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Multiagent Problems (1960s —)
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@ Multiple agents collecting and sharing information selectively with each other and
with an environment/computing cloud

e Agent i applies decision u’ sequentially in discrete time based on info received

The major mathematical distinction between problem structures

@ The classical information pattern: Agents are fully cooperative, fully sharing, and
never forgetting information. Can be treated by DP

@ The nonclassical information pattern: Agents are partially sharing information and
may be antagonistic. HARD because it is hard to treat by DP
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Starting Point: A Classical Information Pattern
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At each time: Agents have exact state info; choose their controls as a function of state )

Model: A discrete-time (possibly stochastic) system with state x and control u

@ Decision/control has m components u = (ul7 ..., u™) corresponding to m “agents”

e “Agents” is just a metaphor - the important math structure is u = (u*, ..., u™)
@ The theoretical framework is DP. We will reformulate for faster computation

We first aim to deal with the exponential size of the search/control space
Later we will discuss how to compute the agent controls in distributed fashion (in the
process we will deal in part with nonclassical info pattern issues)
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Multiagent Path Finding Example: Modeling

warehouse robots path planning = grid world representation

@ There are m = 3 agents (solid circles) moving in 4 directions or standing still with
perfect vision

@ The agents have been assigned to some targets (open circles with the same color).

@ The objective: reaching their respective targets in minimum time while avoiding
collision with each other

@ Simple heuristic: each agent follows the shortest path to the respective target,
assuming other agents are not present (arrows in the figure)
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Multiagent Path Finding Example: DP Formulation
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@ States: current positions of all agents and their respective targets
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o Control: each agent has at most 5 choices, their combination grows exponentially
with m

@ Stage cost: related to the number of collisions and the number of reached targets
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Multiagent Rollout for Multiagent Path Finding

case 1 case 2 case 3

@ At each time we must select one out of ~ 5" joint move choices

@ Multiagent rollout reduces it to 5 - m (while maintaining good properties)

o Key idea: Break down the control into a sequence of one-agent-at-a-time moves

@ Each stage involves the following sequence of operations:
Minimizing Q-factors associated with the first agent, while the remaining two agents
follow base heuristics
Minimizing Q-factors associated with the second agent, while the last agent follows
base heuristics
Minimizing Q-factors associated with the last agent

o We allow a change of the order in which the agents are selecting their controls, at

every stage
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Test Results: Collision Avoidance at Comparable Cost
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@ The performance of the algorithm is compared with cooperative A* (‘CA*’ for short)
introduced in [Sil05]°

o 'CA¥’ calculates paths one-agent-at-a-time only at time 0

@ In practice, multiagent rollout always finds feasible paths at comparable cost

@ Scales well, up to m = 200 agents, with average computational time around 50 ms.
Can also adapt to a changing environment through path replanning. See paper
[ERL23]" as well as implementation in C+++¢

?[Silo5] Silver, Cooperative Pathfinding

b[ERL23] Emanuelsson et. al., Multiagent Rollout with Reshuffling for Warehouse Robots Path Planning
‘https://github.com/will-em/multi-agent-rollout
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Implementation Variants of Multiagent Rollout

Control u!
Random Transition
T =f(x,u,w)

Random Cost
9(@, u,w)

Stage

Reshuffling the order of agents results in a different, yet still equivalent problem
Multiagent rollout allows parallel computation of Q-factors
Multiple base heuristics can be applied to enhance the performance further

All those ideas are independent of each other and can be combined

See textbook for additional material for order optimization and other variants

Bertsekas, Li, Weber Reinforcement Learning



Outline

© Multiagent Problems with Nonclassical Information Pattern
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Section Outline

Review of the multivehicle routing problem (MVRP).
Generalization of MVRP for nonclassical information patterns.
Overview of a distributed computing approach.

The Decentralized Multiagent Rollout Algorithm (DMAR).

Experimental Study: The impact of communication and coordination on
performance.

Physical implementations.

Conclusions, extensions, and paper access.
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Review: Multivehicle Routing Problem (MVRP)

I I

Problem Definition

@ Instance:

Undirected rectangualar grid discretizing 2D space.
Set of locations representing obstacles.

Set of agents.

Set of task locations.

@ Instance is solved when each task is visited at least once by some agent.

o Objective: Compute a set of trajectories that solve the instance such that the total
number of vehicle movements is minimized.

@ Can be treated directly with DP when classical information pattern is assumed.
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The Unmapped Vehicle Routing Problem with Local Constraints

(UMVRP-L)

Generalization
@ Instance is not known a priori. There is no centralized computational cloud.

@ Inter-agent communication and sensing is restricted to a sensing radius of k hops on
the grid.

@ Nonclassical information pattern.
@ MVRP is a special case of UMVRP-L with k = co.
@ UMVRP-L not yet been considered in the literature until now!

Approach
@ We can treat the problem with DP-based decomposition.

o Distributed Computing Approach: Agents are processors with persistent memory
and are capable of limited sensing, locomotion, and local communication.

o Strategy: Generate subinstances locally around agent clusters where information
can be shared between agents (i.e. small MVRP instances), then apply approximate
DP to the subinstances individually. Use randomized exploration to search for
distant tasks.

Applications

Minefield disarmament, post-disaster search and rescue, resource discovery/exploitation.
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Preliminaries: Distributed Computing

Distributed Model
o Configuration: Processors w/ internal states arranged in a communication network.
o Communication between processors is facilitated via message passing through ports.
o Events: Computation and message send/receive updates a processor’s state.

o Distributed Algorithms: Configo —Event; —Configi —Event, —Configy . . .

Algorithm Example Distributed Algorithm for Processor p
if Message in buffer and p.STATE = RED then
Set p.STATE < GREEN; Forward messages along all ports.

Synchronous Schedulers

Processors repeatedly "wake up” and execute their common algorithm simultaneously.
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Decentralized Multiagent Rollout (DMAR)

o DMAR is an iterative distributed algorithm that specifies state updates and message
handling, leading to the collective behavior below.
@ The view of an agent a includes all instance information available within k hops of a
on the grid.
DMAR
Repeat:
© Agents self-organize locally into clusters of constant size around “leaders”. Agents
within clusters form a tree communication network, whose root is the leader. Tree
structure facilitates flow of messages. Smaller adjacent clusters may be combined
into larger ones.
@ For each cluster K, agents in K route their views to the cluster leader.
© For each cluster K, the cluster leader computes a set R of control sequences
according to multiagent rollout with greedy base policy using assembled view
information.
© Sequences R are broadcast through agent tree.

© Each agent moves along its assigned control trajectory, then unassigns self from
cluster.

@ Agents not in clusters generate and follow random trajectories of bounded length,
searching for tasks.
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Decentralized Multlagent Rollout: Cluster Formation
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@ A function on a size parameter bounds the size of the largest cluster.
o Let k = 2 (recall number of hops).

o Color indicates cluster membership; gray is default.
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Decentralized Multlagent Rollout: Cluster Formation
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@ A function on a size parameter bounds the size of the largest cluster.
o Let k = 2 (recall number of hops).

o Color indicates cluster membership; gray is default.
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Decentralized Multiagent Rollout: Cluster Formation

@ A function on a size parameter bounds the size of the largest cluster.
o Let k = 2 (recall number of hops).

o Color indicates cluster membership; gray is default.
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Decentralized Multiagent Rollout: Cluster Formation

@ A function on a size parameter bounds the size of the largest cluster.
o Let k = 2 (recall number of hops).

o Color indicates cluster membership; gray is default.
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Decentralized Multiagent Rollout: Cluster Formation

@ A function on a size parameter bounds the size of the largest cluster.
o Let k = 2 (recall number of hops).

o Color indicates cluster membership; gray is default.
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Decentralized Multiagent Rollout: Cluster Formation

@ A function on a size parameter bounds the size of the largest cluster.
o Let k = 2 (recall number of hops).

o Color indicates cluster membership; gray is default.
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Decentralized Multiagent Rollout: Everything Else
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o Agents in clusters pass view information through tree edges until leader has full
cluster map.

o Leader applies multiagent rollout to cluster map and broadcasts computed
trajectories through the tree.

@ Agents follow their received trajectories; Agents not in a cluster perform random
walk of bounded length.
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Observations about DMAR

Connections to Approximate DP

@ When k = oo, a single cluster is formed and rollout is performed with respect to the
entire instance by a single processor.

@ Reducing k approximates the rollout structure by decomposing the instance.

o The aggregation of these smaller solutions yields a solution to the full instance that
approximates the rollout solution.

@ Even when clusters are small, using multiagent rollout is imperative due to the curse
of dimensionality.

Notes on Distributed Computing

@ Distribued algorithms can be challenging to design.

They rely on primitives such as leader election and message passing. Sometimes
communication networks are dynamic as is the case here.

Proving that a distributed algorithm produces a specific collective behavior is also
challenging (deadlocks and invalid configurations).

Randomized elements also require careful analysis.
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Experimental Study: The impact of communication and coordination on

performance.

Goal of the Study

@ We want to quantify the amount of local information necessary for DMAR to

produce “good” solutions.

@ As there are no benchmarks for UMVRP-L, we consider a greedy strategy (we call

this the base policy) that involves no coordination that can be applied to UMVRP-L.

Role of Coordination and Communication: How large must the sensing radius k
be such that DMAR outperforms the base policy?

Experimental Design

We consider 8 grid classes: 10x10, 20x20,. . .,80x80.
For each class we consider three agent-to-task ratios (1:1,2:1,1:2).

For each size/ratio combination we uniformly distribute obstacles over 20% of nodes
and repeat 10 times.

For each instance generated we distribute agents uniformly and execute DMAR ten
times for each of several fixed k values.

For each run we recorded total vehicle movements and wall-clock running times.

The total number of simulations for the primary study is greater than 50,000.
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Experimental Results: A Representative Sample
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Observations

@ Performance of DMAR degrades gracefully as k decreases.

Critical Radius k™ where DMAR outperforms base policy.

Effective Range just beyond k™ - we see a 2 to 4 factor increase in number of
moves versus " centralized MAR” (larger radii).

@ There is still a large number of clusters in effective range.
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Aggregated Experimental Results

Critical Radii v/s Number of Nodes
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Observations

o Let N be the number of nodes in the network. Critical radii grow proportionally to
log5 (N)—a very slow growing function.

o Note that logj(N) < 5 for any N < 10'°%° — critical radius is effectively a small
constant for any relevant instance.
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Physical Implementations

Physical Experiments on the Robotarium Platform (at Georgia Tech)

@ Planning by robots occurs in discrete space and time, but computed controls are
then mapped to a continuous space velocity vector, and the new position is moved
to with actuators.

@ Simulations were repeated with sensing radius 20cm, 40cm, 60cm and 80cm on
several instances.

@ The results reflected our discrete simulations in terms of competing with the base
policy.

@ We have videos! )
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Conclusions of the Study

Conceptual Framework Coupling Classical and Nonclassical Information Patterns

o We explored the interface between classical and nonclassical information patterns by
adapting methods used for the classical setting to the nonclassical setting.

@ This led to the concept of clustering and applying multiagent decision making in a
decentralized and parallel way.

@ The critical quantity connecting classical vs nonclassical information patterns is the
sensing radius.

Sensing Radius Conclusions

o Choosing a sensing radius in the effective range allows for greatly increased
scalability at a small determiment to solution cost.

@ One does not need to know the size of the network to choose a “good” sensing
radius.

@ The sensing radius must be large enough for good solutions, but not so large that
agents may observe the entire network.

Applicability Conclusions

@ Our approach is highly scalable and is conceptually adaptable to continuous space
and robust to sensor noise, augmenting its real-world applicability.
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Access the Paper

@ Paper will appear in the proceedings of the 23rd International Conference on
Autonomous Agents and Multi-Agent Systems (AAMAS 2024). Link pending.

o arXiv link: https://arxiv.org/abs/2305.15596.
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e Approximation in Value Space for Multiple Object Tracking/Data Association Problem
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General Discrete Optimization

Stage N
)
UN-—1
States
u= (ug,...,un-1)
Cost G(u)
Minimize G(u) subject to u € U
@ Assume that each solution v has N components: wg, ..., un—1
@ View the components as the controls of N stages
o Define xx = (wo, ..., uk—1), k=1,..., N, and introduce artificial start state xo = s
@ Define just terminal cost as G(u); all other costs are 0
v
This formulation typically makes little sense for exact DP,
but often makes a lot of sense for approximate DP /approximation in value space
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DP and Approximation in Value Space

DP solution to the discrete optimization problem

@ Start with
Jv(xn) = G(xn) = G(uwo, - .., un—1) forall xy € U

@ For k=0,...,N—1, let

Ji(x) = min  Jii(xk, uk)  for all xi
ug € Ui (xk)

where Uxk(xx) need to be suitably defined.

@ Construct the optimal solution (ug, ..., uy_;) by forward calculation

ug €arg min  Ji1(xx, uk)  for all xk
uy € U (xk)

Approximation in value space
o Use some Ji1 in place of Ji 4

o Starting from the artificial initial state, for k =0,..., N — 1, set

ik € arg min  Jipa(xk, ug)  for all xi
u € U (xi)
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Multiple Object Tracking

. .

k—1 k k+1
Figure source: [CGI22]

@ Multiple object tracking (MOT) aims to match the same objects over various frames
@ Nontrivial: occlusion, changes in object appearance, and real-time computation
constraint

@ Important problem with many applications: traffic monitoring, robotics, consumer
analytics, augmented and virtual realities ...
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Multidimensional Assignment Problem

6-Dimensional Assignment Problem

><] |

]
Node Layers

MOT can be modeled as a multidimensional assignment problem

There are (N + 1) layers (frames) of nodes

A grouping consists of N + 1 nodes (o, .., in) where ix belongs to kth layer, and N
corresponding arcs

For each grouping, there is an associated cost depending on the entire grouping

Our goal: find m groupings so that each node belongs to one and only one grouping
and the sum of the costs of the groupings is minimized

v
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Approximation in Value Space
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@ Approximation in value space involves the following key ideas:

One-step lookahead minimization
Truncated rollout
Cost approximation J with structure that matches the assignment problem

@ Q-factor minimization reduces to solving a 2-dimensional assignment problem

@ Results: robust and consistent matching against occlusion
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MOT Example: Base Heuristic
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MOT Example: Approximation in Value Space
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MOT Example: Approximation in Value Space
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