Topics in Reinforcement Learning:
AlphaZero, ChatGPT, Neuro-Dynamic Programming,
Model Predictive Control, Discrete Optimization
Arizona State University

Course CSE 691, Spring 2024

Links to Class Notes, Videolectures, and Slides at
http://web.mit.edu/dimitrib/www/RLbook.html

Dimitri P. Bertsekas
dpbertsekas@gmail.com

Lecture 6
Deterministic Problems: Multistep Approximation in Value Space, Constrained
Rollout, Multiagent Rollout

Bertsekas Reinforcement Learning 1/24

° Deterministic Problems: Approximation in Value Space with Multistep Lookahead
e Constrained Rollout for Deterministic Optimal Control

e Multiagent Problems

Bertsekas Reinforcement Learning 2/24

Multistep Approximation in Value Space - The General Case

cfemmm e e
Terminal Cost _
Approximation .J

Multistep Lookahead

I e @

Cuprent State Rollout

Base Policy
B R ----r@

States zp42

@ Special case: No rollout. The general multistep approximation in value space
scheme.

@ Special case: Pure multistep rollout. No terminal cost and no truncation.

@ WE TAKE IT AS FACT: Longer lookahead improves performance (but is costly).
@ OUR STRATEGY: Extend the lookahead as much as the comp. budget allows.
@ One idea: Truncated rollout (a cheap extension of the lookahead length).

@ Another computation-saving idea: Selectively prune the lookahead tree.

Bertsekas Reinforcement Learning 4/24

Multistep Lookahead in Deteministic Problems

Move Chosen 2k (Current State)

IAVAVAN)
Terminal Cost Approximation 4J(2x+¢) (may be the cost of a heuristic)

l Thtt

We obtain a trajectory {Xi, Xk+1, - - -, Xk+e} that minimizes the shortest distance from xi
to Xk+e PLUS J(Xk+¢). We then use the first move xx — Xk1.

@ All the shortest path problems from xx to xx+. can be solved simultaneously by
backward DP (start from layer £ go towards xx).

@ An important alternative is the forward DP algorithm.

@ It is the same as the backwards DP algorithm with the direction of the arcs
reversed (start from xix go towards layer /¢ - see the next slide).

Bertsekas Reinforcement Learning 5/24

Forward DP Algorithm and lterative Deepening [

o (Current State)

Dy (aa): Shortest distanc
from xo to state x,
of layer n

ayer n
Layer n + 1

— Layer /

PAVAN
Torminal Cost Approsimation }(re) (may be the cost of a heuistic

|

@ The “forward" DP algorithm: The shortest distances Dy11(Xn+1) to layer n+ 1
states are obtained from the shortest distances D,(x,) to layer n states as follows:

Dyi1(Xny1) = min [(Cost Xn — Xni1) + Dn(xn)]
@ Solution of the /-step lookahead problem: The shortest path to the state x; of
layer ¢ that minimizes De(x;) + J(x¢).

@ lterative deepening: Solve the n-step lookahead problem before solving the
(n+ 1)-step lookahead problem.

@ This is an “anytime" algorithm (returns a feasible solution even if it is interrupted).

Bertsekas Reinforcement Learning 6/24

Iterative Deepening with Tree Pruning

xo (Current State)

Pruned States

In — Layern

— Layern+1

Ty — Layer ¢

Terminal Cost Approximation J(@¢) (may be the cost of a heuristic)

l 2

o lterative deepening can be “enhanced” by pruning states X, such that the n-step
lookahead cost Dy(Xn) + J(Xn) is “far from the minimum" over x.

@ We prune as we go: Prune states in layer n before pruning states in layer n+ 1.
@ Runs the risk of overpruning: Some pruned states may be “good" in hindsight.
@ Should we go back and check for overpruning? How?

Bertsekas Reinforcement Learning 7124

Incremental Multistep Rollout - Flexible Pruning/Iterative Deepening

z0 (Current State)

We use a less regular graph, which is expanded at each iteration based on a
shortest path computation
@ At the start of an iteration, we have an acyclic connected subgraph S rooted at xq.
@ We compute the shortest distance D(x) from xo to all x € S, going through S.

@ We find a leaf node x* € S that minimizes D(x) + H(x), where H(x) is a “heuristic
distance" from x to layer ¢.

@ Expand x* to enlarge S and start the next iteration (or stop if x* is in layer /).

Bertsekas Reinforcement Learning 8/24

Incremental Multistep Rollout - Some Details

z0 (Current State)

D : 6 Subgraph $
T 0:69'/‘
D

@ At the start of an iteration, we have an acyclic connected subgraph S rooted at xp.
@ We minimize D(x) + H(x) over all leaf nodes x € S.
@ We expand the minimizing node x* to form the new subgraph.

@ The computation of the shortest distances D(x) is done progressively with the
forward DP algorithm as the subgraph S expands.

@ Example of H(x): The cost of a base heuristic that starts from x and ends at some
node x, of layer ¢, plus J(x¢), plus an extra term that favors paths with few hops
that encourages backtracking e.g., 6 - (number of hops from x; to x), where § > 0.

@ For 6 = 0, we get max pruning: S ends up being “long and skinny". For § ~ co, we
get min pruning: S ends up being as “fat" as possible.

v

Bertsekas Reinforcement Learning 9/24

Constrained Rollout - Main Ideas

Applies to problems with additional constraints on the entire optimal trajectory

@ Greatly expands the range of applications of rollout

@ For example it applies to intractable discrete optimization problems (e.g., shortest
path problems with a limit on the number of hops).

@ It is similar to unconstrained rollout: As we expand the rollout path, we exclude
from consideration the Q-factors that correspond to constraint violation.

@ Guarantees cost improvement over the base heuristic under appropriate
conditions (modified versions of sequential consistency, sequential improvement,
or use of a fortified version).

Bertsekas Reinforcement Learning 11/24

Traveling Salesman: Example of a Trajectory Constraint

Initial State xq
Unconstrained
Min Cost Tour

4 3

[acB| [acp] [apB] [ADC]
1 3 4 4 20 20
[ancn| [rco| [xpBd fpCH|
20
Safety Costs of
Matrix of Intercit; Complete Tours
e ¥ A
Travel Costs ABCDA| 5
Terminal State ¢ ABDCA| 20
Constraint: ACBDA| 4
Tour Safety < 10
ACDBA| 3
ADBCA| 1
IADCBA| 15

Find a minimum cost tour subject to a safety constraint |

Bertsekas Reinforcement Learnii 12/24

Deterministic Rollout with Trajectory Constraint: Basic Idea

Trajectory Ry

Base Heuristic Cost Hy (2) 1

Th+1

Base Heuristic Cost Hy41(Zx41)

Trajectory Ry41
Review of the unconstrained rollout algorithm:
@ Construct sequence of trajectories {To, T1, . . ., Ty} with monotonically
nonincreasing cost (assuming a sequential improvement condition).

@ For each k, the trajectories Tk, Tk+1, ..., In Share the same initial portion
(Xo, l.~107 000y l~lk,1,)N(k).

@ The base heuristic is used to generate candidate trajectories that correspond to
the controls ux € Ux(x«).

@ The next trajectory T+ is the candidate trajectory that has min cost.

To deal with a trajectory constraint T € C, we discard all the candidate trajectories that
violate the constraint, and we choose Ti1 to be the best of the remaining trajectories.
S —— S — S — T — T —

Bertsekas Reinforcement Learning 13/24

Deterministic Problems with Constraints: Definition

@ Consider a deterministic optimal control problem with system Xx:+1 = fi(Xk, Uk).

@ A complete trajectory is a sequence
T = (Xo,Uo,X1,U1,. ..,UN_1,XN)

@ Problem:

HIREi)

where G is a given cost function and C is a given constraint set of trajectories.

State augmentation idea for rollout
@ Redefine the state to be the partial trajectory

Yk = (X(_)7 Uo, X1,..., Uk_1,Xk)
@ Partial trajectory evolves according to a redefined system equation:
Vit = (Vies Uk, (X, Uk))

@ The problem becomes to minimize G(yn) subject to the constraint yy € C.

Bertsekas Reinforcement Learning

14/24

Rollout Algorithm - Partial Trajectory-Dependent Base Heuristic

Uk+1 UN -1

O—»0
Oo—»0
O—»0
Yk TE+1 Th42 TN-1 TN
Yk+1 o R(yr+1)
T (G u) = (T uk, R(yrt1)) € C
@ Given yx = {Xo, Uo, X1, Uh, ..., Ux—1, Xk } consider all controls ux and corresponding

next states X 1-
@ Extend j to obtain the partial trajectories yixi1 = (¥, Uk, Xk+1), for ux € Uk(X«).
@ Run the base heuristic from each yj.1 to obtain the partial trajectory R(yk+1).
@ Join the partial trajectories yx+1 and R(yx+1) to obtain complete trajectories

denoted by Tk(Jk, uk) = (¥, Uk, R(Yk+1))
@ Find the set of controls U () for which Ti (¥, ux) is feasible, i.e., Tk(Jk, uk) € C
@ Choose the control i € Uk(ji«) according to the minimization

dx carg min G(Tk(Jx, uk))

Uk € Uk (V)

Bertsekas Reinforcement Learning 15/24

Constrained Traveling Salesman Example

Initial State xg

Rollout Choice
Heuristic
from AB~_

Safety Costs of
Complete Tours

ABCDA| 5
ABDCA| 20
ACBDA| 4
ACDBA| 3
ADBCA| 1
Terminal State ¢ ADCBA| 15

Constraint:
Tour Safety < 10

Matrix of Intercity
Travel Costs

@ Rollout at A: Considers partial tours AB, AC, and AD; Obtains the complete tours
ABCDA, ACBDA, and ADCBA; Discards ADCBA as being infeasible; Compares
ABCDA and ACBDA, finds ABCDA to have smaller cost, and selects AB.

@ Rollout at AB: Considers the partial tours ABC and ABD; Obtains the complete
tours ABCDA and ABDCA; Discards ABDCA as being infeasible; Selects the
complete tour ABCDA.

Bertsekas Reinforcement Learning 16/24

Constrained Rollout Algorithm Properties

U1 UN-—1
Oo0—»O
Oo—»0
Yk Tk+1 Thk42 TN-1 TN
T
Yk+1 R(yr+1)

T (G u) = (G, wr, R(yes1)) € C

@ The notions of sequential consistency and sequential improvement apply. Their
definition includes that the set of “feasible" controls Uk(j«) is nonempty for all k.

@ Sequential improvement condition: The min heuristic Q-factor over U (j%) is no
larger than the heuristic cost at y« (see the “Course in RL" textbook).
@ Fortified version (if sequential improvement does not hold; see the notes):

Maintains the “tentative best" trajectory, and follows it up to generating a better
trajectory through rollout.

Has the cost improvement property, assuming the base heuristic generates a feasible
trajectory starting from the initial condition y5 = Xo.

@ Multiagent version: Selects one-control-component-at-a-time (apply constrained
rollout to the equivalent reformulation, i.e., the one with control space “unfolded").

Bertsekas Reinforcement Learning 17/ 24

Example of Sequential Consistency and Sequential Improvement

Rollout Choice

Heuristic 1

from AB~.

Rollout Choice

Matrix of Intercity
Travel Costs

Initial State xo

Heuristic
from A

Heuristic
/3 from AD

Safety Costs of
Complete Tours

ABCDA| 5
ABDCA| 20
ACBDA| 4
ACDBA| 3

ADBCA| 1
Terminal State t ADCBA| 15

Constraint:
Tour Safety < 10

@ The heuristic is not sequentially consistent at A, but it is sequentially improving.

@ If we change the D—A cost to 25, the heuristic is not sequentially improving at A,
and the cost improvement property is lost.

@ If we change the D—A cost to 25 and we add fortification, the rollout algorithm at
A sticks with the initial tentative best trajectory ACDBA, and rejects ABCDA.

Bertsekas

Reinforcement Learning

18/24

A Retrospective Summary on Deterministic Constrained Rollout

Structural components

(1) Trajectories T consisting of a sequence of decisions defined by a layered/optimal
control graph

(2) A cost function G(T) to rank trajectories
(3) A constraint T € C to determine feasibility of trajectories

(4) A base heuristic that starts from a partial trajectory and generates a complete
trajectory

Given (1)
The choices of (2), (3), and (4) are independent of each other

In particular, given (1)-(3):
We can try several different base heuristics or a superheuristic

Bertsekas Reinforcement Learning 19/24

Multiagent Problems: Review

Sensol Sensor
Info Info

Sensor

Info

Classical information pattern
At each time: Agents have exact state info; choose their controls as function of state

v

Model: A discrete-time (possibly stochastic) system with state x and control u

@ Decision/control has m components u = (u', ..., u™) corresponding to m “agents"
@ “Agents" is just a metaphor - the important math structure is u = (u', ..., u™)
@ We will reformulate the problem so that rollout can be done much faster

Bertsekas Reinforcement Learning 21/24

Reformulation Idea: Trading off Control and State Complexity

(B+T NDP Book, 1996)

Control u™
Random Transition
z = f(z,u,w)

Random Cost
g(I7 ,U’7 w)

Stage

An equivalent reformulation - “Unfolding" the control action

@ The control space is simplified at the expense of m — 1 additional layers of states,
and corresponding m — 1 cost functions

Jou), P u), Jm T (xadt L™

@ Allows far more efficient rollout (one-agent-at-a-time). This is just standard rollout
for the reformulated problem (so it involves a Newton step)

@ The increase in size of the state space does not adversely affect rollout (only one
state and its successors are looked at each stage during on-line play)

@ Complexity reduction: The one-step lookahead branching factor is reduced from
n™ to n- m, where n is the number of possible choices for each component v'

Bertsekas Reinforcement Learning 22/24

Spiders-and-Flies Example

(e.g., Vehicle Routing, Maintenance, Search-and-Rescue, Firefighting)

78 7%~
7~ = 7™
7~ 7 .
15 spiders move in 4 directions with perfect vision
’7/' - 78 3 blind flies move randomly
~ . 7" B
- Objective is to
7 Catch the flies in minimum time
7™ 7~ ~ R
,7‘[‘\

o In the original problem, at each time we must consider ~ 5'° joint moves

@ In the reformulated problem, we break down the control into a sequence of
one-spider-at-a-time moves

@ Thus, we need to consider only 5 - 15 = 75 (while maintaining the rollout cost
improvement property)

@ For more discussion, including illustrative videos of spiders-and-flies problems,
see https://www.youtube.com/watch?v=egbb6vVIN38&t=1654s Also Section 2.6 of
the course textbook

Bertsekas Reinforcement Learning 23/24

Final Notes

The material of today’s lecture is covered in the "Lessons from AlphaZero ..."
monograph as well as the “Course in RL" textbook

In the next lecture we will cover:
@ Stochastic Rollout.
@ Monte Carlo Tree Search.
@ Rollout for infinite spaces problems.

Bertsekas Reinforcement Learning 24/24

	Deterministic Problems: Approximation in Value Space with Multistep Lookahead
	Constrained Rollout for Deterministic Optimal Control
	Multiagent Problems

