Topics in Reinforcement Learning:
AlphaZero, ChatGPT, Neuro-Dynamic Programming,
Model Predictive Control, Discrete Optimization
Arizona State University

Course CSE 691, Spring 2024

Links to Class Notes, Videolectures, and Slides at
http://web.mit.edu/dimitrib/www/RLbook.html

Dimitri P. Bertsekas
dpbertsekas@gmail.com

Lecture 5
Reuvisit Finite Horizon DP Problems - Deterministic Rollout

Bertsekas Reinforcement Learning 1/32

0 Finite Horizon Problems - Relation to Infinite Horizon
@ Rollout in General

© Rollout for Deterministic Finite-State Problems

0 Cost Improvement Property of Rollout

e Deterministic Rollout Variants and Extensions

Bertsekas Reinforcement Learning 2/32

Review: The Generic Finite Horizon DP Problem

Random Transition

Th1 = fe(@r, up, wi)

O O DO D
Random Cost

gk(lIm Uk, wk)

@ System xx+1 = fi(Xk, Uk, wik) with random “disturbance" wx (e.g., physical noise,
market uncertainties, demand for inventory, unpredictable breakdowns, etc)

@ Cost function: E {gN(xN) + 50 gk, Uk, Wk)}

@ Policies m = {uo, ..., un—1}, Where py is a “closed-loop control law" or “feedback
policy"/a function of xx. A “lookup table" for the control ux = u«(xx) to apply at xk.

@ For given initial state xo, minimize over all 7 = {uo, . .., un—1} the cost

N—1
Jr(X0) = E {QN(XN) + > 9k (X 1k (Xk), Wk)}

k=0

@ Optimal cost function: J*(xo) = min, Jx(xo). Optimal policy: J-=(x0) = J*(x0)

We will be focusing on finite horizon: It's most convenient for our algorithmic
purposes (e.g., rollout) ... but nearly everything applies to infinite horizon

Bertsekas Reinforcement Learning 4/32

Review: The DP Algorithm

Produces the optimal costs J(xx) of the tail subproblems that start at xx
Start with Jy(xn) = gnv(xn), and fork =0,...,N —1, let

Ji (x) = Ukenpjikr(lxk) Ewk{gk(xln Uk, W) + Jir (T (X, Uk, Wk))}, for all xx.

@ The optimal cost J*(xo) is obtained at the last step: Jy(x0) = J*(x0).
@ The optimal policy is to use the minimizing u; = p(xx) above.

Approximation in Value Space - Use of Ji. 1 in Place of it
Sequentially, going forward, for k = 0,1,..., N — 1, observe xx and apply

Uy € arg ngﬂuik'?xk) Ewk{gk(xm Uk, i) + Jis1 (fie(Xi, Uk, W) }

There is also a multistep version.

There are many different ways to compute Jx+1 (€.g., on-line rollout, off-line
training, problem approximation, heuristics, etc)

Bertsekas Reinforcement Learning 5/32

Infinite Horizon Problems: Review

Random Transition
Infinite Horizon
Tpr1 = f(ok, ur, w) te Horizo

Random Cost

akg(xy, up, wy)

Infinite number of stages, and stationary system and cost
@ Cost of a policy m = {0, 11, .. .}: The limit as N — oo of the N-stage costs

N—1
Jr(36) = i Ew, {Z o g (X, 1uk(x), m)}

k=0
@ Optimal cost function J*(xp) = min. J-(Xo)-
@ Bellman’s equation: J*(x) = mingey(x Ew{g(x u, w) + aJ*(f(x, u, W))} for all x

@ The nice case is discounted Markov Decision Problems (MDP): Finite state and
action spaces, and a < 1.

@ Another nice case is Stochastic Shortest Path problems: Finite state and action
spaces, a = 1, and a cost-free and absorbing (goal/termination) state.

Bertsekas Reinforcement Learning 6/32

Infinite Horizon Problems: Algorithms

Value iteration (VI): Generates finite horizon opt. cost function sequence {Jx}

Jk(X) = min Ew{g(x u, w) + ad—1 (f(x, u, W))} Jo is “arbitrary”

ueU(x

Policy Iteration (P1): Generates sequences of policies {4} and their cost

functions {J,«}; u° is “arbitrary”

The typical iteration starts with a policy x and generates a new policy i in two steps:
@ Policy evaluation step, which computes J,, the cost function of the (base) policy p

@ Policy improvement step, which computes the improved (rollout) policy fi using the
one-step lookahead minimization

flx) € arg min Ew{g(x, u.w) + ad, (F(x.u. w)) |

Rollout is a single policy iteration
with policy evaluation performed by on-line simulation as needed

Bertsekas Reinforcement Learning 7132

An Important Conceptual Idea: Finite Horizon can be Transformed to

Infinite Horizon

S OO0~ ~0—O

e ° @ @ @ Q
Ty (x
/\ e)

e H
R 88
ces

Optimal ¢ l<—> 4—» 4—»
,11 Olicy

As a result:

@ The Bellman equation of the infinite horizon problem is the DP algorithm for the
finite horizon problem

@ Policy iteration/Newton step ideas apply to finite horizon problems

Bertsekas Reinforcement Learning 8/32

Rollout:

At State zy,
DP minimization First £ Steps “Future”

l b kt0—1 "
min E {gk(mk,uk, wy) + Z gi (@, pizi), wi) + Jk+g(:£;€+g)}

Uk, LK yeesMk4£—1
Hht1see ket k11

Rollout Control iy Lookahead Minimization = Base Policy Cost
Rollout Policy fix

Jk+e(Xky0) is the Cost Function of Some Policy or Heuristic J

@ The policy used for rollout is called base policy
@ The policy obtained by lookahead minimization is called rollout policy

Approximate variants

@ Jie(xk.e) may also approximate the cost function of the base policy
@ Possibility of truncated rollout

Bertsekas Reinforcement Learning 10/32

Rollout is Important for this Course

Role of Rollout

@ It provides important options for cost function approximation in the context of value
space methods (a “good" option because Ji < Jk, based on visualizations)

@ lt is the basic building block of the fundamental Pl algorithm (and approximate
variants)

Reasons why it will be important:
@ Rollout, in its pure form, is the RL method that is easiest to understand and apply
@ Rollout is by far the most reliable

@ ltis very general: Applies to deterministic and stochastic problems, to finite
horizon and infinite horizon

Since it is a special case of approx. in value space, it relates to Newton’s method

Deals well with on-line replanning, and provides a useful alternative to
reoptimization in adaptive control

It relates to model predictive control, and can be used to improve the stability of
MPC schemes

Truncated rollout can be combined with many of the RL methods used in practice
[including self-learning (approximate PI), Q-learning, aggregation, and others]

Bertsekas Reinforcement Learning 11/32

Review: Finite Horizon Deterministic Optimal Control Model

Control ug
O @ @ (O—-
Cost gi (g, uk)

>

Stage k Future Stages

@ System
Xiet = Fe(Xk, Uk), k=0,1,...,N—1

where xi: State, ux: Control chosen from some set Uk (xx)
@ Cost function:

N—1
gn(xn) + Z G (X, Uk)
k=0

@ For given initial state xp, minimize over control sequences {uo, ..., Uv—_1}
N—1
J(X0i Uo, - - Uun—1) = n(XN) + D Gk(X, Uk)
k=0
@ Optimal cost function J*(xp) = min E UG8 J(Xo; Ug, .-, UN—1)
—1

Bertsekas Reinforcement Learning 13/32

Review: Generic Finite-State Deterministic Finite Horizon Problem

State Transition
Cost g1(x1,u1) _ 2= fi(z1,u1)
Terminal Arcs
Cost gn(zn)

‘Artificial Terminal
Node

Stage 0 Stage 1 Stage 2 .- Stage N —1 Stage N
xo x1 Z2 TN-1 TN
@ Nodes correspond to states xx
@ Each arc corresponds to a state-control pair (X, ux) [start node is xx; end node is
Xie+1 = Fie(Xk, Ui)]
@ An arc corresponding to (xx, Ux) has a cost gk (X, Uk).

@ The cost to optimize is the sum of the arc costs from the initial node/state x, to a
terminal node t.

@ The problem is equivalent to finding @ minimum cost/shortest path from x to .

Bertsekas Reinforcement Learning 14/32

A Combinatorial Example: The N Queens Problem

Bertsekas

Starting Position
Root Node s

Cost =0 Cost =0
[£
Dead-End Positio/
[7 | w
W ‘gl [/
]
Dead-End [Position
L4 |
4 L4
L4 L4
Cost =1 Cost =1
W
|
L4
L4
Cost =0
Artificial
Terminal
Node ¢

ement Learning

15/32

General Structure of Deterministic Rollout with Some Base Heuristic

Next States

Current State euristic

Heuristic

Heuristic

Q-Factors

@ At state x, for every pair (X, ux), ux € Uk(Xk), we generate a Q-factor

Qk (X, Uk) = Gk (Xk, Uk) + Higt (Fe(Xk, Uk))

using the base heuristic [Hx+1(Xk+1) is the heuristic cost starting from xy.1]
@ We select the control ux with minimal Q-factor
@ We move to next state xx.1, and continue
@ Multistep lookahead versions

@ An important question: Is rollout cost improving? (Performs no worse than the
base heuristic, from xo)

Bertsekas Reinforcement Learning 16/32

A Multivehicle Routing Example

1 3 5 9 Vehicle 2

Optimal
Solution

Vehicle 1
o g

9 6 3 1
Base heuristic

Move each vehicle one step towards its closest task

Base heuristic moves both vehicles to node 4 and moves them together after that J

Rollout operation at each stage, given the current pair of vehicle positions
@ Consider all the possible pairs of moves from the current position
@ Run the base heuristic from each pair
@ Select the move of min total vehicle moves

@ Rollout finds the optimal solution (in this example). A total of 6 moves compared
with 10 for the base heuristic.

Bertsekas Reinforcement Learning 17/32

An Example: Search for an N-Arc Breakthrough Path in a Tree (e.g.,

Search Through a Maze)

Root

Greedy base heuristic: If one arc is free use it; if both arcs are free use the right arc)

@ Complexity of the DP algorithm is O(N2") (size of tree grows exponentially)
@ Complexity of the greedy and rollout algorithms is O(N) and O(N?), respectively

@ Assuming arcs are blocked with given probability, the rollout algorithm has O(N)
times higher probability of breakthrough; see the textbook and the cited literature.

@ This is qualitatively typical: Rollout improves performance of base heuristic
substantially at the expense of polynomial amount of extra computation.

Bertsekas Reinforcement Learning 18/32

Criteria for Cost Improvement of a Rollout Algorithm

@ Cost improvement is not automatic: Special conditions must hold to guarantee that
the rollout policy has no worse performance than the base heuristic

@ Two such conditions are sequential consistency and sequential improvement.

The base heuristic is sequentially consistent if at a given state it chooses
control that depends only on that state (and not on how we got to that state)

@ If the heuristic generates the sequence
{Xk, X1, oo, xn}
starting from state x, it also generates the sequence
{Xks1, -y XN}

starting from state X+

@ The base heuristic is sequentially consistent if and only if it can be implemented
with a legitimate DP policy {uo, ..., un—1}

@ “Greedy" heuristics are sequentially consistent (e.g., nearest neighbor for TSP)

@ We will focus on a less restrictive condition: sequential improvement

Bertsekas Reinforcement Learning 20/32

Sequential Improvement Condition

Current Trajectory Ry

Base Heuristic Cost Hy () J

Monotonicity Property
Under Sequential Improvement

To T T2 Th-1 Tk Cost of Ry, > Cost of Rj41

Tht1
e

Base Heuristic Cost Hyq1(Zr41)

Current Trajectory Ry41
Implies cost improvement: (Cost of Rollout Policy) < (Cost of Base Heuristic)
@ Sequential improvement definition: Best heuristic Q-factor < Heuristic cost, i.e.,

min : [gk(xk, Uk) + Hie1 (fe (X uk))] < Hi(xx), forall x,

Uk € Uk (X

where Hi(xx): cost of the trajectory generated by the heuristic starting from xi

@ Justification: Rollout, upon reaching Xx, has obtained a “current” trajectory Rx.
Sequential improvement implies: Cost of Rx > Cost of Ry 1

@ Thus the current trajectory cannot get worse. Since Ry corresponds to the base
heuristic, Ry corresponds to the rollout, Cost of Ry > Cost of Ry

@ Note that sequential consistency —> sequential improvement

Bertsekas Reinforcement Learning 21/32

Traveling Salesman Example: Rollout with a Nearest Neighbor Heuristic

Initial State zo

Rollout 13

1\’,2\

Matrix of Intercity
Travel Costs

Cost of Ry > Cost of Ry > Cost of Ro

Base heuristic: Nearest neighbor (sequentially consistent and sequentially improving) J

Bertsekas Reinforcement Learning

22/32

A Fifteen-Minute Break

All our lectures will have a 15-minute break, somewhere in the middle
Catch our breath and think about issues relating to the first half of the lecture.
A short discussion/questions/answers period will follow each break.

Bertsekas Reinforcement Learning 23/32

Simplified Rollout Algorithm - Assuming Sequential Improvement

Simplified algorithm: Instead of control w/ minimal Q-factor, use any control
with Q-factor < heuristic cost Hi(xk)

@ When at xx, choose as rollout control any &k = fix(xx) such that
9k (X, U) + Hicpr (T (Xk, Ti) < Hie(X«),

where Hi(xx) is the cost of the trajectory generated by the heuristic from x.
@ Can focus on a small subset of “promising” controls (save lots of computation)

Cost improvement for the simplified algorithm:

Let the rollout policy under the simplified algorithm be # = {jio, . . ., fin—1}, and let
Jk=(xk) denote its cost starting from x,. Then for all x,x and k, Jk = (xx) < Hi(Xx).

Proof: Again, the current trajectory cannot get worse,

Ho(xo) = Cost of Ry > --- > Cost of Rx > Cost of Rx.1 > --- > Cost of Ry

Bertsekas Reinforcement Learning

25/32

Rollout with Superheuristic/Multiple Heuristics

Consider combining several heuristics in the context of rollout

@ The idea is to construct a superheuristic, which runs all the heuristics at each state
encountered, and selects the best out of the trajectories produced

@ The superheuristic can be viewed as the base heuristic for a rollout algorithm

@ It can be verified using the definitions, that if all the heuristics are sequentially
improving, the same is true for the superheuristic

Proof: Write the sequential improvement condition for each of the M heuristics

min = QF (X, ux) < H'(xx), m=1,.... M,
Uy € U (X¢)

and all xx and k, where Q"(x, ux) and H{"(x¢) are Q-factors and heuristic costs that
correspond to the mth heuristic. By taking minimum over m, and interchanging the
order of the minimization minm—1,... » MiNy, cu, (x>

min ~ min Q7 (x, ux) < min H™(x
U €Uk (xi) m=1,...,M ke (X)—m:1,4..,M e (%),

Superheuristic Q-factor Superheuristic cost

which is the sequential improvement condition for the superheuristic.

Bertsekas Reinforcement Learning 26/32

A Counterexample to Cost Improvement (w/out Sequential

Improvement Condition)

Optimal Trajectory
Chosen by Base Heuristic at zg

* *
7; High Cost Transition
Chosen by Heuristic at 7

Rollout
Choice

Violates
Sequential Improvement

@ The optimal trajectory (xo, Ug, X7, U, X5).

@ Assume the heuristic produces (ug, uy) at xo, and Uy at xy".

@ Rollout uses the base heuristic to construct a trajectory starting from x;* and X;.

@ Then (Q-factor of ug)>(Q-factor of ip). So the rollout algorithm selects &y, and
moves to a nonoptimal next state X1 = f(xo, o).

@ Thus in the absence of sequential improvement, the rollout can deviate from an
already available good “current" trajectory.

@ This suggests a possible remedy: Follow the best “current” trajectory found even if
rollout suggests following a different (but inferior) trajectory.

Bertsekas Reinforcement Learning 27/32

Fortified Rollout: Restores Cost Improvement for Base Heuristics that

are not Sequentially Improving

Tentative Best Trajectory T

’ Heuristic
Permanent trajectory Py @

Min Q-factor choice

Idea: At each step, follow the best trajectory computed thus far

@ At state xx: In addition to the permanent rollout trajectory
Px = {Xo, Up, - .., Uk—1, Xk }, @lso store a tentative best trajectory

Tk ={Xo, ..., Xk, Uky Xks1, Uk41, - - -, UN—1, XN}

T is the best end-to-end trajectory computed up to stage k

@ We reject the minimum Q-factor choice U if its complete trajectory is more costly
than the current tentative best; otherwise we accept ik, and update the tentative
best trajectory.

Bertsekas Reinforcement Learning 28/32

lllustration of Fortified Algorithm

Initial
Tentative Best
Trajectory

High Cost Transition

Chosen by Heuristic at 7}
Violates

Sequential Improvement

@ At X, the fortified rollout stores as initial tentative best trajectory the unique
optimal trajectory (xo, U3, X7, UT, X5) generated by the base heuristic.

@ In the first rollout step, it computes the Q-factors of ug and & by running the
heuristic from x;" and X;.

@ Even though the rollout prefers i to ug, it discards i in favor of ug, which is
dictated by the tentative best trajectory.

@ It then sets the permanent trajectory to (xo, Ug, X{') and keeps the tentative best
trajectory unchanged to (xo, Ug, X7, U7, X5).

Bertsekas Reinforcement Learning 29/32

Model-Free Rollout with an Expert for the General Discrete Optimization

minUoEUo,...,UNqEUNq G(Uo, ceey UN_1)

Current
Partial Solution

Base
Heuristic
Complete
Solutions N1

Expert Ranks Complete Solutions
Sk(uo; - - - Uk, Ukt1), Ukt1 € U

@ Assume we do not know G, and/or the constraint sets Uk
@ Instead we have a base heuristic, which given a partial solution (uo, . . ., Ux),
outputs all next controls k.1, and generates from each a complete solution
Sk(Uo, - . , Uk, Tk 1) = (Uos - - - , Uy Dy, - - -, Un—1)

@ Also, we have a human or software “expert" that can rank any two complete
solutions without assigning numerical values to them.

@ Deterministic rollout can be applied to this problem; we have all we need.

Bertsekas Reinforcement Learning 30/32

Rollout with an Expert - RNA Folding Application (see [LPS21])

Complete Folding

‘il Folding_O! 1e00040 |
>artial Foldine 0S¢
- Partial Folding N ' Expert
- Partial Software

Software| Compares
Complete

0b0d0és [o60ved |

Complete Folding
Corresponding to Open

@ Given a sequence of nucleotides (molecules of “types" A,C,G,U), “fold" it in an
“interesting" way (introduce pairings that result in an “interesting" structure).

@ Make a pairing decision at each nucleotide in sequence (open, close, do nothing).

@ Base heuristic: Given a partial folding, generates a complete folding (this is the
partial folding software).

@ Two complete foldings can be compared by the expert software.

@ There is no explicit cost function here (it is internal to the expert software).

Bertsekas Reinforcement Learning 31/32

About the Next Lecture

We will cover:
@ Rollout with multistep lookahead
@ Rollout for constrained problems
@ Applications in integer programming

Homework (due in two weeks): Exercise 1.3 (spiders and flies) J

About your project:
@ Read the guidelines for the term paper, posted at canvas
@ Send us email for clarifications and questions

@ Please send us by the end of the spring break a one-page-or-less proposal about
your term paper, be it a read-and-report type or a mini-research project

Bertsekas Reinforcement Learning 32/32

	Finite Horizon Problems - Relation to Infinite Horizon
	Rollout in General
	Rollout for Deterministic Finite-State Problems
	Cost Improvement Property of Rollout
	Deterministic Rollout Variants and Extensions

