 A

n 0 1 2 i � 1 C c(1) c(i) c(n) Termination State t

Transition probabilities Cost g(i, u, j) Cost �V (i) Cost V (j)

Is di + aij < UPPER � hj?

�jf̄ = 1 if j 2 If̄ x0 a 0 1 2 t b C Destination

J(xk) ! 0 for all p-stable ⇡ from x0 with x0 2 X and ⇡ 2 Pp,x0 Wp+ = {J 2 J | J+  J} Wp+ from

within Wp+

Prob. u Prob. 1 � u Cost 1 Cost 1 �p
u

J(1) = min
�
c, a + J(2)

 

J(2) = b + J(1)

J⇤ Jµ Jµ0 Jµ00Jµ0 Jµ1 Jµ2 Jµ3 Jµ0

f(x; ✓k) f(x; ✓k+1) xk F (xk) F (x) xk+1 F (xk+1) xk+2 x⇤ = F (x⇤) Fµk
(x) Fµk+1

(x)

Improper policy µ

Proper policy µ

1

V Correction (piecewise constant or piecewise linear) s t j̄1 j̄2 j̄ℓ j̄ℓ−1 j̄1

Corrected V Nodes j ∈ A(j̄ℓ) Path Pj , Length Lj · · ·

Disaggregation probabilities dxi Aggregation probabilities φiy

Transition probabilities pij(u) Destination

States i ∈ I0 States j ∈ I1 States x ∈ A States y ∈ A

n n − 1 0 1 2 i − 1 Termination State t

Transition probabilities Cost g(i, u, j) Cost −V (i) Cost V (j) C c(1) c(i) c(n)

Is di + aij < UPPER − hj?

φjf̄ = 1 if j ∈ If̄ x0 a 0 1 2 t b C Destination

J(xk) → 0 for all p-stable π from x0 with x0 ∈ X and π ∈ Pp,x0 Wp+ = {J ∈ J | J+ ≤ J} Wp+ from

within Wp+

Prob. u Prob. 1 − u Cost 1 Cost 1 − √
u

J(1) = min
{
c, a + J(2)

}

J(2) = b + J(1)

J∗ Jµ Jµ′ Jµ′′Jµ0 Jµ1 Jµ2 Jµ3 Jµ0

f(x; θk) f(x; θk+1) xk F (xk) F (x) xk+1 F (xk+1) xk+2 x∗ = F (x∗) Fµk
(x) Fµk+1

(x)

Improper policy µ

Proper policy µ

1

F (K)x2 = min
u∈ℜ

{
qx2 + ru2 + K(ax + bu)2

}

= min
L∈ℜ

min
u=Lx

{
qx2 + ru2 + K(ax + bu)2

}

= min
L∈ℜ

{
q + bL + K(a + bL)2

}
x2

or

F (K) = min
L∈ℜ

FL(K), with FL(K) = (a + bL)2K + q + bL

y0 y1 H(y) = T (y) − y T (y) Region of Attraction of y∗

Given quadratic cost approximation J̃(x) = K̃x2, we find

L̃ = argmin
L

FL(K̃) H(y) = T (y) − y T (y)

c(2) c(m) c(m + 1) c(M) c(M − 1) to construct the one-step lookahead policy µ̃(x) = L̃x

Unstable L |a + bL| > 1 Stable L |a + bL| < 1

and its cost function Jµ̃(x) = KL̃x2

Multistep lookahead moves the starting point of the Newton step closer to K∗

The longer the lookahead the better

The start of the Newton step must be within the region of stability

Longer lookahead promotes stability of the multistep lookahead policy

Value Policy

Termination State Infinite Horizon Approximation Subspace Bellman Eq: J(1) = αJ(2), J(2) = αJ(2)

Controls u ∈ U(x)

x y Shortest N -Stage Distance x-to-y J∗(1) = J∗(2) = 0 Exact VI: Jk+1(1) = αJk(2), Jk+1(2) =

αJk(2) (2αrk, 2αrk)

Terminal Position Evaluation

1

F (K)x2 = min
u∈ℜ

{
qx2 + ru2 + K(ax + bu)2

}

= min
L∈ℜ

min
u=Lx

{
qx2 + ru2 + K(ax + bu)2

}

= min
L∈ℜ

{
q + bL + K(a + bL)2

}
x2

or

F (K) = min
L∈ℜ

FL(K), with FL(K) = (a + bL)2K + q + bL

y0 y1 H(y) = T (y) − y T (y) Region of Attraction of y∗

Given quadratic cost approximation J̃(x) = K̃x2, we find

L̃ = argmin
L

FL(K̃) H(y) = T (y) − y T (y)

c(2) c(m − 1) c(m) c(m + 1) c(M) c(M − 1) to construct the one-step lookahead policy µ̃(x) = L̃x

Unstable L |a + bL| > 1 Stable L |a + bL| < 1

and its cost function Jµ̃(x) = KL̃x2

Multistep lookahead moves the starting point of the Newton step closer to K∗

The longer the lookahead the better

The start of the Newton step must be within the region of stability

Longer lookahead promotes stability of the multistep lookahead policy

Value Policy

Termination State Infinite Horizon Approximation Subspace Bellman Eq: J(1) = αJ(2), J(2) = αJ(2)

Controls u ∈ U(x)

x y Shortest N -Stage Distance x-to-y J∗(1) = J∗(2) = 0 Exact VI: Jk+1(1) = αJk(2), Jk+1(2) =

αJk(2) (2αrk, 2αrk)

Terminal Position Evaluation

1

F (K)x2 = min
u∈ℜ

{
qx2 + ru2 + K(ax + bu)2

}

= min
L∈ℜ

min
u=Lx

{
qx2 + ru2 + K(ax + bu)2

}

= min
L∈ℜ

{
q + bL + K(a + bL)2

}
x2

or

F (K) = min
L∈ℜ

FL(K), with FL(K) = (a + bL)2K + q + bL

y0 y1 H(y) = T (y) − y T (y) Region of Attraction of y∗

Given quadratic cost approximation J̃(x) = K̃x2, we find

L̃ = argmin
L

FL(K̃) H(y) = T (y) − y T (y)

c(2) c(m − 1) c(m) c(m + 1) c(M) c(M − 1) to construct the one-step lookahead policy µ̃(x) = L̃x

Unstable L |a + bL| > 1 Stable L |a + bL| < 1

and its cost function Jµ̃(x) = KL̃x2

Multistep lookahead moves the starting point of the Newton step closer to K∗

The longer the lookahead the better

The start of the Newton step must be within the region of stability

Longer lookahead promotes stability of the multistep lookahead policy

Value Policy

Termination State Infinite Horizon Approximation Subspace Bellman Eq: J(1) = αJ(2), J(2) = αJ(2)

Controls u ∈ U(x)

x y Shortest N -Stage Distance x-to-y J∗(1) = J∗(2) = 0 Exact VI: Jk+1(1) = αJk(2), Jk+1(2) =

αJk(2) (2αrk, 2αrk)

Terminal Position Evaluation

1

F (K)x2 = min
u∈ℜ

{
qx2 + ru2 + K(ax + bu)2

}

= min
L∈ℜ

min
u=Lx

{
qx2 + ru2 + K(ax + bu)2

}

= min
L∈ℜ

{
q + bL + K(a + bL)2

}
x2

or

F (K) = min
L∈ℜ

FL(K), with FL(K) = (a + bL)2K + q + bL

y0 y1 H(y) = T (y) − y T (y) Region of Attraction of y∗

Given quadratic cost approximation J̃(x) = K̃x2, we find

L̃ = argmin
L

FL(K̃) H(y) = T (y) − y T (y)

c(2) c(m − 1) c(m) c(m + 1) c(M) c(M − 1) to construct the one-step lookahead policy µ̃(x) = L̃x

Unstable L |a + bL| > 1 Stable L |a + bL| < 1

and its cost function Jµ̃(x) = KL̃x2

Multistep lookahead moves the starting point of the Newton step closer to K∗

The longer the lookahead the better

The start of the Newton step must be within the region of stability

Longer lookahead promotes stability of the multistep lookahead policy

Value Policy

Termination State Infinite Horizon Approximation Subspace Bellman Eq: J(1) = αJ(2), J(2) = αJ(2)

Controls u ∈ U(x)

x y Shortest N -Stage Distance x-to-y J∗(1) = J∗(2) = 0 Exact VI: Jk+1(1) = αJk(2), Jk+1(2) =

αJk(2) (2αrk, 2αrk)

Terminal Position Evaluation

1

F (K)x2 = min
u∈ℜ

{
qx2 + ru2 + K(ax + bu)2

}

= min
L∈ℜ

min
u=Lx

{
qx2 + ru2 + K(ax + bu)2

}

= min
L∈ℜ

{
q + bL + K(a + bL)2

}
x2

or

F (K) = min
L∈ℜ

FL(K), with FL(K) = (a + bL)2K + q + bL

y0 y1 H(y) = T (y) − y T (y) Region of Attraction of y∗

Given quadratic cost approximation J̃(x) = K̃x2, we find

L̃ = argmin
L

FL(K̃) H(y) = T (y) − y T (y)

c(2) c(m − 1) c(m) c(m + 1) c(M) c(M − 1) to construct the one-step lookahead policy µ̃(x) = L̃x

Unstable L |a + bL| > 1 Stable L |a + bL| < 1

and its cost function Jµ̃(x) = KL̃x2 M M − 1 m

Multistep lookahead moves the starting point of the Newton step closer to K∗

The longer the lookahead the better

The start of the Newton step must be within the region of stability

Longer lookahead promotes stability of the multistep lookahead policy

Value Policy

Termination State Infinite Horizon Approximation Subspace Bellman Eq: J(1) = αJ(2), J(2) = αJ(2)

Controls u ∈ U(x)

x y Shortest N -Stage Distance x-to-y J∗(1) = J∗(2) = 0 Exact VI: Jk+1(1) = αJk(2), Jk+1(2) =

αJk(2) (2αrk, 2αrk)

Terminal Position Evaluation

1

F (K)x2 = min
u∈ℜ

{
qx2 + ru2 + K(ax + bu)2

}

= min
L∈ℜ

min
u=Lx

{
qx2 + ru2 + K(ax + bu)2

}

= min
L∈ℜ

{
q + bL + K(a + bL)2

}
x2

or

F (K) = min
L∈ℜ

FL(K), with FL(K) = (a + bL)2K + q + bL

y0 y1 H(y) = T (y) − y T (y) Region of Attraction of y∗

Given quadratic cost approximation J̃(x) = K̃x2, we find

L̃ = argmin
L

FL(K̃) H(y) = T (y) − y T (y)

c(2) c(m − 1) c(m) c(m + 1) c(M) c(M − 1) to construct the one-step lookahead policy µ̃(x) = L̃x

Unstable L |a + bL| > 1 Stable L |a + bL| < 1

and its cost function Jµ̃(x) = KL̃x2 M M − 1 m

Multistep lookahead moves the starting point of the Newton step closer to K∗

The longer the lookahead the better

The start of the Newton step must be within the region of stability

Longer lookahead promotes stability of the multistep lookahead policy

Value Policy

Termination State Infinite Horizon Approximation Subspace Bellman Eq: J(1) = αJ(2), J(2) = αJ(2)

Controls u ∈ U(x)

x y Shortest N -Stage Distance x-to-y J∗(1) = J∗(2) = 0 Exact VI: Jk+1(1) = αJk(2), Jk+1(2) =

αJk(2) (2αrk, 2αrk)

Terminal Position Evaluation

1

F (K)x2 = min
u∈ℜ

{
qx2 + ru2 + K(ax + bu)2

}

= min
L∈ℜ

min
u=Lx

{
qx2 + ru2 + K(ax + bu)2

}

= min
L∈ℜ

{
q + bL + K(a + bL)2

}
x2

or

F (K) = min
L∈ℜ

FL(K), with FL(K) = (a + bL)2K + q + bL

y0 y1 H(y) = T (y) − y T (y) Region of Attraction of y∗

Given quadratic cost approximation J̃(x) = K̃x2, we find

L̃ = argmin
L

FL(K̃) H(y) = T (y) − y T (y)

c(2) c(m − 1) c(m) c(m + 1) c(M) c(M − 1) to construct the one-step lookahead policy µ̃(x) = L̃x

Unstable L |a + bL| > 1 Stable L |a + bL| < 1

and its cost function Jµ̃(x) = KL̃x2 M M − 1 m

Multistep lookahead moves the starting point of the Newton step closer to K∗

The longer the lookahead the better

The start of the Newton step must be within the region of stability

Longer lookahead promotes stability of the multistep lookahead policy

Value Policy

Termination State Infinite Horizon Approximation Subspace Bellman Eq: J(1) = αJ(2), J(2) = αJ(2)

Controls u ∈ U(x)

x y Shortest N -Stage Distance x-to-y J∗(1) = J∗(2) = 0 Exact VI: Jk+1(1) = αJk(2), Jk+1(2) =

αJk(2) (2αrk, 2αrk)

Terminal Position Evaluation

1

F (K)x2 = min
u∈ℜ

{
qx2 + ru2 + K(ax + bu)2

}

= min
L∈ℜ

min
u=Lx

{
qx2 + ru2 + K(ax + bu)2

}

= min
L∈ℜ

{
q + bL + K(a + bL)2

}
x2

or

F (K) = min
L∈ℜ

FL(K), with FL(K) = (a + bL)2K + q + bL

y0 y1 H(y) = T (y) − y T (y) Region of Attraction of y∗

Given quadratic cost approximation J̃(x) = K̃x2, we find

L̃ = arg min
L

FL(K̃) H(y) = G(y) − y G(y)

c(2) c(m − 1) c(m) c(m + 1) c(M) c(M − 1) to construct the one-step lookahead policy µ̃(x) = L̃x

Unstable L |a + bL| > 1 Stable L |a + bL| < 1

and its cost function Jµ̃(x) = KL̃x2 M M − 1 m µ̃(x) = arg minµ(TµJ̃)(x) or

Multistep lookahead moves the starting point of the Newton step closer to K∗

The longer the lookahead the better

The start of the Newton step must be within the region of stability

Longer lookahead promotes stability of the multistep lookahead policy

Value Policy

Parked/Termination State Infinite Horizon Approximation Subspace Bellman Eq: J(1) = αJ(2), J(2) =

αJ(2) Controls u ∈ U(x)

x y Shortest N -Stage Distance x-to-y J∗(1) = J∗(2) = 0 Exact VI: Jk+1(1) = αJk(2), Jk+1(2) =

αJk(2) (2αrk, 2αrk)

Terminal Position Evaluation

1

At each time step, move one spot in either direction. Decide to park or not at spot
m (if free) at cost c(m). If we have not parked by time N there is a large cost C

We observe the free/taken status of only the spot we are in. Parking spots may
change status at the next time step with some probability.

The free/taken status of the spots is “estimated" in a “probabilistic sense" based
on the observations (the free/taken status of the spots visited ... when visited)

What should the “state" be? It should summarize all the info needed for the
purpose of future optimization

First candidate for state: The entire information vector up to the present time.

Another candidate: The “belief state", i.e., the conditional probabilities of the
free/taken status of all the spots: p(1), p(2), . . . , p(M), conditioned on all the
observations so far
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Partial State Observation Problems: Reformulation via Belief State

Initial State 15 1 5 18 4 19 9 21 25 8 12 13 c(0) c(k) c(k + 1) c(N � 1) Parking Spaces

Stage 1 Stage 2 Stage 3 Stage N N � 1 c(N) c(N � 1) k k + 1

Heuristic Cost “Future” System xk+1 = fk(xk, uk, wk) xk Observations

Belief State pk Controller µk

Initial State x0 s Terminal State t Length = 1

x0 a 0 1 2 t b C Destination

J(xk) ! 0 for all p-stable ⇡ from x0 with x0 2 X and ⇡ 2 Pp,x0 Wp+ = {J 2 J | J+  J} Wp+ from

within Wp+

Prob. u Prob. 1 � u Cost 1 Cost 1 �p
u

J(1) = min
�
c, a + J(2)

 

J(2) = b + J(1)

J⇤ Jµ Jµ0 Jµ00Jµ0 Jµ1 Jµ2 Jµ3 Jµ0

f(x; ✓k) f(x; ✓k+1) xk F (xk) F (x) xk+1 F (xk+1) xk+2 x⇤ = F (x⇤) Fµk
(x) Fµk+1

(x)

Improper policy µ

Proper policy µ

1

Initial State 15 1 5 18 4 19 9 21 25 8 12 13 c(0) c(k) c(k + 1) c(N � 1) Parking Spaces

Stage 1 Stage 2 Stage 3 Stage N N � 1 c(N) c(N � 1) k k + 1

Heuristic Cost “Future” System xk+1 = fk(xk, uk, wk) xk Observations

Belief State pk Controller µk

Initial State x0 s Terminal State t Length = 1

x0 a 0 1 2 t b C Destination

J(xk) ! 0 for all p-stable ⇡ from x0 with x0 2 X and ⇡ 2 Pp,x0 Wp+ = {J 2 J | J+  J} Wp+ from

within Wp+

Prob. u Prob. 1 � u Cost 1 Cost 1 �p
u

J(1) = min
�
c, a + J(2)

 

J(2) = b + J(1)

J⇤ Jµ Jµ0 Jµ00Jµ0 Jµ1 Jµ2 Jµ3 Jµ0

f(x; ✓k) f(x; ✓k+1) xk F (xk) F (x) xk+1 F (xk+1) xk+2 x⇤ = F (x⇤) Fµk
(x) Fµk+1

(x)

Improper policy µ

Proper policy µ

1

Initial State 15 1 5 18 4 19 9 21 25 8 12 13 c(0) c(k) c(k + 1) c(N � 1) Parking Spaces

Stage 1 Stage 2 Stage 3 Stage N N � 1 c(N) c(N � 1) k k + 1

Heuristic Cost “Future” System xk+1 = fk(xk, uk, wk) xk Observations

Belief State pk Controller µk

Initial State x0 s Terminal State t Length = 1

x0 a 0 1 2 t b C Destination

J(xk) ! 0 for all p-stable ⇡ from x0 with x0 2 X and ⇡ 2 Pp,x0 Wp+ = {J 2 J | J+  J} Wp+ from

within Wp+

Prob. u Prob. 1 � u Cost 1 Cost 1 �p
u

J(1) = min
�
c, a + J(2)

 

J(2) = b + J(1)

J⇤ Jµ Jµ0 Jµ00Jµ0 Jµ1 Jµ2 Jµ3 Jµ0

f(x; ✓k) f(x; ✓k+1) xk F (xk) F (x) xk+1 F (xk+1) xk+2 x⇤ = F (x⇤) Fµk
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}
x2

or

F (K) = min
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FL(K), with FL(K) = (a + bL)2K + q + rL2

y0 y1 H(y) = G(y) − y G(y) Region of Attraction of y∗

Belief State is a “Probabilistic Estimate” of the Unknown State

Given quadratic cost approximation J̃(x) = K̃x2, we find

L̃ = arg min
L

FL(K̃) H(y) = G(y) − y G(y)

c(2) c(m−1) c(m) c(m+1) c(M) c(M −1) Linear Stable Policy Quadratic Cost Approximation J̃(x) = K̃x2

to construct the one-step lookahead policy µ̃(x) = L̃x

Tangent Riccati Operator at K̃ Region of Attraction of Slope = 1

NEWTON STEP for Bellman Eq. 2-Step Lookahead Minimization

Enhancements to the Starting Point of Newton Step Value Iterations

Unstable L |a + bL| > 1 Stable L |a + bL| < 1

and its cost function Jµ̃(x) = KL̃x2 M M − 1 m µ̃(x) = arg minµ(TµJ̃)(x) or

Multistep lookahead moves the starting point of the Newton step closer to K∗

The longer the lookahead the better

The start of the Newton step must be within the region of stability

Longer lookahead promotes stability of the multistep lookahead policy
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E↵ective Terminal Cost Approximation Observation

for solving the Bellman Eq. Kx2 = F (K)x2 or K = F (K)

Jk+1(x) = Kk+1x2 = F (Kk)x2

m-Component Control u = (u1, . . . , um) u1 um

Bellman Equation on Space of Quadratic Functions J(x) = Kx2 KS

Tube Constraint Cannot be Satisfied for all x0 2 X if a > 1 F (K) 45
20 40 18 2 6 22 Unstable System xk+1 = 2xk + uk

Terminal Cost Approximation J̃ Rollout Policy Network µ

Value Network µ

R0 R1 R2 T2 Cost 28 Cost 27 Cost 13 Lookahead

Value Space Approximation J̃ Jµ̃ = Tµ̃Jµ̃ Tµ̃J

One-Step Lookahead Policy Cost l J̃ Jµ̃ = Tµ̃Jµ̃ Tµ̃J

Newton iterate starting from K K LK̃ = � abK̃
r+b2K̃

a �a

L̃ = � abK̃
r+b2K̃

Slope = 1

J̃ Region where Sequential Improvement Holds TJ  J Tµ̃J K̃ µK

TJ Instability Region Match Win Probability 1 0 pw (Sudden death)
Stability Region Slope=1

also Newton Step Value Iteration: Kk+1 = F (Kk)

Optimal Policy Riccati Equation: K = F (K)

J(x) = Kx2 = F (K)x2 = Jk(x) or Kk+1 = F (Kk) from

1

The reformulated DP algorithm has the form

J∗k (bk ) = min
uk∈Uk

[
ĝk (bk , uk ) + Ezk+1

{
J∗k+1

(
Fk (bk , uk , zk+1)

) ∣∣ bk , uk

}]
J∗k (bk ) denotes the optimal cost-to-go starting from belief state bk at stage k

Uk is the control constraint set at time k

ĝk (bk , uk ) denotes expected cost of stage k : expected stage cost gk (xk , uk ,wk ),
with distribution of (xk ,wk ) determined by bk and the distribution of wk

Belief estimator: Fk (bk , uk , zk+1) is the next belief state, given current belief state
bk , uk is applied, and observation zk+1 is obtained
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Changing Problem Parameters: Adaptive Control (1960s →)

Example: A cruise control-type problem (keep velocity close to a target level)
Control car velocity evolution: xk+1 = axk + buk (a < 1 models friction, wind drag,
etc, b > 0 depends on road, number of passengers, etc)

Cost over N stages: (xN − x̄)2 +
∑N−1

k=0

(
(xk − x̄)2 + ru2

k
)
, where r > 0 is given

... but a, b, and x̄ are changing all the time; they may be measured with error (?)

Adaptive control deals with such situations. Some possibilities:
Ignore the changes in parameters; design a controller that is robust (“works" for a
broad range of parameters).
Try to estimate the parameters, and use the estimates to modify the controller

I On-line replanning by optimization; modify the controller to make it optimal for the
current set of estimates.

I On-line replanning by rollout with a base policy whose cost values are computed using
the current parameter estimates. This is a simpler (approximate) reoptimization.

View the adaptive control problem as a POMDP and try to deal approximately.
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We ignore the changes in the system

Make no attempt to estimate/learn them

Hope that a fixed controller will yield “acceptable" performance throughout the
range of system changes

A simple approach ... if it works

Unsophisticated ... but there is an important time-honored successful example
PID control (Proportional-Integral-Derivative)

Involves three parameters, which are tuned experimentally/heuristically

Applies to single input-single output case (output: the error from some “set point")

No math model of the system is needed
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Two-phase alternation: System identification <–> Controller reoptimization
Introduce on-line estimation/identification of changing parameters

Recompute the controller so it is optimal for the current set of parameters

This can be time-consuming

There are some serious issues regarding reliable parameter identification
(simultaneously with control); see the class notes
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J̃ Jµ̃ Jµ̃ = Tµ̃Jµ̃ Tµ̃J TJ = minµ TµJ Cost of µ̃ − r
b2

Generic stable policy µ TµJ Generic unstable policy µ′ Tµ′J

Cost of Truncated Rollout Policy µ̃ 1 of the graph of T

J∗ J∗(1) J∗(2) (TJ∗)(1) = J∗(1) (TJ∗)(2) = J∗(2)

TJ = minµ TµJ One-Step Lookahead Policy Cost l J̃ Jµ̃ = Tµ̃Jµ̃ Tµ̃J

TJ = minµ TµJ Multistep Lookahead Policy Cost l J̃ Jµ̃ = Tµ̃Jµ̃ Tµ̃J

Multistep Lookahead Policy Cost !-Step Lookahead

FL(K) = (a + bL)2K + q + rL2 FL̃(K)

1

Jk Jk+1 Fixed Base Policy Adaptive Reoptimization Position Eval-
uator

Newton step from Jk J∗ = TJ∗ T J̃ = minµ TµJ̃

Linear policy parameter Optimal ! = 3 ! = 2 m = 4 Model minµ TµJ̃

minµ TµJ̃ µ̃ = argminµ TµJ̃ Player/Policy Jµ = TµJµ

With the Newton Step Adaptive Rollout Cost Approximation

Generic Policy µ Linearization T ′
Jk

J

Result of Newton step from Jk for solving J = TJ

Without the Newton Step Base Player Threshold

Jµk = TµkJµk Jµk+1 = Tµk+1Jµk+1 Reoptimization

Current Position xk ON-LINE PLAY Lookahead Tree States xk+1

States xk+2

Evaluation Policy µ̃ with Tµ̃J̃ = T J̃ (attains the min)

Corresponds to One-Step Lookahead Tree States xk+1 States xk+2

Policy Evaluation for µk and for µk+1 Evaluation Policy µ̃ with Tµ̃J̃ =
T J̃

Position Evaluation Policy µ̃ with Tµ̃J̃ = T J̃

Cost of µk Cost of µk+1

NOTE: J is a function (an n-vector for n states) Cost

The figure is a one-dimensional “slice” of the graph of J

OFF-LINE TRAINING Off-Line Training of Value and/or Policy Re-
sult of

Approximations Result of

6 1 3 2 9 5 8 7 10 ON-LINE PLAY Linearized Bellman Eq. at Jµk

Player Corrected J̃ J̃ J* Cost J̃µ

(
F (i), r

)
of i ≈ Jµ(i) Jµ(i) Feature

Map

J̃µ

(
F (i), r

)
: Feature-based parametric architecture State

r: Vector of weights Original States Aggregate States

Position “value” Move “probabilities” Simplify E{·}
Choose the Aggregation and Disaggregation Probabilities

Use a Neural Network or Other Scheme Form the Aggregate States
I1 Iq

NEWTON STEP INTERPRETATION

1

Input (Control) Output (Function of the State) Changing Fixed

State xk Parameter θ bk uk = µ(xk, bk) Belief Estimator

for solving the Bellman Eq. Kx2 = F (K)x2 or K = F (K)

Jk+1(x) = Kk+1x2 = F (Kk)x2

m-Component Control u = (u1, . . . , um) u1 um

Bellman Operator Value Iterations Largest Invariant Set

Bellman Equation on Space of Quadratic Functions J(x) = Kx2 KS

Tube Constraint Cannot be Satisfied for all x0 ∈ X if a > 1 F (K) 45
20 40 18 2 6 22 Unstable System xk+1 = 2xk + uk x β −β

Terminal Cost Approximation J̃ Rollout Policy Network µ

Value Network µ

R0 R1 R2 T2 Cost 28 Cost 27 Cost 13 Lookahead Controller

Value Space Approximation J̃ Jµ̃ = Tµ̃Jµ̃ Tµ̃J

One-Step Lookahead Policy Cost l J̃ Jµ̃ = Tµ̃Jµ̃ Tµ̃J

Newton iterate starting from K K LK̃ = − abK̃
r+b2K̃

a −a

L̃ = − abK̃
r+b2K̃

Slope = 1

J̃ Region where Sequential Improvement Holds TJ ≤ J Tµ̃J K̃ µK

TJ Instability Region Match Win Probability 1 0 pw (Sudden death)
Stability Region Slope=1

also Newton Step Value Iteration: Kk+1 = F (Kk)

1

One-dimensional linear-quadratic example:

xk+1 = xk + buk , Cost = lim
N→∞

N−1∑
k=0

(x2
k + ru2

k )

Quadratic cost coefficient as b changes. Robust controller is optimal for b = 2
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On-Line Replanning by Rollout/Approximation in Value Space
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Truncated Rollout Policy µ m Steps

1

min
u∈U(x)

n∑

y=1

pxy(u)
(
g(x, u, y) + αJ̃(y)

)

Multiagent Q-factor minimization xk Possible States xk xk+m+1

Termination State Constraint Set X X = X X̃ Multiagent

Current Partial Folding

Current Partial Folding Moving Obstacle

Complete Folding Corresponding to Open

Expert

Rollout with Base Policy m-Step

Approximation of E{·}: Approximate minimization:

min
u∈U(x)

n∑

y=1

pxy(u)
(
g(x, u, y) + αJ̃(y)

)

x1
k, u1

k u2
k x2

k dk τ

Q-factor approximation
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ỹk, uk, R(yk+1)

)
∈ C

x0 u∗
0 x∗

1 u∗
1 x∗

2 u∗
2 x∗
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3 ũ0 x̃1 ũ1 x̃1
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x0 u∗
0 x∗

1 u∗
1 x∗

2 u∗
2 x∗
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Jk Jk+1 Fixed Base Policy Adaptive Reoptimization Position Eval-
uator

Newton step from Jk J∗ = TJ∗ T J̃ = minµ TµJ̃

Linear policy parameter Optimal ℓ = 3 ℓ = 2 m = 4 Model minµ TµJ̃

minµ TµJ̃ µ̃ = argminµ TµJ̃ Player/Policy Jµ = TµJµ

With the Newton Step Adaptive Rollout Cost Approximation

Generic Policy µ Linearization T ′
Jk

J

Result of Newton step from Jk for solving J = TJ

Without the Newton Step Base Player Threshold

Jµk = TµkJµk Jµk+1 = Tµk+1Jµk+1 Reoptimization

Current Position xk ON-LINE PLAY Lookahead Tree States xk+1

States xk+2

Evaluation Policy µ̃ with Tµ̃J̃ = T J̃ (attains the min)

Corresponds to One-Step Lookahead Tree States xk+1 States xk+2

Policy Evaluation for µk and for µk+1 Evaluation Policy µ̃ with Tµ̃J̃ =
T J̃

Position Evaluation Policy µ̃ with Tµ̃J̃ = T J̃

Cost of µk Cost of µk+1

NOTE: J is a function (an n-vector for n states)

The figure is a one-dimensional “slice” of the graph of J
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Player Corrected J̃ J̃ J* Cost J̃µ

(
F (i), r

)
of i ≈ Jµ(i) Jµ(i) Feature

Map
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: Feature-based parametric architecture State
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Jk Jk+1 Fixed Base Policy Adaptive Reoptimization Position Eval-
uator

Newton step from Jk J∗ = TJ∗ T J̃ = minµ TµJ̃

Linear policy parameter Optimal ℓ = 3 ℓ = 2 m = 4 Model minµ TµJ̃
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J

Result of Newton step from Jk for solving J = TJ
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Policy Evaluation for µk and for µk+1 Evaluation Policy µ̃ with Tµ̃J̃ =
T J̃

Position Evaluation Policy µ̃ with Tµ̃J̃ = T J̃

Cost of µk Cost of µk+1

NOTE: J is a function (an n-vector for n states)

The figure is a one-dimensional “slice” of the graph of J

OFF-LINE TRAINING Off-Line Training of Value and/or Policy Re-
sult of

Approximations Result of

6 1 3 2 9 5 8 7 10 ON-LINE PLAY Linearized Bellman Eq. at Jµk

Player Corrected J̃ J̃ J* Cost J̃µ

(
F (i), r

)
of i ≈ Jµ(i) Jµ(i) Feature

Map

J̃µ

(
F (i), r

)
: Feature-based parametric architecture State

r: Vector of weights Original States Aggregate States

Position “value” Move “probabilities” Simplify E{·}
Choose the Aggregation and Disaggregation Probabilities

Use a Neural Network or Other Scheme Form the Aggregate States
I1 Iq

NEWTON STEP INTERPRETATION

1

Use a robust policy as a base policy for rollout
No controller reoptimization; this is faster

Introduce new parameter estimates in the lookahead minimization and the rollout

Continue to use the same base/robust policy

Possibly recalculate the base/robust policy in the background
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Comparison of On-Line Replanning by Reoptimization and by Rollout
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Player Corrected J̃ J̃ J* Cost J̃µ
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F (i), r

)
of i ≈ Jµ(i) Jµ(i) Feature

Map

J̃µ

(
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)
: Feature-based parametric architecture State

r: Vector of weights Original States Aggregate States

Position “value” Move “probabilities” Simplify E{·}
Choose the Aggregation and Disaggregation Probabilities

Use a Neural Network or Other Scheme Form the Aggregate States
I1 Iq

NEWTON STEP INTERPRETATION

1

Performance comparison of on-line replanning by rollout and by optimization
Note the effect of Newton’s method

One-dimensional linear-quadratic example:

xk+1 = xk + buk , Cost = lim
N→∞

N−1∑
k=0

(x2
k + ru2

k )

Quadratic cost coefficient as b changes. Base policy is optimal for b = 2
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A (More Principled) POMDP Approach to Adaptive Control
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1

Deterministic system xk+1 = f (xk , θ,uk ), θ ∈ {θ1, . . . , θm}: unknown parameter

View θ as part of an augmented state (xk , θ) that is partially observed

Belief state: bk,i = P{θ = θi | Ik} (estimated on-line), where
Ik = (x0, . . . , xk , u0, . . . , uk−1) is the information vector

Bellman equation for optimal cost function J∗k :

J∗k (Ik ) = min
uk

m∑
i=1

bk,i

(
g(xk , θ

i , uk ) + J∗k+1
(
Ik , f (xk , θ

i , uk ), uk
))

Approximation in value space: Use approximation J̃ i(f (xk , θ
i , uk )

)
in place of

J∗k+1
(
Ik , f (xk , θ

i , uk ), uk
)
. Minimize over uk to obtain one-step lookahead policy

Example 1: J̃ i is the cost function of the optimal policy corresponding to θi

Example 2: J̃ i is the cost function of a known policy assuming θ = θi (this is rollout)
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An Example: The Wordle Puzzle

✓: the unknown mystery word

xk: list of possible mystery words (given the guesses so far)

uk: list of possible guess words

u1 u2 u3 um�1 Control um (x, u1) (x, u1, u2) (x, u1, . . . , um�1)

u1 u2 u3 u4 u5

x
00
k+1 x

000
k+1 xk+1 ✓1 ✓2 Next States Final States

Iteration backtracks to the previously visited node x̄2

x0 x1 x2 x3 x4 x5 x6 xk x` Layer 1 Layer 2 Layer k ` x J̃(x`)

Subgraph S Tree T TµJ = �µ + (1 � µ2)J K̂ Base Policy

x̄1 x̄2 Path P

Path P Path P x7 Tree T Path P Subgraph S

Terminal Cost Approximation State 1 State 2 Acyclic Graph G

2-State/2-Control Example (a) (b) (c)

E↵ective Cost Approximation Value Space Approximation State 1
State 2 (TJ)(1)

J̃ Jµ̃ Jµ̃ = Tµ̃Jµ̃ Tµ̃J TJ = minµ TµJ Cost of µ̃

Generic stable policy µ TµJ Generic unstable policy µ0 Tµ0J

Cost of Truncated Rollout Policy µ̃ 1 of the graph of T

J⇤ J⇤(1) J⇤(2) (TJ⇤)(1) = J⇤(1) (TJ⇤)(2) = J⇤(2)

TJ = minµ TµJ One-Step Lookahead Policy Cost l J̃ Jµ̃ = Tµ̃Jµ̃ Tµ̃J

1

✓: the unknown mystery word

xk: list of possible mystery words (given the guesses so far)

uk: list of possible guess words

u1 u2 u3 um�1 Control um (x, u1) (x, u1, u2) (x, u1, . . . , um�1)

u1 u2 u3 u4 u5

x
00
k+1 x

000
k+1 xk+1 ✓1 ✓2 Next States Final States

Iteration backtracks to the previously visited node x̄2

x0 x1 x2 x3 x4 x5 x6 xk x` Layer 1 Layer 2 Layer k ` x J̃(x`)

Subgraph S Tree T TµJ = �µ + (1 � µ2)J K̂ Base Policy

x̄1 x̄2 Path P

Path P Path P x7 Tree T Path P Subgraph S

Terminal Cost Approximation State 1 State 2 Acyclic Graph G

2-State/2-Control Example (a) (b) (c)

E↵ective Cost Approximation Value Space Approximation State 1
State 2 (TJ)(1)

J̃ Jµ̃ Jµ̃ = Tµ̃Jµ̃ Tµ̃J TJ = minµ TµJ Cost of µ̃

Generic stable policy µ TµJ Generic unstable policy µ0 Tµ0J

Cost of Truncated Rollout Policy µ̃ 1 of the graph of T

J⇤ J⇤(1) J⇤(2) (TJ⇤)(1) = J⇤(1) (TJ⇤)(2) = J⇤(2)

TJ = minµ TµJ One-Step Lookahead Policy Cost l J̃ Jµ̃ = Tµ̃Jµ̃ Tµ̃J

1

Input (Control) Output (Function of the State) Changing Fixed

uk: guess word selected at time k

State xk Parameter ✓ bk uk = µ(xk, bk) Belief Estimator

for solving the Bellman Eq. Kx2 = F (K)x2 or K = F (K)

Jk+1(x) = Kk+1x2 = F (Kk)x2

m-Component Control u = (u1, . . . , um) u1 um

Bellman Operator Value Iterations Largest Invariant Set

Bellman Equation on Space of Quadratic Functions J(x) = Kx2 KS

Tube Constraint Cannot be Satisfied for all x0 2 X if a > 1 F (K) 45
20 40 18 2 6 22 Unstable System xk+1 = 2xk + uk x � ��

Terminal Cost Approximation J̃ Rollout Policy Network µ

Value Network µ

R0 R1 R2 T2 Cost 28 Cost 27 Cost 13 Lookahead Controller

Value Space Approximation J̃ Jµ̃ = Tµ̃Jµ̃ Tµ̃J

One-Step Lookahead Policy Cost l J̃ Jµ̃ = Tµ̃Jµ̃ Tµ̃J

Newton iterate starting from K K LK̃ = � abK̃
r+b2K̃

a �a

L̃ = � abK̃
r+b2K̃

Slope = 1

J̃ Region where Sequential Improvement Holds TJ  J Tµ̃J K̃ µK

TJ Instability Region Match Win Probability 1 0 pw (Sudden death)
Stability Region Slope=1

1

Find a mystery word θ using a minimal number of successive 5-letter guess words

View θ as part of an augmented state (xk , θ) that is partially observed

Apply rollout with one of several base heuristics

Joint work with S. Bhambri and A. Bhattacharjee (started as term paper for the
2022 offering of this class); see ArXiv paper on-line

To be discussed in more detail at a later lecture

Rollout Performance = 3.5231 vs the Optimal = 3.5084 average # of guesses
Within < 0.5% more guesses from the optimal policy - On-line answer within 1-3 secs

IT SCALES WITH PROBEM SIZE
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A Fifteen-Minute Break

Catch our breath and think about issues relating to the first half of the lecture.
Ask questions when you return.
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Classical Control Problem I: Control Around a Reference Point

xk+2 x′
k+2 uk+1 u′

k+1 x′′
k+2 x′′′

k+2 u′′
k+1 u′′′

k+1

Consider an undiscounted infinite horizon deterministic problem, involving the System: Cost:

Implicit Current The system can be kept at the origin at zero cost by some control i.e.,

PATH PLANNING FOLLOW A GIVEN TRAJECTORY REGULATION PROBLEM

States at the End of the Lookahead Final States

xk+1 = f(xk, uk)

and the cost per stage

g(xk, uk) ≥ 0, for all (xk, uk)

f(0, uk) = 0, g(0, uk) = 0 for some control uk ∈ Uk(0)

(! − 1)-Stages Minimization Control of Belief State

Keep the state near some given point

Must Deal with State and Control Constraints Linear-Quadratic Formulation is Often Inadequate

Current Partial Solution x x̄ x̄ = f(x, u, w) g(x, u, w) u1 (x, u1) u2 (x, u1, u2)

xk+1 = fk(xk, xk−1, uk, uk−1, wk)

u3 um−1 (x, u1, . . . , um−1) Control um Stage m-Component Control u = (u1, . . . , um)

J1 J2 J∗ = TJ∗ xk+1 = max(0, xk + uk − wk)

TETRIS An Infinite Horizon Stochastic Shortest Path Problem Optimal

x pxx(u) pxy(u) pyx(u) pyy(u) pxt(u) pyt(u) x y

αpxx(u) αpxy(u) αpyx(u) αpyy(u) 1 − α

1
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1

Belief Estimator TJ = minµ TµJ Cost 0 Cost g(x, u, y) System State Data Control Parameter Estima-

tion

Optimal cost Cost of rollout policy µ̃ Cost of base policy µ θ = 0, θ̇ = 0

Objective is to Catch the flies in minimum time

Min Q-factor choice

Cost E
{
g(x, u, y)

}
Cost E

{
g(i, u, j)

}
“On-Line Play”

Value Network Current Policy Network Approximate Policy

Approximate Policy Evaluation Approximately Improved Policy Evaluation

TµJ Approximate Policy Evaluation for µ Approximate Policy Improvement

Optimal Trajectory Chosen by Base Heuristic at x0 Initial Tentative Best Trajectory

0 1 2 3 4 5 6 15

Deterministic Stochastic Rollout Continuous MPC Constrained Discrete Combinatorial Multiagent

MCTS Variance Reduction

Section 2.3 Section 2.4 Sections 2.5, 3.1 3.3 3.4 3.2, 3.3, 3.3.3 2.4.3 2.4.2 3.3, 3.4

High Cost Transition Chosen by Heuristic at x∗
1 Violates Sequential Improvement 2.4.3, 2.4.4 2.4.2 3.3,

3.4

Monte Carlo Tree Search ‘

min
uk,µk+1,...,µk+!−1

E

{
gk(xk, uk, wk) +

k+!−1∑

i=k+1

gi

(
xi, µi(xi), wi

)
+ J̃k+!(xk+!)

}

Optimal Cost Terminal States Cost Approximation Cost g(i, u, j) Policy µ State Space First Stage

“Future”

2

xk+2 x′
k+2 uk+1 u′

k+1 x′′
k+2 x′′′

k+2 u′′
k+1 u′′′

k+1

Consider an undiscounted infinite horizon deterministic problem, involving the System: Cost:

Implicit Current The system can be kept at the origin at zero cost by some control i.e.,
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States at the End of the Lookahead Final States
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and the cost per stage

g(xk, uk) ≥ 0, for all (xk, uk)

f(0, uk) = 0, g(0, uk) = 0 for some control uk ∈ Uk(0)

(! − 1)-Stages Minimization Control of Belief State

Keep the state near some given point Traditionally 0 (the origin)

Must Deal with State and Control Constraints Linear-Quadratic Formulation is Often Inadequate

Current Partial Solution x x̄ x̄ = f(x, u, w) g(x, u, w) u1 (x, u1) u2 (x, u1, u2)

xk+1 = fk(xk, xk−1, uk, uk−1, wk)

u3 um−1 (x, u1, . . . , um−1) Control um Stage m-Component Control u = (u1, . . . , um)

J1 J2 J∗ = TJ∗ xk+1 = max(0, xk + uk − wk)

TETRIS An Infinite Horizon Stochastic Shortest Path Problem Optimal

x pxx(u) pxy(u) pyx(u) pyy(u) pxt(u) pyt(u) x y

αpxx(u) αpxy(u) αpyx(u) αpyy(u) 1 − α

1

Keep the state of the system close to a reference point (usually 0)
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Classical Control Problem II: Path Planning

Uncertainty System Environment Cost Control Current State i

Controller Production Center Delay Retail Storage Demand

Possible Moves Average Score by Monte-Carlo Simulation

Current Position and Dice Roll Best Score A B

φβ1,β2,γ(x) = φβ1,γ(x) − φβ2,γ(x) β3 β4 (a) (b) φβ1,β2,β3,β4,γ(x)

x γ(x − β3) γ(x − β4) + − max{0, ξ} Linear Unit Rectifier φβ,γ(x)
Slope γ β

High Cost Suboptimal u′ “Deceptive” Low Cost u Optimal trajectory
% + 1 Stages Optimal trajectory

(ciy − bi)2 R mini y∗
i maxi y∗

i

J̃k+1(xk+1) = min
uk+1∈Uk+1(xk+1)

E
{
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g(xk, uk) ≥ 0, for all (xk, uk)

f(0, uk) = 0, g(0, uk) = 0 for some control uk ∈ Uk(0)

(! − 1)-Stages Minimization Control of Belief State

Must Deal with State and Control Constraints Linear-Quadratic Formulation is Often Inadequate
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u3 um−1 (x, u1, . . . , um−1) Control um Stage m-Component Control u = (u1, . . . , um)

J1 J2 J∗ = TJ∗ xk+1 = max(0, xk + uk − wk)

TETRIS An Infinite Horizon Stochastic Shortest Path Problem Optimal

x pxx(u) pxy(u) pyx(u) pyy(u) pxt(u) pyt(u) x y

αpxx(u) αpxy(u) αpyx(u) αpyy(u) 1 − α

Belief Estimator TJ = minµ TµJ Cost 0 Cost g(x, u, y) System State Data Control Parameter Estima-

tion

Optimal cost Cost of rollout policy µ̃ Cost of base policy µ

Objective is to Catch the flies in minimum time

Min Q-factor choice
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Keep the state of the system close to a planned trajectory
State constraints can be very important
On-line path replanning may be needed
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Model Predictive Control - A Form of Approximation in Value Space
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J(xk) ! 0 for all p-stable ⇡ from x0 with x0 2 X and ⇡ 2 Pp,x0 Wp+ = {J 2 J | J+  J} Wp+ from

within Wp+

Prob. u Prob. 1 � u Cost 1 Cost 1 �p
u

J(1) = min
�
c, a + J(2)

 

J(2) = b + J(1)

J⇤ Jµ Jµ0 Jµ00Jµ0 Jµ1 Jµ2 Jµ3 Jµ0

f(x; ✓k) f(x; ✓k+1) xk F (xk) F (x) xk+1 F (xk+1) xk+2 x⇤ = F (x⇤) Fµk
(x) Fµk+1

(x)

Improper policy µ

Proper policy µ

1

Initial State 15 1 5 18 4 19 9 21 25 8 12 13 c(0) c(k) c(k + 1) c(N � 1) Parking Spaces

Stage 1 Stage 2 Stage 3 Stage N N � 1 c(N) c(N � 1) k k + 1

Heuristic Cost “Future” System xk+1 = fk(xk, uk, wk) xk Observations

Belief State pk Controller µk Control uk = µk(pk) . . .

x0 x1 xk xN uk xk+1

Initial State x0 s Terminal State t Length = 1

x0 a 0 1 2 t b C Destination

J(xk) ! 0 for all p-stable ⇡ from x0 with x0 2 X and ⇡ 2 Pp,x0 Wp+ = {J 2 J | J+  J} Wp+ from

within Wp+

Prob. u Prob. 1 � u Cost 1 Cost 1 �p
u

J(1) = min
�
c, a + J(2)

 

J(2) = b + J(1)

J⇤ Jµ Jµ0 Jµ00Jµ0 Jµ1 Jµ2 Jµ3 Jµ0

f(x; ✓k) f(x; ✓k+1) xk F (xk) F (x) xk+1 F (xk+1) xk+2 x⇤ = F (x⇤) Fµk
(x) Fµk+1

(x)

Improper policy µ

Proper policy µ

1

Initial State 15 1 5 18 4 19 9 21 25 8 12 13 c(0) c(k) c(k + 1) c(N − 1) Parking Spaces

Stage 1 Stage 2 Stage 3 Stage N N − 1 c(N) c(N − 1) k k + 1

Heuristic Cost Heuristic “Future” System xk+1 = fk(xk, uk, wk) xk Observations

Belief State pk Controller µk Control uk = µk(pk) . . . Q-Factors Current State xk

x0 x1 xk xN x′
N x′′

N uk u′
k u′′

k xk+1 x′
k+1 x′′

k+1

Initial State x0 s Terminal State t Length = 1

x0 a 0 1 2 t b C Destination

J(xk) → 0 for all p-stable π from x0 with x0 ∈ X and π ∈ Pp,x0 Wp+ = {J ∈ J | J+ ≤ J} Wp+ from

within Wp+

Prob. u Prob. 1 − u Cost 1 Cost 1 − √
u

J(1) = min
{
c, a + J(2)

}

J(2) = b + J(1)

J∗ Jµ Jµ′ Jµ′′Jµ0 Jµ1 Jµ2 Jµ3 Jµ0

f(x; θk) f(x; θk+1) xk F (xk) F (x) xk+1 F (xk+1) xk+2 x∗ = F (x∗) Fµk
(x) Fµk+1

(x)

Improper policy µ

Proper policy µ

1

Initial State 15 1 5 18 4 19 9 21 25 8 12 13 c(0) c(k) c(k + 1) c(N − 1) Parking Spaces

Stage 1 Stage 2 Stage 3 Stage N N − 1 c(N) c(N − 1) k k + 1

Heuristic Cost Heuristic “Future” System xk+1 = fk(xk, uk, wk) xk Observations

Belief State pk Controller µk Control uk = µk(pk) . . . Q-Factors Current State xk

x0 x1 xk xN x′
N x′′

N uk u′
k u′′

k xk+1 x′
k+1 x′′

k+1

Initial State x0 s Terminal State t Length = 1

x0 a 0 1 2 t b C Destination

J(xk) → 0 for all p-stable π from x0 with x0 ∈ X and π ∈ Pp,x0 Wp+ = {J ∈ J | J+ ≤ J} Wp+ from

within Wp+

Prob. u Prob. 1 − u Cost 1 Cost 1 − √
u

J(1) = min
{
c, a + J(2)

}

J(2) = b + J(1)

J∗ Jµ Jµ′ Jµ′′Jµ0 Jµ1 Jµ2 Jµ3 Jµ0

f(x; θk) f(x; θk+1) xk F (xk) F (x) xk+1 F (xk+1) xk+2 x∗ = F (x∗) Fµk
(x) Fµk+1

(x)

Improper policy µ

Proper policy µ

1

Initial City Current Partial Tour Next Cities Next States

Nearest Neighbor Heuristic

J̃k+1(xk+1) = min
uk+1∈Uk+1(xk+1)

E
{

gk+1(xk+1, uk+1, wk+1)

+J̃k+2

(
fk+1(xk+1, uk+1, wk+1)

)}
,

2-Step Lookahead (onestep lookahead plus one step approx-
imation)

Certainty equivalence Monte Carlo tree search Lookahead tree ℓ-Step
Shortest path problem xk xk States xk+1 States xk+2 u u′

Truncated Rollout Terminal Cost Approximation J̃

Parametric approximation Neural nets Discretization

Parametric approximation Neural nets Discretization

Cost Function Approximation J̃k+ℓ

Rollout, Model Predictive Control

b+
k b−

k Permanent trajectory P k Tentative trajectory T k

min
uk

E
{
gk(xk, uk, wk)+J̃k+1(xk+1)

}

Approximate Min Approximate E{·} Approximate Cost-to-Go J̃k+1

Optimal control sequence {u∗
0, . . . , u∗

k, . . . , u∗
N−1} Simplify E{·}

Tail subproblem Time x∗
k Future Stages Terminal Cost k N

Stage k Future Stages Terminal Cost gN(xN )

Control uk Cost gk(xk, uk) x0 xk xk+1 xN xN x′
N

ũk uk x̃k+1 xk+1 x̃N xN x′
N

Φr = Π
(
T

(λ)
µ (Φr)

)
Π(Jµ) µ(i) ∈ arg minu∈U(i) Q̃µ(i, u, r)

Subspace M = {Φr | r ∈ ℜm} Based on J̃µ(i, r) Jµk

minu∈U(i)

∑n
j=1 pij(u)

(
g(i, u, j) + J̃(j)

)
Computation of J̃ :

Good approximation Poor Approximation σ(ξ) = ln(1 + eξ)

max{0, ξ} J̃(x)

Cost 0 Cost g(i, u, j) Monte Carlo tree search First Step “Future”
Feature Extraction

Node Subset S1 SN Aggr. States Stage 1 Stage 2 Stage 3 Stage N −1

1

Sample Q-Factors Simulation Control 1 Control 2 Control 3

Complete Tours Current Partial Tour Next Cities Next States

Q1,n + R1,n Q2,n + R2,n Q3,n + R3,n

Simulation Nearest Neighbor Heuristic Move to the Right Possible
Path

J̃k+1(xk+1) = min
uk+1∈Uk+1(xk+1)

E
{
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+J̃k+2
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fk+1(xk+1, uk+1, wk+1)
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,
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imation)

Certainty equivalence Monte Carlo tree search Lookahead tree ℓ-Step
Shortest path problem xk xk States xk+1 States xk+2 u u′

Truncated Rollout Terminal Cost Approximation J̃

Parametric approximation Neural nets Discretization

Parametric approximation Neural nets Discretization

Cost Function Approximation J̃k+ℓ

Rollout, Model Predictive Control

b+
k b−

k Permanent trajectory P k Tentative trajectory T k

min
uk

E
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ũk uk x̃k+1 xk+1 x̃N xN x′
N

Φr = Π
(
T

(λ)
µ (Φr)

)
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uk+12Uk+1(xk+1)

E
n
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�
fk+1(xk+1, uk+1, wk+1)

�o
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ũk uk x̃k+1 xk+1 x̃N xN x0
N

�r = ⇧
�
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(�)
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�
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Simulation Nearest Neighbor Heuristic Move to the Right Possible
Path
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Consider an undiscounted infinite horizon deterministic problem, involving the system

xk+1 = f(xk, uk)

and the cost per stage

g(xk, uk) ≥ 0, for all (xk, uk)

The system can be kept at the origin at zero cost, i.e.,

f(0, uk) = 0, g(0, uk) = 0 for some control uk ∈ Uk(0)

x x̄ x̄ = f(x, u, w) g(x, u, w) u1 (x, u1) u2 (x, u1, u2)

u3 um−1 (x, u1, . . . , um−1) Control um Stage m-Component Control u = (u1, . . . , um)

J1 J2 J∗ = TJ∗ xk+1 = max(0, xk + uk − wk)

TETRIS An Infinite Horizon Stochastic Shortest Path Problem Optimal

x pxx(u) pxy(u) pyx(u) pyy(u) pxt(u) pyt(u) x y

αpxx(u) αpxy(u) αpyx(u) αpyy(u) 1 − α

Belief Estimator TJ = minµ TµJ Cost 0 Cost g(x, u, y) System State Data Control Parameter Estima-

tion

Optimal cost Cost of rollout policy µ̃ Cost of base policy µ

Cost E
{
g(x, u, y)

}
Cost E

{
g(i, u, j)

}
“On-Line Play”

Value Network Current Policy Network Approximate Policy

Approximate Policy Evaluation Approximately Improved Policy Evaluation
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Value Network Current Policy Network Approximate Policy

Approximate Policy Evaluation Approximately Improved Policy Evaluation

1

Consider undiscounted infinite horizon; we want to keep the system near 0

Original form of MPC: We minimize the cost function over the next ` stages while
requiring xk+` = 0

At the current state xk , we apply the first control of the minimizing sequence,
discard the other controls

This is rollout w/ base heuristic the min that drives xk+` to 0 in (`− 1) steps

Well-suited for on-line replanning

We neglect for the moment (the often very important) state constraints
Bertsekas Reinforcement Learning 21 / 29



Model Predictive Control with Terminal Cost Approximation
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In a common variant of MPC, we use a nonnegative terminal cost G(xk+`) in the
`-stage MPC problem, instead of driving the state to 0 in ` steps:

min
ut , t=k,...,k+`−1

[
G(xk+`) +

k+`−1∑
t=k

g(xt , ut )

]

This can be viewed as approximation in value space with multistep lookahead

Truncated rollout with some base policy may also be introduced

The problem may also include state constraints, in which case we obtain one of
the most general forms of MPC

When is the MPC policy stable? G must be in the region of stability; see the class
notes. Truncated rollout helps in this respect.
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Model Predictive Control with State Constraints

It is often important to deal with additional state constraints of the form xk ∈ X ,
where X is some subset of the state space

Then the MPC problem to be solved at the k th stage must be modified

Assuming that the current state xk belongs to X , the MPC problem is

min
ut , t=k,...,k+`−1

[
G(xk+`) +

k+`−1∑
t=k

g(xt , ut )

]
,

subject to the control constraints
ut ∈ U(xt ), t = k , . . . , k + `− 1,

and the state constraints
xt ∈ X , t = k + 1, . . . , k + `

The control ũk thus obtained is required to generate a state xk+1 ∈ X

Important difficulty: There is no guarantee that this problem has a feasible solution
for all initial states xk ∈ X

This is particularly true for unstable systems
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A One-Dimensional Example for MPC with State Constraints

x0 Control uk (! − 1)-Stages Base Heuristic Minimization

0 k Sample Q-Factors (! − 1)-Stages State xk+! = 0

Complete Tours Current Partial Tour Next Cities Next States

Q1,n +R1,n Q2,n +R2,n Q3,n +R3,n Stage k Stages k+1, . . . , k+ !−1

Base Heuristic Minimization Possible Path

Simulation Nearest Neighbor Heuristic Move to the Right Possible
Path

J̃k+1(xk+1) = min
uk+1∈Uk+1(xk+1)

E
{

gk+1(xk+1, uk+1, wk+1)

+J̃k+2

(
fk+1(xk+1, uk+1, wk+1)

)}
,

2-Step Lookahead (onestep lookahead plus one step approx-
imation)

Certainty equivalence Monte Carlo tree search Lookahead tree !-Step
Shortest path problem xk xk States xk+1 States xk+2 u u′

Truncated Rollout Terminal Cost Approximation J̃

Parametric approximation Neural nets Discretization

Parametric approximation Neural nets Discretization

Cost Function Approximation J̃k+!

Rollout, Model Predictive Control

b+
k b−

k Permanent trajectory P k Tentative trajectory T k

min
uk

E
{
gk(xk, uk, wk)+J̃k+1(xk+1)

}

Approximate Min Approximate E{·} Approximate Cost-to-Go J̃k+1

Optimal control sequence {u∗
0, . . . , u∗

k, . . . , u∗
N−1} Simplify E{·}

Tail subproblem Time x∗
k Future Stages Terminal Cost k N

Stage k Future Stages Terminal Cost gN(xN )

Control uk Cost gk(xk, uk) x0 xk xk+1 xN xN x′
N

ũk uk x̃k+1 xk+1 x̃N xN x′
N
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(
T

(λ)
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minu∈U(i)

∑n
j=1 pij(u)

(
g(i, u, j) + J̃(j)

)
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also Newton Step Value Iteration: Kk+1 = F (Kk)

Optimal Policy Riccati Equation: K = F (K)
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1

Consider state constraints of the form xk ∈ X , for all k , where

X =
{

x | |x | ≤ β
}

If β > 1, the state constraint cannot be satisfied for all initial states x0 ∈ X .

Reason: If we take x0 = β > 1, then 2x0 > 2 and x1 = 2x0 + u0 will satisfy
x1 > x0 = β for any value of u0 with |u0| ≤ 1.

Arguing similarly, the entire sequence of generated states {xk} will satisfy

xk+1 > xk for all k , xk ↑ ∞.

The state constraint can be satisfied only for x0 in the set X̂ =
{

x | |x | ≤ 1
}

Sets like X̂ are called invariant (see the next slide)
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ũk uk x̃k+1 xk+1 x̃N xN x′
N

Φr = Π
(
T

(λ)
µ (Φr)

)
Π(Jµ) µ(i) ∈ arg minu∈U(i) Q̃µ(i, u, r)

Subspace M = {Φr | r ∈ #m} Based on J̃µ(i, r) Jµk

minu∈U(i)

∑n
j=1 pij(u)

(
g(i, u, j) + J̃(j)

)
Computation of J̃ :

1

System: xk+1 = 2xk + uk Control constraint: |uk| ≤ 1

{X0, X1, . . . , XN} must be reachable Largest reachable tube

x0 Control uk (! − 1)-Stages Base Heuristic Minimization

Target Tube 0 k Sample Q-Factors (! − 1)-Stages State xk+! = 0

Complete Tours Current Partial Tour Next Cities Next States

Q1,n +R1,n Q2,n +R2,n Q3,n +R3,n Stage k Stages k+1, . . . , k+ !−1

Base Heuristic Minimization Possible Path

Simulation Nearest Neighbor Heuristic Move to the Right Possible
Path

J̃k+1(xk+1) = min
uk+1∈Uk+1(xk+1)

E
{

gk+1(xk+1, uk+1, wk+1)

+J̃k+2

(
fk+1(xk+1, uk+1, wk+1)

)}
,

2-Step Lookahead (onestep lookahead plus one step approx-
imation)

Certainty equivalence Monte Carlo tree search Lookahead tree !-Step
Shortest path problem xk xk States xk+1 States xk+2 u u′

Truncated Rollout Terminal Cost Approximation J̃

Parametric approximation Neural nets Discretization

Parametric approximation Neural nets Discretization

Cost Function Approximation J̃k+!

Rollout, Model Predictive Control

b+
k b−

k Permanent trajectory P k Tentative trajectory T k

min
uk

E
{
gk(xk, uk, wk)+J̃k+1(xk+1)

}

Approximate Min Approximate E{·} Approximate Cost-to-Go J̃k+1
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Tail subproblem Time x∗
k Future Stages Terminal Cost k N

Stage k Future Stages Terminal Cost gN(xN )

Control uk Cost gk(xk, uk) x0 xk xk+1 xN xN x′
N

ũk uk x̃k+1 xk+1 x̃N xN x′
N

Φr = Π
(
T

(λ)
µ (Φr)

)
Π(Jµ) µ(i) ∈ arg minu∈U(i) Q̃µ(i, u, r)
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E↵ective Terminal Cost Approximation Observation yk yk+1

for solving the Bellman Eq. Kx2 = F (K)x2 or K = F (K)

Jk+1(x) = Kk+1x2 = F (Kk)x2

m-Component Control u = (u1, . . . , um) u1 um

Bellman Operator Value Iterations Largest Invariant Set

Bellman Equation on Space of Quadratic Functions J(x) = Kx2 KS

Tube Constraint Cannot be Satisfied for all x0 2 X if a > 1 F (K) 45
20 40 18 2 6 22 Unstable System xk+1 = 2xk + uk

Terminal Cost Approximation J̃ Rollout Policy Network µ

Value Network µ

R0 R1 R2 T2 Cost 28 Cost 27 Cost 13 Lookahead

Value Space Approximation J̃ Jµ̃ = Tµ̃Jµ̃ Tµ̃J

One-Step Lookahead Policy Cost l J̃ Jµ̃ = Tµ̃Jµ̃ Tµ̃J

Newton iterate starting from K K LK̃ = � abK̃
r+b2K̃

a �a

L̃ = � abK̃
r+b2K̃

Slope = 1

J̃ Region where Sequential Improvement Holds TJ  J Tµ̃J K̃ µK

TJ Instability Region Match Win Probability 1 0 pw (Sudden death)
Stability Region Slope=1

also Newton Step Value Iteration: Kk+1 = F (Kk)

Optimal Policy Riccati Equation: K = F (K)
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1

To guarantee feasibility of the MPC problem with state constraints xk ∈ X for all k ,
an invariance condition must be satisfied by X

for every x ∈ X , there exists u ∈ U(x) such that f (x , u) ∈ X

How do we compute an invariant subset of a given constraint set?

This is necessarily an off-line calculation. Cannot be easily performed during
on-line play

It turns out that given X , there exists a largest possible invariant subset of X and it
can be computed in the limit with an algorithm that resembles value iteration.

There also other/simpler possibilities for computing invariant subsets of X
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Overview of What we Have Done

We aimed for an overview of the approximate DP/RL landscape; a foundation for
deeper development of other RL topics (and getting you started on your term paper).

We have described in varying levels of depth the following:
The algorithmic foundation of exact DP in all its major forms: deterministic and
stochastic, discrete and continuous, finite and infinite horizon.

Approximation in value space with one-step and multistep lookahead, the
workhorse of RL, which underlies its major success stories, including AlphaZero.

The fundamental division between off-line training and on-line play in the context
of approximation in value space. Their synergy through Newton’s method.

The fundamental methods of policy iteration and rollout, the former being primarily
an off-line method, and the latter being primarily a less ambitious on-line method.
Connections with Newton’s method.

Some major models with a broad range of applications, such as discrete
optimization, POMDP, multiagent problems, adaptive control, and model predictive
control.

The use of function approximation, which has been a recurring theme in our
presentation. We have hinted at several points some of the principal schemes for
approximation, based on neural networks and feature-based architectures.
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Overview of What Lies Ahead; What we Will and Will Not Cover

The first chapter of the class notes provides a foundational platform for exploring at a
deeper level various algorithmic methodologies, such as:

Rollout, its variants, and its applications; e.g., discrete/deterministic, multiagent,
etc; Chapter 2.

Sequential decision making in special contexts involving changing system
parameters, sequential estimation, Bayesian optimization, and simultaneous
system identification and control; Chapter 2.

Off-line training for approximation in value and policy space using neural networks
and other approximation architectures; Chapter 3.

Stochastic algorithms, such as temporal difference methods and Q-learning, used
for off-line policy evaluation, in the context of approximate policy iteration.

Sampling methods to collect data for off-line training, in the context of cost and
policy approximations.

Statistical estimates and efficiency enhancements of various sampling methods
used in simulation-based schemes.

A deeper exploration of control system design methodologies such as model
predictive control, and its applications in robotics and automated transportation.
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About the Next Lecture

We will cover:
Deterministic rollout and variations

Rollout for stochastic problems

Homework to be announced next week

Watch videolecture 5 from 2023 ASU course offering
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