
Topics in Reinforcement Learning:
AlphaZero, ChatGPT, Neuro-Dynamic Programming,

Model Predictive Control, Discrete Optimization
Arizona State University

Course CSE 691, Spring 2024

Links to Class Notes, Videolectures, and Slides at
http://web.mit.edu/dimitrib/www/RLbook.html

Dimitri P. Bertsekas
dbertsek@asu.edu

Lecture 9

Combined Estimation/Control: Sequential Estimation, Bayesian Optimization, and
Adaptive Control with a POMDP Approach

Application to the Wordle Puzzle

Bertsekas Reinforcement Learning 1 / 23

Outline

1 Sequential Estimation of a Parameter Vector

2 Bayesian Optimization of Functions with Hard-to-Compute Values

3 Combined Estimation and Control - Adaptive Control

4 On-Line Solution of the Wordle Puzzle by Rollout

Bertsekas Reinforcement Learning 2 / 23

Sequential Estimation of a Parameter Vector θ

System Unknown Parameter ✓

Corrected J̃ J̃ J* Cost J̃µ

�
F (i), r

�
of i ⇡ Jµ(i) Jµ(i) Feature Map

J̃µ

�
F (i), r

�
: Feature-based parametric architecture State

r: Vector of weights Original States Aggregate States

Position “value” Move “probabilities” Simplify E{·}
Choose the Aggregation and Disaggregation Probabilities

Use a Neural Network or Other Scheme Form the Aggregate States
I1 Iq

Use a Neural Scheme or Other Scheme

Possibly Include “Handcrafted” Features

Generate Features F (i) of Formulate Aggregate Problem

Generate “Impoved” Policy µ̂ by “Solving” the Aggregate Problem

Same algorithm learned multiple games (Go, Shogi)

Aggregate costs r⇤` Cost function J̃0(i) Cost function J̃1(j)

Approximation in a space of basis functions Plays much better than
all chess programs

Cost ↵kg(i, u, j) Transition probabilities pij(u) Wp

Controlled Markov Chain Evaluate Approximate Cost J̃µ of

Evaluate Approximate Cost J̃µ

�
F (i)

�
of

F (i) =
�
F1(i), . . . , Fs(i)

�
: Vector of Features of i

J̃µ

�
F (i)

�
: Feature-based architecture Final Features

If J̃µ

�
F (i), r

�
=
Ps

`=1 F`(i)r` it is a linear feature-based architecture

(r1, . . . , rs: Scalar weights)

Wp: Functions J � Ĵp with J(xk) ! 0 for all p-stable ⇡

Wp0 : Functions J � Ĵp0 with J(xk) ! 0 for all p0-stable ⇡

W+ =
�
J | J � J+, J(t) = 0

VI converges to J+ from within W+

Cost: g(xk, uk) � 0 VI converges to Ĵp from within Wp

1

System Unknown Parameter θ

Corrected J̃ J̃ J* Cost J̃µ

(
F (i), r

)
of i ≈ Jµ(i) Jµ(i) Feature Map

J̃µ

(
F (i), r

)
: Feature-based parametric architecture State

r: Vector of weights Original States Aggregate States

Position “value” Move “probabilities” Simplify E{·}
Choose the Aggregation and Disaggregation Probabilities

Use a Neural Network or Other Scheme Form the Aggregate States
I1 Iq

Use a Neural Scheme or Other Scheme

Possibly Include “Handcrafted” Features

Generate Features F (i) of Formulate Aggregate Problem

Generate “Impoved” Policy µ̂ by “Solving” the Aggregate Problem

Same algorithm learned multiple games (Go, Shogi)

Aggregate costs r∗
! Cost function J̃0(i) Cost function J̃1(j)

Approximation in a space of basis functions Plays much better than
all chess programs

Cost αkg(i, u, j) Transition probabilities pij(u) Wp

Controlled Markov Chain Evaluate Approximate Cost J̃µ of

Evaluate Approximate Cost J̃µ

(
F (i)

)
of

F (i) =
(
F1(i), . . . , Fs(i)

)
: Vector of Features of i

J̃µ

(
F (i)

)
: Feature-based architecture Final Features

If J̃µ

(
F (i), r

)
=

∑s
!=1 F!(i)r! it is a linear feature-based architecture

(r1, . . . , rs: Scalar weights)

Wp: Functions J ≥ Ĵp with J(xk) → 0 for all p-stable π

Wp′ : Functions J ≥ Ĵp′ with J(xk) → 0 for all p′-stable π

W+ =
{
J | J ≥ J+, J(t) = 0

}

VI converges to J+ from within W+

Cost: g(xk, uk) ≥ 0 VI converges to Ĵp from within Wp

1

System Unknown Parameter θ

Corrected J̃ J̃ J* Cost J̃µ

(
F (i), r

)
of i ≈ Jµ(i) Jµ(i) Feature Map

J̃µ

(
F (i), r

)
: Feature-based parametric architecture State

r: Vector of weights Original States Aggregate States

Position “value” Move “probabilities” Simplify E{·}
Choose the Aggregation and Disaggregation Probabilities

Use a Neural Network or Other Scheme Form the Aggregate States
I1 Iq

Use a Neural Scheme or Other Scheme

Possibly Include “Handcrafted” Features

Generate Features F (i) of Formulate Aggregate Problem

Generate “Impoved” Policy µ̂ by “Solving” the Aggregate Problem

Same algorithm learned multiple games (Go, Shogi)

Aggregate costs r∗
! Cost function J̃0(i) Cost function J̃1(j)

Approximation in a space of basis functions Plays much better than
all chess programs

Cost αkg(i, u, j) Transition probabilities pij(u) Wp

Controlled Markov Chain Evaluate Approximate Cost J̃µ of

Evaluate Approximate Cost J̃µ

(
F (i)

)
of

F (i) =
(
F1(i), . . . , Fs(i)

)
: Vector of Features of i

J̃µ

(
F (i)

)
: Feature-based architecture Final Features

If J̃µ

(
F (i), r

)
=

∑s
!=1 F!(i)r! it is a linear feature-based architecture

(r1, . . . , rs: Scalar weights)

Wp: Functions J ≥ Ĵp with J(xk) → 0 for all p-stable π

Wp′ : Functions J ≥ Ĵp′ with J(xk) → 0 for all p′-stable π

W+ =
{
J | J ≥ J+, J(t) = 0

}

VI converges to J+ from within W+

Cost: g(xk, uk) ≥ 0 VI converges to Ĵp from within Wp

1

System Observation Outcome Decision on Next Observation Unknown
Parameter θ

Corrected J̃ J̃ J* Cost J̃µ

(
F (i), r

)
of i ≈ Jµ(i) Jµ(i) Feature Map

J̃µ

(
F (i), r

)
: Feature-based parametric architecture State

r: Vector of weights Original States Aggregate States

Position “value” Move “probabilities” Simplify E{·}
Choose the Aggregation and Disaggregation Probabilities

Use a Neural Network or Other Scheme Form the Aggregate States
I1 Iq

Use a Neural Scheme or Other Scheme

Possibly Include “Handcrafted” Features

Generate Features F (i) of Formulate Aggregate Problem

Generate “Impoved” Policy µ̂ by “Solving” the Aggregate Problem

Same algorithm learned multiple games (Go, Shogi)

Aggregate costs r∗
! Cost function J̃0(i) Cost function J̃1(j)

Approximation in a space of basis functions Plays much better than
all chess programs

Cost αkg(i, u, j) Transition probabilities pij(u) Wp

Controlled Markov Chain Evaluate Approximate Cost J̃µ of

Evaluate Approximate Cost J̃µ

(
F (i)

)
of

F (i) =
(
F1(i), . . . , Fs(i)

)
: Vector of Features of i

J̃µ

(
F (i)

)
: Feature-based architecture Final Features

If J̃µ

(
F (i), r

)
=

∑s
!=1 F!(i)r! it is a linear feature-based architecture

(r1, . . . , rs: Scalar weights)

Wp: Functions J ≥ Ĵp with J(xk) → 0 for all p-stable π

Wp′ : Functions J ≥ Ĵp′ with J(xk) → 0 for all p′-stable π

W+ =
{
J | J ≥ J+, J(t) = 0

}

VI converges to J+ from within W+

Cost: g(xk, uk) ≥ 0 VI converges to Ĵp from within Wp

1

System Observation Outcome Decision u on Next Observation Un-
known Parameter θ

Corrected J̃ J̃ J* Cost J̃µ

(
F (i), r

)
of i ≈ Jµ(i) Jµ(i) Feature Map

J̃µ

(
F (i), r

)
: Feature-based parametric architecture State

r: Vector of weights Original States Aggregate States

Position “value” Move “probabilities” Simplify E{·}
Choose the Aggregation and Disaggregation Probabilities

Use a Neural Network or Other Scheme Form the Aggregate States
I1 Iq

Use a Neural Scheme or Other Scheme

Possibly Include “Handcrafted” Features

Generate Features F (i) of Formulate Aggregate Problem

Generate “Impoved” Policy µ̂ by “Solving” the Aggregate Problem

Same algorithm learned multiple games (Go, Shogi)

Aggregate costs r∗
! Cost function J̃0(i) Cost function J̃1(j)

Approximation in a space of basis functions Plays much better than
all chess programs

Cost αkg(i, u, j) Transition probabilities pij(u) Wp

Controlled Markov Chain Evaluate Approximate Cost J̃µ of

Evaluate Approximate Cost J̃µ

(
F (i)

)
of

F (i) =
(
F1(i), . . . , Fs(i)

)
: Vector of Features of i

J̃µ

(
F (i)

)
: Feature-based architecture Final Features

If J̃µ

(
F (i), r

)
=

∑s
!=1 F!(i)r! it is a linear feature-based architecture

(r1, . . . , rs: Scalar weights)

Wp: Functions J ≥ Ĵp with J(xk) → 0 for all p-stable π

Wp′ : Functions J ≥ Ĵp′ with J(xk) → 0 for all p′-stable π

W+ =
{
J | J ≥ J+, J(t) = 0

}

VI converges to J+ from within W+

Cost: g(xk, uk) ≥ 0 VI converges to Ĵp from within Wp

1

System Observation Outcome Decision u on Next Observation

Observation Type Selection
Unknown Parameter θ

Corrected J̃ J̃ J* Cost J̃µ

(
F (i), r

)
of i ≈ Jµ(i) Jµ(i) Feature Map

J̃µ

(
F (i), r

)
: Feature-based parametric architecture State

r: Vector of weights Original States Aggregate States

Position “value” Move “probabilities” Simplify E{·}
Choose the Aggregation and Disaggregation Probabilities

Use a Neural Network or Other Scheme Form the Aggregate States
I1 Iq

Use a Neural Scheme or Other Scheme

Possibly Include “Handcrafted” Features

Generate Features F (i) of Formulate Aggregate Problem

Generate “Impoved” Policy µ̂ by “Solving” the Aggregate Problem

Same algorithm learned multiple games (Go, Shogi)

Aggregate costs r∗
! Cost function J̃0(i) Cost function J̃1(j)

Approximation in a space of basis functions Plays much better than
all chess programs

Cost αkg(i, u, j) Transition probabilities pij(u) Wp

Controlled Markov Chain Evaluate Approximate Cost J̃µ of

Evaluate Approximate Cost J̃µ

(
F (i)

)
of

F (i) =
(
F1(i), . . . , Fs(i)

)
: Vector of Features of i

J̃µ

(
F (i)

)
: Feature-based architecture Final Features

If J̃µ

(
F (i), r

)
=

∑s
!=1 F!(i)r! it is a linear feature-based architecture

(r1, . . . , rs: Scalar weights)

Wp: Functions J ≥ Ĵp with J(xk) → 0 for all p-stable π

Wp′ : Functions J ≥ Ĵp′ with J(xk) → 0 for all p′-stable π

W+ =
{
J | J ≥ J+, J(t) = 0

}

VI converges to J+ from within W+

1

System Observation Outcome Decision u on Next Observation

Observation Type Selection
Unknown Parameter θ

Corrected J̃ J̃ J* Cost J̃µ

(
F (i), r

)
of i ≈ Jµ(i) Jµ(i) Feature Map

J̃µ

(
F (i), r

)
: Feature-based parametric architecture State

r: Vector of weights Original States Aggregate States

Position “value” Move “probabilities” Simplify E{·}
Choose the Aggregation and Disaggregation Probabilities

Use a Neural Network or Other Scheme Form the Aggregate States
I1 Iq

Use a Neural Scheme or Other Scheme

Possibly Include “Handcrafted” Features

Generate Features F (i) of Formulate Aggregate Problem

Generate “Impoved” Policy µ̂ by “Solving” the Aggregate Problem

Same algorithm learned multiple games (Go, Shogi)

Aggregate costs r∗
! Cost function J̃0(i) Cost function J̃1(j)

Approximation in a space of basis functions Plays much better than
all chess programs

Cost αkg(i, u, j) Transition probabilities pij(u) Wp

Controlled Markov Chain Evaluate Approximate Cost J̃µ of

Evaluate Approximate Cost J̃µ

(
F (i)

)
of

F (i) =
(
F1(i), . . . , Fs(i)

)
: Vector of Features of i

J̃µ

(
F (i)

)
: Feature-based architecture Final Features

If J̃µ

(
F (i), r

)
=

∑s
!=1 F!(i)r! it is a linear feature-based architecture

(r1, . . . , rs: Scalar weights)

Wp: Functions J ≥ Ĵp with J(xk) → 0 for all p-stable π

Wp′ : Functions J ≥ Ĵp′ with J(xk) → 0 for all p′-stable π

W+ =
{
J | J ≥ J+, J(t) = 0

}

VI converges to J+ from within W+

1

System Observation Outcome Decision u on Next Observation

Observation Type Selection
Unknown Parameter θ

Corrected J̃ J̃ J* Cost J̃µ

(
F (i), r

)
of i ≈ Jµ(i) Jµ(i) Feature Map

J̃µ

(
F (i), r

)
: Feature-based parametric architecture State

r: Vector of weights Original States Aggregate States

Position “value” Move “probabilities” Simplify E{·}
Choose the Aggregation and Disaggregation Probabilities

Use a Neural Network or Other Scheme Form the Aggregate States
I1 Iq

Use a Neural Scheme or Other Scheme

Possibly Include “Handcrafted” Features

Generate Features F (i) of Formulate Aggregate Problem

Generate “Impoved” Policy µ̂ by “Solving” the Aggregate Problem

Same algorithm learned multiple games (Go, Shogi)

Aggregate costs r∗
! Cost function J̃0(i) Cost function J̃1(j)

Approximation in a space of basis functions Plays much better than
all chess programs

Cost αkg(i, u, j) Transition probabilities pij(u) Wp

Controlled Markov Chain Evaluate Approximate Cost J̃µ of

Evaluate Approximate Cost J̃µ

(
F (i)

)
of

F (i) =
(
F1(i), . . . , Fs(i)

)
: Vector of Features of i

J̃µ

(
F (i)

)
: Feature-based architecture Final Features

If J̃µ

(
F (i), r

)
=

∑s
!=1 F!(i)r! it is a linear feature-based architecture

(r1, . . . , rs: Scalar weights)

Wp: Functions J ≥ Ĵp with J(xk) → 0 for all p-stable π

Wp′ : Functions J ≥ Ĵp′ with J(xk) → 0 for all p′-stable π

W+ =
{
J | J ≥ J+, J(t) = 0

}

VI converges to J+ from within W+

1

System Observation Outcome Decision u on Next Observation

Observation Type Selection
Unknown Parameter θ

Corrected J̃ J̃ J* Cost J̃µ

(
F (i), r

)
of i ≈ Jµ(i) Jµ(i) Feature Map

J̃µ

(
F (i), r

)
: Feature-based parametric architecture State

r: Vector of weights Original States Aggregate States

Position “value” Move “probabilities” Simplify E{·}
Choose the Aggregation and Disaggregation Probabilities

Use a Neural Network or Other Scheme Form the Aggregate States
I1 Iq

Use a Neural Scheme or Other Scheme

Possibly Include “Handcrafted” Features

Generate Features F (i) of Formulate Aggregate Problem

Generate “Impoved” Policy µ̂ by “Solving” the Aggregate Problem

Same algorithm learned multiple games (Go, Shogi)

Aggregate costs r∗
! Cost function J̃0(i) Cost function J̃1(j)

Approximation in a space of basis functions Plays much better than
all chess programs

Cost αkg(i, u, j) Transition probabilities pij(u) Wp

Controlled Markov Chain Evaluate Approximate Cost J̃µ of

Evaluate Approximate Cost J̃µ

(
F (i)

)
of

F (i) =
(
F1(i), . . . , Fs(i)

)
: Vector of Features of i

J̃µ

(
F (i)

)
: Feature-based architecture Final Features

If J̃µ

(
F (i), r

)
=

∑s
!=1 F!(i)r! it is a linear feature-based architecture

(r1, . . . , rs: Scalar weights)

Wp: Functions J ≥ Ĵp with J(xk) → 0 for all p-stable π

Wp′ : Functions J ≥ Ĵp′ with J(xk) → 0 for all p′-stable π

W+ =
{
J | J ≥ J+, J(t) = 0

}

VI converges to J+ from within W+

1

System Observation Outcome Decision u on Next Observation

Observation Type Selection Outcome
Unknown Parameter θ

Corrected J̃ J̃ J* Cost J̃µ

(
F (i), r

)
of i ≈ Jµ(i) Jµ(i) Feature Map

J̃µ

(
F (i), r

)
: Feature-based parametric architecture State

r: Vector of weights Original States Aggregate States

Position “value” Move “probabilities” Simplify E{·}
Choose the Aggregation and Disaggregation Probabilities

Use a Neural Network or Other Scheme Form the Aggregate States
I1 Iq

Use a Neural Scheme or Other Scheme

Possibly Include “Handcrafted” Features

Generate Features F (i) of Formulate Aggregate Problem

Generate “Impoved” Policy µ̂ by “Solving” the Aggregate Problem

Same algorithm learned multiple games (Go, Shogi)

Aggregate costs r∗
! Cost function J̃0(i) Cost function J̃1(j)

Approximation in a space of basis functions Plays much better than
all chess programs

Cost αkg(i, u, j) Transition probabilities pij(u) Wp

Controlled Markov Chain Evaluate Approximate Cost J̃µ of

Evaluate Approximate Cost J̃µ

(
F (i)

)
of

F (i) =
(
F1(i), . . . , Fs(i)

)
: Vector of Features of i

J̃µ

(
F (i)

)
: Feature-based architecture Final Features

If J̃µ

(
F (i), r

)
=

∑s
!=1 F!(i)r! it is a linear feature-based architecture

(r1, . . . , rs: Scalar weights)

Wp: Functions J ≥ Ĵp with J(xk) → 0 for all p-stable π

Wp′ : Functions J ≥ Ĵp′ with J(xk) → 0 for all p′-stable π

W+ =
{
J | J ≥ J+, J(t) = 0

}

VI converges to J+ from within W+

1

System Observation Outcome Decision u on Next Observation

Observation Type Selection Outcome Stop Observations

Unknown Parameter θ Inference of θ

Corrected J̃ J̃ J* Cost J̃µ

(
F (i), r

)
of i ≈ Jµ(i) Jµ(i) Feature Map

J̃µ

(
F (i), r

)
: Feature-based parametric architecture State

r: Vector of weights Original States Aggregate States

Position “value” Move “probabilities” Simplify E{·}
Choose the Aggregation and Disaggregation Probabilities

Use a Neural Network or Other Scheme Form the Aggregate States
I1 Iq

Use a Neural Scheme or Other Scheme

Possibly Include “Handcrafted” Features

Generate Features F (i) of Formulate Aggregate Problem

Generate “Impoved” Policy µ̂ by “Solving” the Aggregate Problem

Same algorithm learned multiple games (Go, Shogi)

Aggregate costs r∗
! Cost function J̃0(i) Cost function J̃1(j)

Approximation in a space of basis functions Plays much better than
all chess programs

Cost αkg(i, u, j) Transition probabilities pij(u) Wp

Controlled Markov Chain Evaluate Approximate Cost J̃µ of

Evaluate Approximate Cost J̃µ

(
F (i)

)
of

F (i) =
(
F1(i), . . . , Fs(i)

)
: Vector of Features of i

J̃µ

(
F (i)

)
: Feature-based architecture Final Features

If J̃µ

(
F (i), r

)
=

∑s
!=1 F!(i)r! it is a linear feature-based architecture

(r1, . . . , rs: Scalar weights)

Wp: Functions J ≥ Ĵp with J(xk) → 0 for all p-stable π

Wp′ : Functions J ≥ Ĵp′ with J(xk) → 0 for all p′-stable π

W+ =
{
J | J ≥ J+, J(t) = 0

}

VI converges to J+ from within W+

1

System Observation Outcome Decision u on Next Observation

Observation Type Selection Outcome Stop Observations

Unknown Parameter θ Estimate of θ

Corrected J̃ J̃ J* Cost J̃µ

(
F (i), r

)
of i ≈ Jµ(i) Jµ(i) Feature Map

J̃µ

(
F (i), r

)
: Feature-based parametric architecture State

r: Vector of weights Original States Aggregate States

Position “value” Move “probabilities” Simplify E{·}
Choose the Aggregation and Disaggregation Probabilities

Use a Neural Network or Other Scheme Form the Aggregate States
I1 Iq

Use a Neural Scheme or Other Scheme

Possibly Include “Handcrafted” Features

Generate Features F (i) of Formulate Aggregate Problem

Generate “Impoved” Policy µ̂ by “Solving” the Aggregate Problem

Same algorithm learned multiple games (Go, Shogi)

Aggregate costs r∗
! Cost function J̃0(i) Cost function J̃1(j)

Approximation in a space of basis functions Plays much better than
all chess programs

Cost αkg(i, u, j) Transition probabilities pij(u) Wp

Controlled Markov Chain Evaluate Approximate Cost J̃µ of

Evaluate Approximate Cost J̃µ

(
F (i)

)
of

F (i) =
(
F1(i), . . . , Fs(i)

)
: Vector of Features of i

J̃µ

(
F (i)

)
: Feature-based architecture Final Features

If J̃µ

(
F (i), r

)
=

∑s
!=1 F!(i)r! it is a linear feature-based architecture

(r1, . . . , rs: Scalar weights)

Wp: Functions J ≥ Ĵp with J(xk) → 0 for all p-stable π

Wp′ : Functions J ≥ Ĵp′ with J(xk) → 0 for all p′-stable π

W+ =
{
J | J ≥ J+, J(t) = 0

}

VI converges to J+ from within W+

1

System Observation Outcome Decision u on Next Observation

Minimize f over u = 1, . . . , m

Using measurements of the form z = f(u) + w (w is “noise”)

Black Box Model Decision About

Control/Observation Type Selection Outcome Stop Observations

Control uk State xk xk+1 = fk(xk, θ, uk, wk) Controller

Unknown Parameter θ Estimate of θ (known distribution)

Corrected J̃ J̃ J* Cost J̃µ

(
F (i), r

)
of i ≈ Jµ(i) Jµ(i) Feature Map

J̃µ

(
F (i), r

)
: Feature-based parametric architecture State

r: Vector of weights Original States Aggregate States

Position “value” Move “probabilities” Simplify E{·}
Choose the Aggregation and Disaggregation Probabilities

Use a Neural Network or Other Scheme Form the Aggregate States
I1 Iq

Use a Neural Scheme or Other Scheme

Possibly Include “Handcrafted” Features

Generate Features F (i) of Formulate Aggregate Problem

Generate “Impoved” Policy µ̂ by “Solving” the Aggregate Problem

Same algorithm learned multiple games (Go, Shogi)

Aggregate costs r∗
! Cost function J̃0(i) Cost function J̃1(j)

Approximation in a space of basis functions Plays much better than
all chess programs

Cost αkg(i, u, j) Transition probabilities pij(u) Wp

Controlled Markov Chain Evaluate Approximate Cost J̃µ of

Evaluate Approximate Cost J̃µ

(
F (i)

)
of

F (i) =
(
F1(i), . . . , Fs(i)

)
: Vector of Features of i

J̃µ

(
F (i)

)
: Feature-based architecture Final Features

If J̃µ

(
F (i), r

)
=

∑s
!=1 F!(i)r! it is a linear feature-based architecture

(r1, . . . , rs: Scalar weights)

Wp: Functions J ≥ Ĵp with J(xk) → 0 for all p-stable π

1

Use of costly observations to estimate a parameter vector θ
The number and type of observations are subject to choice

Instead, the outcomes of the observations obtained are evaluated on-line with a
view towards stopping or modifying the observation process

This involves sequential decision making, thus bringing DP to bear

Example: Select one of two hypotheses using costly sequential observations
Given a new observation, we can accept one of the hypotheses or obtain a new
observation at cost C (cf. quality control, the sequential probability ratio test, 1940s).

Bertsekas Reinforcement Learning 4 / 23

Applications of Sequential Estimation

Classical sequential experiment design problems or sequential sampling
strategies in statistics.

I Select one of multiple hypotheses.
I Design of clinical trials or tests for medical diagnosis.

Classical sequential search problems (e.g., search and rescue).

Route planning through a sensor network for sequential information collection.

Sequential decoding problems (e.g., the Mastermind and Wordle puzzles, to be
discussed later).

Surrogate and Bayesian optimization for minimizing “black box" functions (to be
discussed first).

An important distinction: Does the current choice of observation affect the
availability, the quality, or the cost of future observations?

If no, we call this a simple sequential estimation problem (we will discuss it first in
the context of Bayesian optimization).

If yes, this can be viewed as a combined estimation and control problem, and can
be viewed within the context of adaptive control.

Bertsekas Reinforcement Learning 5 / 23

Surrogate Optimization of “Black Box" Functions

System Unknown Parameter θ

Corrected J̃ J̃ J* Cost J̃µ

(
F (i), r

)
of i ≈ Jµ(i) Jµ(i) Feature Map

J̃µ

(
F (i), r

)
: Feature-based parametric architecture State

r: Vector of weights Original States Aggregate States

Position “value” Move “probabilities” Simplify E{·}
Choose the Aggregation and Disaggregation Probabilities

Use a Neural Network or Other Scheme Form the Aggregate States
I1 Iq

Use a Neural Scheme or Other Scheme

Possibly Include “Handcrafted” Features

Generate Features F (i) of Formulate Aggregate Problem

Generate “Impoved” Policy µ̂ by “Solving” the Aggregate Problem

Same algorithm learned multiple games (Go, Shogi)

Aggregate costs r∗
! Cost function J̃0(i) Cost function J̃1(j)

Approximation in a space of basis functions Plays much better than
all chess programs

Cost αkg(i, u, j) Transition probabilities pij(u) Wp

Controlled Markov Chain Evaluate Approximate Cost J̃µ of

Evaluate Approximate Cost J̃µ

(
F (i)

)
of

F (i) =
(
F1(i), . . . , Fs(i)

)
: Vector of Features of i

J̃µ

(
F (i)

)
: Feature-based architecture Final Features

If J̃µ

(
F (i), r

)
=

∑s
!=1 F!(i)r! it is a linear feature-based architecture

(r1, . . . , rs: Scalar weights)

Wp: Functions J ≥ Ĵp with J(xk) → 0 for all p-stable π

Wp′ : Functions J ≥ Ĵp′ with J(xk) → 0 for all p′-stable π

W+ =
{
J | J ≥ J+, J(t) = 0

}

VI converges to J+ from within W+

Cost: g(xk, uk) ≥ 0 VI converges to Ĵp from within Wp

1

System Unknown Parameter θ

Corrected J̃ J̃ J* Cost J̃µ

(
F (i), r

)
of i ≈ Jµ(i) Jµ(i) Feature Map

J̃µ

(
F (i), r

)
: Feature-based parametric architecture State

r: Vector of weights Original States Aggregate States

Position “value” Move “probabilities” Simplify E{·}
Choose the Aggregation and Disaggregation Probabilities

Use a Neural Network or Other Scheme Form the Aggregate States
I1 Iq

Use a Neural Scheme or Other Scheme

Possibly Include “Handcrafted” Features

Generate Features F (i) of Formulate Aggregate Problem

Generate “Impoved” Policy µ̂ by “Solving” the Aggregate Problem

Same algorithm learned multiple games (Go, Shogi)

Aggregate costs r∗
! Cost function J̃0(i) Cost function J̃1(j)

Approximation in a space of basis functions Plays much better than
all chess programs

Cost αkg(i, u, j) Transition probabilities pij(u) Wp

Controlled Markov Chain Evaluate Approximate Cost J̃µ of

Evaluate Approximate Cost J̃µ

(
F (i)

)
of

F (i) =
(
F1(i), . . . , Fs(i)

)
: Vector of Features of i

J̃µ

(
F (i)

)
: Feature-based architecture Final Features

If J̃µ

(
F (i), r

)
=

∑s
!=1 F!(i)r! it is a linear feature-based architecture

(r1, . . . , rs: Scalar weights)

Wp: Functions J ≥ Ĵp with J(xk) → 0 for all p-stable π

Wp′ : Functions J ≥ Ĵp′ with J(xk) → 0 for all p′-stable π

W+ =
{
J | J ≥ J+, J(t) = 0

}

VI converges to J+ from within W+

Cost: g(xk, uk) ≥ 0 VI converges to Ĵp from within Wp

1

System Observation Outcome Decision on Next Observation Unknown
Parameter θ

Corrected J̃ J̃ J* Cost J̃µ

(
F (i), r

)
of i ≈ Jµ(i) Jµ(i) Feature Map

J̃µ

(
F (i), r

)
: Feature-based parametric architecture State

r: Vector of weights Original States Aggregate States

Position “value” Move “probabilities” Simplify E{·}
Choose the Aggregation and Disaggregation Probabilities

Use a Neural Network or Other Scheme Form the Aggregate States
I1 Iq

Use a Neural Scheme or Other Scheme

Possibly Include “Handcrafted” Features

Generate Features F (i) of Formulate Aggregate Problem

Generate “Impoved” Policy µ̂ by “Solving” the Aggregate Problem

Same algorithm learned multiple games (Go, Shogi)

Aggregate costs r∗
! Cost function J̃0(i) Cost function J̃1(j)

Approximation in a space of basis functions Plays much better than
all chess programs

Cost αkg(i, u, j) Transition probabilities pij(u) Wp

Controlled Markov Chain Evaluate Approximate Cost J̃µ of

Evaluate Approximate Cost J̃µ

(
F (i)

)
of

F (i) =
(
F1(i), . . . , Fs(i)

)
: Vector of Features of i

J̃µ

(
F (i)

)
: Feature-based architecture Final Features

If J̃µ

(
F (i), r

)
=

∑s
!=1 F!(i)r! it is a linear feature-based architecture

(r1, . . . , rs: Scalar weights)

Wp: Functions J ≥ Ĵp with J(xk) → 0 for all p-stable π

Wp′ : Functions J ≥ Ĵp′ with J(xk) → 0 for all p′-stable π

W+ =
{
J | J ≥ J+, J(t) = 0

}

VI converges to J+ from within W+

Cost: g(xk, uk) ≥ 0 VI converges to Ĵp from within Wp

1

System Observation Outcome Decision u on Next Observation

Observation Type Selection
Unknown Parameter θ

Corrected J̃ J̃ J* Cost J̃µ

(
F (i), r

)
of i ≈ Jµ(i) Jµ(i) Feature Map

J̃µ

(
F (i), r

)
: Feature-based parametric architecture State

r: Vector of weights Original States Aggregate States

Position “value” Move “probabilities” Simplify E{·}
Choose the Aggregation and Disaggregation Probabilities

Use a Neural Network or Other Scheme Form the Aggregate States
I1 Iq

Use a Neural Scheme or Other Scheme

Possibly Include “Handcrafted” Features

Generate Features F (i) of Formulate Aggregate Problem

Generate “Impoved” Policy µ̂ by “Solving” the Aggregate Problem

Same algorithm learned multiple games (Go, Shogi)

Aggregate costs r∗
! Cost function J̃0(i) Cost function J̃1(j)

Approximation in a space of basis functions Plays much better than
all chess programs

Cost αkg(i, u, j) Transition probabilities pij(u) Wp

Controlled Markov Chain Evaluate Approximate Cost J̃µ of

Evaluate Approximate Cost J̃µ

(
F (i)

)
of

F (i) =
(
F1(i), . . . , Fs(i)

)
: Vector of Features of i

J̃µ

(
F (i)

)
: Feature-based architecture Final Features

If J̃µ

(
F (i), r

)
=

∑s
!=1 F!(i)r! it is a linear feature-based architecture

(r1, . . . , rs: Scalar weights)

Wp: Functions J ≥ Ĵp with J(xk) → 0 for all p-stable π

Wp′ : Functions J ≥ Ĵp′ with J(xk) → 0 for all p′-stable π

W+ =
{
J | J ≥ J+, J(t) = 0

}

VI converges to J+ from within W+

1

System Observation Outcome Decision u on Next Observation

Observation Type Selection
Unknown Parameter θ

Corrected J̃ J̃ J* Cost J̃µ

(
F (i), r

)
of i ≈ Jµ(i) Jµ(i) Feature Map

J̃µ

(
F (i), r

)
: Feature-based parametric architecture State

r: Vector of weights Original States Aggregate States

Position “value” Move “probabilities” Simplify E{·}
Choose the Aggregation and Disaggregation Probabilities

Use a Neural Network or Other Scheme Form the Aggregate States
I1 Iq

Use a Neural Scheme or Other Scheme

Possibly Include “Handcrafted” Features

Generate Features F (i) of Formulate Aggregate Problem

Generate “Impoved” Policy µ̂ by “Solving” the Aggregate Problem

Same algorithm learned multiple games (Go, Shogi)

Aggregate costs r∗
! Cost function J̃0(i) Cost function J̃1(j)

Approximation in a space of basis functions Plays much better than
all chess programs

Cost αkg(i, u, j) Transition probabilities pij(u) Wp

Controlled Markov Chain Evaluate Approximate Cost J̃µ of

Evaluate Approximate Cost J̃µ

(
F (i)

)
of

F (i) =
(
F1(i), . . . , Fs(i)

)
: Vector of Features of i

J̃µ

(
F (i)

)
: Feature-based architecture Final Features

If J̃µ

(
F (i), r

)
=

∑s
!=1 F!(i)r! it is a linear feature-based architecture

(r1, . . . , rs: Scalar weights)

Wp: Functions J ≥ Ĵp with J(xk) → 0 for all p-stable π

Wp′ : Functions J ≥ Ĵp′ with J(xk) → 0 for all p′-stable π

W+ =
{
J | J ≥ J+, J(t) = 0

}

VI converges to J+ from within W+

1

System Observation Outcome Decision u on Next Observation

Observation Type Selection
Unknown Parameter θ

Corrected J̃ J̃ J* Cost J̃µ

(
F (i), r

)
of i ≈ Jµ(i) Jµ(i) Feature Map

J̃µ

(
F (i), r

)
: Feature-based parametric architecture State

r: Vector of weights Original States Aggregate States

Position “value” Move “probabilities” Simplify E{·}
Choose the Aggregation and Disaggregation Probabilities

Use a Neural Network or Other Scheme Form the Aggregate States
I1 Iq

Use a Neural Scheme or Other Scheme

Possibly Include “Handcrafted” Features

Generate Features F (i) of Formulate Aggregate Problem

Generate “Impoved” Policy µ̂ by “Solving” the Aggregate Problem

Same algorithm learned multiple games (Go, Shogi)

Aggregate costs r∗
! Cost function J̃0(i) Cost function J̃1(j)

Approximation in a space of basis functions Plays much better than
all chess programs

Cost αkg(i, u, j) Transition probabilities pij(u) Wp

Controlled Markov Chain Evaluate Approximate Cost J̃µ of

Evaluate Approximate Cost J̃µ

(
F (i)

)
of

F (i) =
(
F1(i), . . . , Fs(i)

)
: Vector of Features of i

J̃µ

(
F (i)

)
: Feature-based architecture Final Features

If J̃µ

(
F (i), r

)
=

∑s
!=1 F!(i)r! it is a linear feature-based architecture

(r1, . . . , rs: Scalar weights)

Wp: Functions J ≥ Ĵp with J(xk) → 0 for all p-stable π

Wp′ : Functions J ≥ Ĵp′ with J(xk) → 0 for all p′-stable π

W+ =
{
J | J ≥ J+, J(t) = 0

}

VI converges to J+ from within W+

1

System Observation Outcome Decision u on Next Observation

Observation Type Selection Outcome
Unknown Parameter θ

Corrected J̃ J̃ J* Cost J̃µ

(
F (i), r

)
of i ≈ Jµ(i) Jµ(i) Feature Map

J̃µ

(
F (i), r

)
: Feature-based parametric architecture State

r: Vector of weights Original States Aggregate States

Position “value” Move “probabilities” Simplify E{·}
Choose the Aggregation and Disaggregation Probabilities

Use a Neural Network or Other Scheme Form the Aggregate States
I1 Iq

Use a Neural Scheme or Other Scheme

Possibly Include “Handcrafted” Features

Generate Features F (i) of Formulate Aggregate Problem

Generate “Impoved” Policy µ̂ by “Solving” the Aggregate Problem

Same algorithm learned multiple games (Go, Shogi)

Aggregate costs r∗
! Cost function J̃0(i) Cost function J̃1(j)

Approximation in a space of basis functions Plays much better than
all chess programs

Cost αkg(i, u, j) Transition probabilities pij(u) Wp

Controlled Markov Chain Evaluate Approximate Cost J̃µ of

Evaluate Approximate Cost J̃µ

(
F (i)

)
of

F (i) =
(
F1(i), . . . , Fs(i)

)
: Vector of Features of i

J̃µ

(
F (i)

)
: Feature-based architecture Final Features

If J̃µ

(
F (i), r

)
=

∑s
!=1 F!(i)r! it is a linear feature-based architecture

(r1, . . . , rs: Scalar weights)

Wp: Functions J ≥ Ĵp with J(xk) → 0 for all p-stable π

Wp′ : Functions J ≥ Ĵp′ with J(xk) → 0 for all p′-stable π

W+ =
{
J | J ≥ J+, J(t) = 0

}

VI converges to J+ from within W+

1

System Observation Outcome Decision u on Next Observation

Observation Type Selection Outcome Stop Observations

Unknown Parameter θ Inference of θ

Corrected J̃ J̃ J* Cost J̃µ

(
F (i), r

)
of i ≈ Jµ(i) Jµ(i) Feature Map

J̃µ

(
F (i), r

)
: Feature-based parametric architecture State

r: Vector of weights Original States Aggregate States

Position “value” Move “probabilities” Simplify E{·}
Choose the Aggregation and Disaggregation Probabilities

Use a Neural Network or Other Scheme Form the Aggregate States
I1 Iq

Use a Neural Scheme or Other Scheme

Possibly Include “Handcrafted” Features

Generate Features F (i) of Formulate Aggregate Problem

Generate “Impoved” Policy µ̂ by “Solving” the Aggregate Problem

Same algorithm learned multiple games (Go, Shogi)

Aggregate costs r∗
! Cost function J̃0(i) Cost function J̃1(j)

Approximation in a space of basis functions Plays much better than
all chess programs

Cost αkg(i, u, j) Transition probabilities pij(u) Wp

Controlled Markov Chain Evaluate Approximate Cost J̃µ of

Evaluate Approximate Cost J̃µ

(
F (i)

)
of

F (i) =
(
F1(i), . . . , Fs(i)

)
: Vector of Features of i

J̃µ

(
F (i)

)
: Feature-based architecture Final Features

If J̃µ

(
F (i), r

)
=

∑s
!=1 F!(i)r! it is a linear feature-based architecture

(r1, . . . , rs: Scalar weights)

Wp: Functions J ≥ Ĵp with J(xk) → 0 for all p-stable π

Wp′ : Functions J ≥ Ĵp′ with J(xk) → 0 for all p′-stable π

W+ =
{
J | J ≥ J+, J(t) = 0

}

VI converges to J+ from within W+

1

System Observation Outcome Decision u on Next Observation

Observation Type Selection Outcome Stop Observations

Unknown Parameter θ Estimate of θ

Corrected J̃ J̃ J* Cost J̃µ

(
F (i), r

)
of i ≈ Jµ(i) Jµ(i) Feature Map

J̃µ

(
F (i), r

)
: Feature-based parametric architecture State

r: Vector of weights Original States Aggregate States

Position “value” Move “probabilities” Simplify E{·}
Choose the Aggregation and Disaggregation Probabilities

Use a Neural Network or Other Scheme Form the Aggregate States
I1 Iq

Use a Neural Scheme or Other Scheme

Possibly Include “Handcrafted” Features

Generate Features F (i) of Formulate Aggregate Problem

Generate “Impoved” Policy µ̂ by “Solving” the Aggregate Problem

Same algorithm learned multiple games (Go, Shogi)

Aggregate costs r∗
! Cost function J̃0(i) Cost function J̃1(j)

Approximation in a space of basis functions Plays much better than
all chess programs

Cost αkg(i, u, j) Transition probabilities pij(u) Wp

Controlled Markov Chain Evaluate Approximate Cost J̃µ of

Evaluate Approximate Cost J̃µ

(
F (i)

)
of

F (i) =
(
F1(i), . . . , Fs(i)

)
: Vector of Features of i

J̃µ

(
F (i)

)
: Feature-based architecture Final Features

If J̃µ

(
F (i), r

)
=

∑s
!=1 F!(i)r! it is a linear feature-based architecture

(r1, . . . , rs: Scalar weights)

Wp: Functions J ≥ Ĵp with J(xk) → 0 for all p-stable π

Wp′ : Functions J ≥ Ĵp′ with J(xk) → 0 for all p′-stable π

W+ =
{
J | J ≥ J+, J(t) = 0

}

VI converges to J+ from within W+

1

System Observation Outcome Decision u on Next Observation

Black Box Model

Control/Observation Type Selection Outcome Stop Observations

Control uk State xk xk+1 = fk(xk, ✓, uk, wk) Controller

Unknown Parameter ✓ Estimate of ✓

Corrected J̃ J̃ J* Cost J̃µ

�
F (i), r

�
of i ⇡ Jµ(i) Jµ(i) Feature Map

J̃µ

�
F (i), r

�
: Feature-based parametric architecture State

r: Vector of weights Original States Aggregate States

Position “value” Move “probabilities” Simplify E{·}
Choose the Aggregation and Disaggregation Probabilities

Use a Neural Network or Other Scheme Form the Aggregate States
I1 Iq

Use a Neural Scheme or Other Scheme

Possibly Include “Handcrafted” Features

Generate Features F (i) of Formulate Aggregate Problem

Generate “Impoved” Policy µ̂ by “Solving” the Aggregate Problem

Same algorithm learned multiple games (Go, Shogi)

Aggregate costs r⇤` Cost function J̃0(i) Cost function J̃1(j)

Approximation in a space of basis functions Plays much better than
all chess programs

Cost ↵kg(i, u, j) Transition probabilities pij(u) Wp

Controlled Markov Chain Evaluate Approximate Cost J̃µ of

Evaluate Approximate Cost J̃µ

�
F (i)

�
of

F (i) =
�
F1(i), . . . , Fs(i)

�
: Vector of Features of i

J̃µ

�
F (i)

�
: Feature-based architecture Final Features

If J̃µ

�
F (i), r

�
=

Ps
`=1 F`(i)r` it is a linear feature-based architecture

(r1, . . . , rs: Scalar weights)

Wp: Functions J � Ĵp with J(xk) ! 0 for all p-stable ⇡

Wp0 : Functions J � Ĵp0 with J(xk) ! 0 for all p0-stable ⇡

1

System Observation Outcome Decision u on Next Observation

Black Box Model Decision About

Control/Observation Type Selection Outcome Stop Observations

Control uk State xk xk+1 = fk(xk, ✓, uk, wk) Controller

Unknown Parameter ✓ Estimate of ✓

Corrected J̃ J̃ J* Cost J̃µ

�
F (i), r

�
of i ⇡ Jµ(i) Jµ(i) Feature Map

J̃µ

�
F (i), r

�
: Feature-based parametric architecture State

r: Vector of weights Original States Aggregate States

Position “value” Move “probabilities” Simplify E{·}
Choose the Aggregation and Disaggregation Probabilities

Use a Neural Network or Other Scheme Form the Aggregate States
I1 Iq

Use a Neural Scheme or Other Scheme

Possibly Include “Handcrafted” Features

Generate Features F (i) of Formulate Aggregate Problem

Generate “Impoved” Policy µ̂ by “Solving” the Aggregate Problem

Same algorithm learned multiple games (Go, Shogi)

Aggregate costs r⇤` Cost function J̃0(i) Cost function J̃1(j)

Approximation in a space of basis functions Plays much better than
all chess programs

Cost ↵kg(i, u, j) Transition probabilities pij(u) Wp

Controlled Markov Chain Evaluate Approximate Cost J̃µ of

Evaluate Approximate Cost J̃µ

�
F (i)

�
of

F (i) =
�
F1(i), . . . , Fs(i)

�
: Vector of Features of i

J̃µ

�
F (i)

�
: Feature-based architecture Final Features

If J̃µ

�
F (i), r

�
=

Ps
`=1 F`(i)r` it is a linear feature-based architecture

(r1, . . . , rs: Scalar weights)

Wp: Functions J � Ĵp with J(xk) ! 0 for all p-stable ⇡

Wp0 : Functions J � Ĵp0 with J(xk) ! 0 for all p0-stable ⇡

1

Minimize approximately a function whose values at given points are obtained
only through time-consuming calculation, simulation, or experimentation

Introduce a parametric model of the cost function with parameter θ.

Observe sequentially the true cost function at a few observation points.

Construct a model of the cost function (the surrogate) by estimating θ.

Minimize the surrogate to obtain a suboptimal solution.

How to select observation points based on results of previous observations?

Exploration-exploitation tradeoff: Observing at points likely to have near-optimal
value vs observing at points in relatively unexplored areas of the search space.

Bertsekas Reinforcement Learning 7 / 23

Surrogate Optimization Examples

Geostatistical interpolation (“kriging" pioneered by the South African engineers
Matheron and Krige in a goldmining context): Identify locations of high gold
distribution based on samples from a few boreholes.

Design optimization, e.g., aerodynamic design using hardware prototypes,
materials design, drug development, etc.

Hyperparameter selection of machine-learning models, including the architectural
parameters of the deep neural network of AlphaZero.

Bertsekas Reinforcement Learning 8 / 23

Bayesian Optimization of a Black Box Function f

u 1 2 3 4

Path Extension: ppred(nk)
> psucc(nk) or pred(nk) succ(nk) nk Extension Contraction ✏ or

u1 u2 u3 uN Origin Node Destination Node r t

Path Extension: ppred(nk)
> apred(nk)nk

+ anksucc(nk) + psucc(nk)

Path Contraction: ppred(nk)
 psucc(nk) apred(nk)nk

+ anksucc(nk) + psucc(nk)

(u1) (u1, u2) (u1, u2, u3) u = (u1, . . . , uN) Nodes

ppred(nk)
� apred(nk)nk

anksucc(nk) + psucc(nk) apred(nk)nk
+ anksucc(nk) + psucc(nk)

ppred(nk)
apred(nk)nk

+ pnk pnk ✏ or

0 1 2 3 4 5 6 7 8 9 s t L n n + 1 n � 1 10 20 30 ... 2.5 r = 3 i j aij

Acyclic Graph Tree-Like Structure ps = 3 p1 = 3 p2 = 2 p3 = 3.2 p4 = 1 p5 = 1 p6 = 1.2 p7 = 1.5

p8 = 1 p9 = 1 pt = 0 pt = �0.5 Large ✏ Small ✏

Interval I Interval II Interval III Interval IV Ks K⇤ Kµ K � 1
2 �µ �1 J 0 Jµ = � 1

µ TµJ = �µ+(1�µ2)J

TJ = minµ2(0,1] TµJ

L̃ = � abK̃

r + b2K̃

Region of Instability

. . . P Region of Stability TµJ = �µ + (1 � µ2)J K̂ Extension

Price Rise

State 1 State 2 K⇤ K⇤ = 0 K̄ K̂ 2-State/2-Control Example Contraction

E↵ective Cost Approximation Value Space Approximation State 1 State 2 (TJ)(1)

J̃ Jµ̃ Jµ̃ = Tµ̃Jµ̃ Tµ̃J TJ = minµ TµJ Cost of µ̃ � r
b2

Generic stable policy µ TµJ Generic unstable policy µ0 Tµ0J

Cost of Truncated Rollout Policy µ̃ 1 of the graph of T

J⇤ J⇤(1) J⇤(2) (TJ⇤)(1) = J⇤(1) (TJ⇤)(2) = J⇤(2)

TJ = minµ TµJ One-Step Lookahead Policy Cost l J̃ Jµ̃ = Tµ̃Jµ̃ Tµ̃J

TJ = minµ TµJ Multistep Lookahead Policy Cost l J̃ Jµ̃ = Tµ̃Jµ̃ Tµ̃J

1

u 1 2 3 4

Path Extension: ppred(nk)
> psucc(nk) or pred(nk) succ(nk) nk Extension Contraction ✏ or

u1 u2 u3 uN Origin Node Destination Node r t

Path Extension: ppred(nk)
> apred(nk)nk

+ anksucc(nk) + psucc(nk)

Path Contraction: ppred(nk)
 psucc(nk) apred(nk)nk

+ anksucc(nk) + psucc(nk)

(u1) (u1, u2) (u1, u2, u3) u = (u1, . . . , uN) Nodes

ppred(nk)
� apred(nk)nk

anksucc(nk) + psucc(nk) apred(nk)nk
+ anksucc(nk) + psucc(nk)

ppred(nk)
apred(nk)nk

+ pnk pnk ✏ or

0 1 2 3 4 5 6 7 8 9 s t L n n + 1 n � 1 10 20 30 ... 2.5 r = 3 i j aij

Acyclic Graph Tree-Like Structure ps = 3 p1 = 3 p2 = 2 p3 = 3.2 p4 = 1 p5 = 1 p6 = 1.2 p7 = 1.5

p8 = 1 p9 = 1 pt = 0 pt = �0.5 Large ✏ Small ✏

Interval I Interval II Interval III Interval IV Ks K⇤ Kµ K � 1
2 �µ �1 J 0 Jµ = � 1

µ TµJ = �µ+(1�µ2)J

TJ = minµ2(0,1] TµJ

L̃ = � abK̃

r + b2K̃

Region of Instability

. . . P Region of Stability TµJ = �µ + (1 � µ2)J K̂ Extension

Price Rise

State 1 State 2 K⇤ K⇤ = 0 K̄ K̂ 2-State/2-Control Example Contraction

E↵ective Cost Approximation Value Space Approximation State 1 State 2 (TJ)(1)

J̃ Jµ̃ Jµ̃ = Tµ̃Jµ̃ Tµ̃J TJ = minµ TµJ Cost of µ̃ � r
b2

Generic stable policy µ TµJ Generic unstable policy µ0 Tµ0J

Cost of Truncated Rollout Policy µ̃ 1 of the graph of T

J⇤ J⇤(1) J⇤(2) (TJ⇤)(1) = J⇤(1) (TJ⇤)(2) = J⇤(2)

TJ = minµ TµJ One-Step Lookahead Policy Cost l J̃ Jµ̃ = Tµ̃Jµ̃ Tµ̃J

TJ = minµ TµJ Multistep Lookahead Policy Cost l J̃ Jµ̃ = Tµ̃Jµ̃ Tµ̃J

1

u 1 2 3 4

Path Extension: ppred(nk)
> psucc(nk) or pred(nk) succ(nk) nk Extension Contraction ✏ or

u1 u2 u3 uN Origin Node Destination Node r t

Path Extension: ppred(nk)
> apred(nk)nk

+ anksucc(nk) + psucc(nk)

Path Contraction: ppred(nk)
 psucc(nk) apred(nk)nk

+ anksucc(nk) + psucc(nk)

(u1) (u1, u2) (u1, u2, u3) u = (u1, . . . , uN) Nodes

ppred(nk)
� apred(nk)nk

anksucc(nk) + psucc(nk) apred(nk)nk
+ anksucc(nk) + psucc(nk)

ppred(nk)
apred(nk)nk

+ pnk pnk ✏ or

0 1 2 3 4 5 6 7 8 9 s t L n n + 1 n � 1 10 20 30 ... 2.5 r = 3 i j aij

Acyclic Graph Tree-Like Structure ps = 3 p1 = 3 p2 = 2 p3 = 3.2 p4 = 1 p5 = 1 p6 = 1.2 p7 = 1.5

p8 = 1 p9 = 1 pt = 0 pt = �0.5 Large ✏ Small ✏

Interval I Interval II Interval III Interval IV Ks K⇤ Kµ K � 1
2 �µ �1 J 0 Jµ = � 1

µ TµJ = �µ+(1�µ2)J

TJ = minµ2(0,1] TµJ

L̃ = � abK̃

r + b2K̃

Region of Instability

. . . P Region of Stability TµJ = �µ + (1 � µ2)J K̂ Extension

Price Rise

State 1 State 2 K⇤ K⇤ = 0 K̄ K̂ 2-State/2-Control Example Contraction

E↵ective Cost Approximation Value Space Approximation State 1 State 2 (TJ)(1)

J̃ Jµ̃ Jµ̃ = Tµ̃Jµ̃ Tµ̃J TJ = minµ TµJ Cost of µ̃ � r
b2

Generic stable policy µ TµJ Generic unstable policy µ0 Tµ0J

Cost of Truncated Rollout Policy µ̃ 1 of the graph of T

J⇤ J⇤(1) J⇤(2) (TJ⇤)(1) = J⇤(1) (TJ⇤)(2) = J⇤(2)

TJ = minµ TµJ One-Step Lookahead Policy Cost l J̃ Jµ̃ = Tµ̃Jµ̃ Tµ̃J

TJ = minµ TµJ Multistep Lookahead Policy Cost l J̃ Jµ̃ = Tµ̃Jµ̃ Tµ̃J

1

u 1 2 3 4

Path Extension: ppred(nk)
> psucc(nk) or pred(nk) succ(nk) nk Extension Contraction ✏ or

u1 u2 u3 uN Origin Node Destination Node r t

Path Extension: ppred(nk)
> apred(nk)nk

+ anksucc(nk) + psucc(nk)

Path Contraction: ppred(nk)
 psucc(nk) apred(nk)nk

+ anksucc(nk) + psucc(nk)

(u1) (u1, u2) (u1, u2, u3) u = (u1, . . . , uN) Nodes

ppred(nk)
� apred(nk)nk

anksucc(nk) + psucc(nk) apred(nk)nk
+ anksucc(nk) + psucc(nk)

ppred(nk)
apred(nk)nk

+ pnk pnk ✏ or

0 1 2 3 4 5 6 7 8 9 s t L n n + 1 n � 1 10 20 30 ... 2.5 r = 3 i j aij

Acyclic Graph Tree-Like Structure ps = 3 p1 = 3 p2 = 2 p3 = 3.2 p4 = 1 p5 = 1 p6 = 1.2 p7 = 1.5

p8 = 1 p9 = 1 pt = 0 pt = �0.5 Large ✏ Small ✏

Interval I Interval II Interval III Interval IV Ks K⇤ Kµ K � 1
2 �µ �1 J 0 Jµ = � 1

µ TµJ = �µ+(1�µ2)J

TJ = minµ2(0,1] TµJ

L̃ = � abK̃

r + b2K̃

Region of Instability

. . . P Region of Stability TµJ = �µ + (1 � µ2)J K̂ Extension

Price Rise

State 1 State 2 K⇤ K⇤ = 0 K̄ K̂ 2-State/2-Control Example Contraction

E↵ective Cost Approximation Value Space Approximation State 1 State 2 (TJ)(1)

J̃ Jµ̃ Jµ̃ = Tµ̃Jµ̃ Tµ̃J TJ = minµ TµJ Cost of µ̃ � r
b2

Generic stable policy µ TµJ Generic unstable policy µ0 Tµ0J

Cost of Truncated Rollout Policy µ̃ 1 of the graph of T

J⇤ J⇤(1) J⇤(2) (TJ⇤)(1) = J⇤(1) (TJ⇤)(2) = J⇤(2)

TJ = minµ TµJ One-Step Lookahead Policy Cost l J̃ Jµ̃ = Tµ̃Jµ̃ Tµ̃J

TJ = minµ TµJ Multistep Lookahead Policy Cost l J̃ Jµ̃ = Tµ̃Jµ̃ Tµ̃J

1

u 1 2 3 4

Path Extension: ppred(nk)
> psucc(nk) or pred(nk) succ(nk) nk Extension Contraction ✏ or

u1 u2 u3 uN Origin Node Destination Node r t

Path Extension: ppred(nk)
> apred(nk)nk

+ anksucc(nk) + psucc(nk)

Path Contraction: ppred(nk)
 psucc(nk) apred(nk)nk

+ anksucc(nk) + psucc(nk)

(u1) (u1, u2) (u1, u2, u3) u = (u1, . . . , uN) Nodes

ppred(nk)
� apred(nk)nk

anksucc(nk) + psucc(nk) apred(nk)nk
+ anksucc(nk) + psucc(nk)

ppred(nk)
apred(nk)nk

+ pnk pnk ✏ or

0 1 2 3 4 5 6 7 8 9 s t L n n + 1 n � 1 10 20 30 ... 2.5 r = 3 i j aij

Acyclic Graph Tree-Like Structure ps = 3 p1 = 3 p2 = 2 p3 = 3.2 p4 = 1 p5 = 1 p6 = 1.2 p7 = 1.5

p8 = 1 p9 = 1 pt = 0 pt = �0.5 Large ✏ Small ✏

Interval I Interval II Interval III Interval IV Ks K⇤ Kµ K � 1
2 �µ �1 J 0 Jµ = � 1

µ TµJ = �µ+(1�µ2)J

TJ = minµ2(0,1] TµJ

L̃ = � abK̃

r + b2K̃

Region of Instability

. . . P Region of Stability TµJ = �µ + (1 � µ2)J K̂ Extension

Price Rise

State 1 State 2 K⇤ K⇤ = 0 K̄ K̂ 2-State/2-Control Example Contraction

E↵ective Cost Approximation Value Space Approximation State 1 State 2 (TJ)(1)

J̃ Jµ̃ Jµ̃ = Tµ̃Jµ̃ Tµ̃J TJ = minµ TµJ Cost of µ̃ � r
b2

Generic stable policy µ TµJ Generic unstable policy µ0 Tµ0J

Cost of Truncated Rollout Policy µ̃ 1 of the graph of T

J⇤ J⇤(1) J⇤(2) (TJ⇤)(1) = J⇤(1) (TJ⇤)(2) = J⇤(2)

TJ = minµ TµJ One-Step Lookahead Policy Cost l J̃ Jµ̃ = Tµ̃Jµ̃ Tµ̃J

TJ = minµ TµJ Multistep Lookahead Policy Cost l J̃ Jµ̃ = Tµ̃Jµ̃ Tµ̃J

1

u y1 y2 y3 y4 Function f(u) = yu

Path Extension: ppred(nk)
> psucc(nk) or pred(nk) succ(nk) nk Extension Contraction ✏ or

u1 u2 u3 uN Origin Node Destination Node r t

Path Extension: ppred(nk)
> apred(nk)nk

+ anksucc(nk) + psucc(nk)

Path Contraction: ppred(nk)
 psucc(nk) apred(nk)nk

+ anksucc(nk) + psucc(nk)

(u1) (u1, u2) (u1, u2, u3) u = (u1, . . . , uN) Nodes

ppred(nk)
� apred(nk)nk

anksucc(nk) + psucc(nk) apred(nk)nk
+ anksucc(nk) + psucc(nk)

ppred(nk)
apred(nk)nk

+ pnk pnk ✏ or

0 1 2 3 4 5 6 7 8 9 s t L n n + 1 n � 1 10 20 30 ... 2.5 r = 3 i j aij

Acyclic Graph Tree-Like Structure ps = 3 p1 = 3 p2 = 2 p3 = 3.2 p4 = 1 p5 = 1 p6 = 1.2 p7 = 1.5

p8 = 1 p9 = 1 pt = 0 pt = �0.5 Large ✏ Small ✏

Interval I Interval II Interval III Interval IV Ks K⇤ Kµ K � 1
2 �µ �1 J 0 Jµ = � 1

µ TµJ = �µ+(1�µ2)J

TJ = minµ2(0,1] TµJ

L̃ = � abK̃

r + b2K̃

Region of Instability

. . . P Region of Stability TµJ = �µ + (1 � µ2)J K̂ Extension

Price Rise

State 1 State 2 K⇤ K⇤ = 0 K̄ K̂ 2-State/2-Control Example Contraction

E↵ective Cost Approximation Value Space Approximation State 1 State 2 (TJ)(1)

J̃ Jµ̃ Jµ̃ = Tµ̃Jµ̃ Tµ̃J TJ = minµ TµJ Cost of µ̃ � r
b2

Generic stable policy µ TµJ Generic unstable policy µ0 Tµ0J

Cost of Truncated Rollout Policy µ̃ 1 of the graph of T

J⇤ J⇤(1) J⇤(2) (TJ⇤)(1) = J⇤(1) (TJ⇤)(2) = J⇤(2)

TJ = minµ TµJ One-Step Lookahead Policy Cost l J̃ Jµ̃ = Tµ̃Jµ̃ Tµ̃J

TJ = minµ TµJ Multistep Lookahead Policy Cost l J̃ Jµ̃ = Tµ̃Jµ̃ Tµ̃J

1

θ1 θ2 θ3 θ4

Function f(u) = θu u

z1 = θ1 + w1 z2 = θ2 + w2 z3 = θ3 + w3 z4 = θ4 + w4

Path Extension: ppred(nk) > psucc(nk) or pred(nk) succ(nk) nk Extension Contraction ε or

θ1 θ2 θ3 θ4 u1 u2 u3 uN Origin Node Destination Node r t

Path Extension: ppred(nk) > apred(nk)nk
+ anksucc(nk) + psucc(nk)

Path Contraction: ppred(nk) ≤ psucc(nk) apred(nk)nk
+ anksucc(nk) + psucc(nk)

(u1) (u1, u2) (u1, u2, u3) u = (u1, . . . , uN) Nodes

ppred(nk) − apred(nk)nk
anksucc(nk) + psucc(nk) apred(nk)nk

+ anksucc(nk) + psucc(nk)

ppred(nk) apred(nk)nk
+ pnk pnk ≤ ε or

0 1 2 3 4 5 6 7 8 9 s t L n n + 1 n − 1 1′ 2′ 3′ ... 2.5 r = 3 i j aij

Acyclic Graph Tree-Like Structure ps = 3 p1 = 3 p2 = 2 p3 = 3.2 p4 = 1 p5 = 1 p6 = 1.2 p7 = 1.5

p8 = 1 p9 = 1 pt = 0 pt = −0.5 Large ε Small ε

Interval I Interval II Interval III Interval IV Ks K∗ Kµ K − 1
2 −µ −1 J 0 Jµ = − 1

µ TµJ = −µ+(1−µ2)J

TJ = minµ∈(0,1] TµJ

L̃ = − abK̃

r + b2K̃

Region of Instability

. . . P Region of Stability TµJ = −µ + (1 − µ2)J K̂ Extension

Price Rise

State 1 State 2 K∗ K∗ = 0 K̄ K̂ 2-State/2-Control Example Contraction

Effective Cost Approximation Value Space Approximation State 1 State 2 (TJ)(1)

J̃ Jµ̃ Jµ̃ = Tµ̃Jµ̃ Tµ̃J TJ = minµ TµJ Cost of µ̃ − r
b2

Generic stable policy µ TµJ Generic unstable policy µ′ Tµ′J

Cost of Truncated Rollout Policy µ̃ 1 of the graph of T

J∗ J∗(1) J∗(2) (TJ∗)(1) = J∗(1) (TJ∗)(2) = J∗(2)

TJ = minµ TµJ One-Step Lookahead Policy Cost l J̃ Jµ̃ = Tµ̃Jµ̃ Tµ̃J

TJ = minµ TµJ Multistep Lookahead Policy Cost l J̃ Jµ̃ = Tµ̃Jµ̃ Tµ̃J

1

θ1 θ2 θ3 θ4

Function f(u) = θu u

z1 = θ1 + w1 z2 = θ2 + w2 z3 = θ3 + w3 z4 = θ4 + w4

Path Extension: ppred(nk) > psucc(nk) or pred(nk) succ(nk) nk Extension Contraction ε or

θ1 θ2 θ3 θ4 u1 u2 u3 uN Origin Node Destination Node r t

Path Extension: ppred(nk) > apred(nk)nk
+ anksucc(nk) + psucc(nk)

Path Contraction: ppred(nk) ≤ psucc(nk) apred(nk)nk
+ anksucc(nk) + psucc(nk)

(u1) (u1, u2) (u1, u2, u3) u = (u1, . . . , uN) Nodes

ppred(nk) − apred(nk)nk
anksucc(nk) + psucc(nk) apred(nk)nk

+ anksucc(nk) + psucc(nk)

ppred(nk) apred(nk)nk
+ pnk pnk ≤ ε or

0 1 2 3 4 5 6 7 8 9 s t L n n + 1 n − 1 1′ 2′ 3′ ... 2.5 r = 3 i j aij

Acyclic Graph Tree-Like Structure ps = 3 p1 = 3 p2 = 2 p3 = 3.2 p4 = 1 p5 = 1 p6 = 1.2 p7 = 1.5

p8 = 1 p9 = 1 pt = 0 pt = −0.5 Large ε Small ε

Interval I Interval II Interval III Interval IV Ks K∗ Kµ K − 1
2 −µ −1 J 0 Jµ = − 1

µ TµJ = −µ+(1−µ2)J

TJ = minµ∈(0,1] TµJ

L̃ = − abK̃

r + b2K̃

Region of Instability

. . . P Region of Stability TµJ = −µ + (1 − µ2)J K̂ Extension

Price Rise

State 1 State 2 K∗ K∗ = 0 K̄ K̂ 2-State/2-Control Example Contraction

Effective Cost Approximation Value Space Approximation State 1 State 2 (TJ)(1)

J̃ Jµ̃ Jµ̃ = Tµ̃Jµ̃ Tµ̃J TJ = minµ TµJ Cost of µ̃ − r
b2

Generic stable policy µ TµJ Generic unstable policy µ′ Tµ′J

Cost of Truncated Rollout Policy µ̃ 1 of the graph of T

J∗ J∗(1) J∗(2) (TJ∗)(1) = J∗(1) (TJ∗)(2) = J∗(2)

TJ = minµ TµJ One-Step Lookahead Policy Cost l J̃ Jµ̃ = Tµ̃Jµ̃ Tµ̃J

TJ = minµ TµJ Multistep Lookahead Policy Cost l J̃ Jµ̃ = Tµ̃Jµ̃ Tµ̃J

1

θ1 θ2 θ3 θ4

Function f(u) = θu u

z1 = θ1 + w1 z2 = θ2 + w2 z3 = θ3 + w3 z4 = θ4 + w4

Path Extension: ppred(nk) > psucc(nk) or pred(nk) succ(nk) nk Extension Contraction ε or

θ1 θ2 θ3 θ4 u1 u2 u3 uN Origin Node Destination Node r t

Path Extension: ppred(nk) > apred(nk)nk
+ anksucc(nk) + psucc(nk)

Path Contraction: ppred(nk) ≤ psucc(nk) apred(nk)nk
+ anksucc(nk) + psucc(nk)

(u1) (u1, u2) (u1, u2, u3) u = (u1, . . . , uN) Nodes

ppred(nk) − apred(nk)nk
anksucc(nk) + psucc(nk) apred(nk)nk

+ anksucc(nk) + psucc(nk)

ppred(nk) apred(nk)nk
+ pnk pnk ≤ ε or

0 1 2 3 4 5 6 7 8 9 s t L n n + 1 n − 1 1′ 2′ 3′ ... 2.5 r = 3 i j aij

Acyclic Graph Tree-Like Structure ps = 3 p1 = 3 p2 = 2 p3 = 3.2 p4 = 1 p5 = 1 p6 = 1.2 p7 = 1.5

p8 = 1 p9 = 1 pt = 0 pt = −0.5 Large ε Small ε

Interval I Interval II Interval III Interval IV Ks K∗ Kµ K − 1
2 −µ −1 J 0 Jµ = − 1

µ TµJ = −µ+(1−µ2)J

TJ = minµ∈(0,1] TµJ

L̃ = − abK̃

r + b2K̃

Region of Instability

. . . P Region of Stability TµJ = −µ + (1 − µ2)J K̂ Extension

Price Rise

State 1 State 2 K∗ K∗ = 0 K̄ K̂ 2-State/2-Control Example Contraction

Effective Cost Approximation Value Space Approximation State 1 State 2 (TJ)(1)

J̃ Jµ̃ Jµ̃ = Tµ̃Jµ̃ Tµ̃J TJ = minµ TµJ Cost of µ̃ − r
b2

Generic stable policy µ TµJ Generic unstable policy µ′ Tµ′J

Cost of Truncated Rollout Policy µ̃ 1 of the graph of T

J∗ J∗(1) J∗(2) (TJ∗)(1) = J∗(1) (TJ∗)(2) = J∗(2)

TJ = minµ TµJ One-Step Lookahead Policy Cost l J̃ Jµ̃ = Tµ̃Jµ̃ Tµ̃J

TJ = minµ TµJ Multistep Lookahead Policy Cost l J̃ Jµ̃ = Tµ̃Jµ̃ Tµ̃J

1

θ1 θ2 θ3 θ4

Function f(u) = θu u

z1 = θ1 + w1 z2 = θ2 + w2 z3 = θ3 + w3 z4 = θ4 + w4

Path Extension: ppred(nk) > psucc(nk) or pred(nk) succ(nk) nk Extension Contraction ε or

θ1 θ2 θ3 θ4 u1 u2 u3 uN Origin Node Destination Node r t

Path Extension: ppred(nk) > apred(nk)nk
+ anksucc(nk) + psucc(nk)

Path Contraction: ppred(nk) ≤ psucc(nk) apred(nk)nk
+ anksucc(nk) + psucc(nk)

(u1) (u1, u2) (u1, u2, u3) u = (u1, . . . , uN) Nodes

ppred(nk) − apred(nk)nk
anksucc(nk) + psucc(nk) apred(nk)nk

+ anksucc(nk) + psucc(nk)

ppred(nk) apred(nk)nk
+ pnk pnk ≤ ε or

0 1 2 3 4 5 6 7 8 9 s t L n n + 1 n − 1 1′ 2′ 3′ ... 2.5 r = 3 i j aij

Acyclic Graph Tree-Like Structure ps = 3 p1 = 3 p2 = 2 p3 = 3.2 p4 = 1 p5 = 1 p6 = 1.2 p7 = 1.5

p8 = 1 p9 = 1 pt = 0 pt = −0.5 Large ε Small ε

Interval I Interval II Interval III Interval IV Ks K∗ Kµ K − 1
2 −µ −1 J 0 Jµ = − 1

µ TµJ = −µ+(1−µ2)J

TJ = minµ∈(0,1] TµJ

L̃ = − abK̃

r + b2K̃

Region of Instability

. . . P Region of Stability TµJ = −µ + (1 − µ2)J K̂ Extension

Price Rise

State 1 State 2 K∗ K∗ = 0 K̄ K̂ 2-State/2-Control Example Contraction

Effective Cost Approximation Value Space Approximation State 1 State 2 (TJ)(1)

J̃ Jµ̃ Jµ̃ = Tµ̃Jµ̃ Tµ̃J TJ = minµ TµJ Cost of µ̃ − r
b2

Generic stable policy µ TµJ Generic unstable policy µ′ Tµ′J

Cost of Truncated Rollout Policy µ̃ 1 of the graph of T

J∗ J∗(1) J∗(2) (TJ∗)(1) = J∗(1) (TJ∗)(2) = J∗(2)

TJ = minµ TµJ One-Step Lookahead Policy Cost l J̃ Jµ̃ = Tµ̃Jµ̃ Tµ̃J

TJ = minµ TµJ Multistep Lookahead Policy Cost l J̃ Jµ̃ = Tµ̃Jµ̃ Tµ̃J

1

θ1 θ2 θ3 θ4

Function f(u) = θu u

z1 = θ1 + w1 z2 = θ2 + w2 z3 = θ3 + w3 z4 = θ4 + w4

Path Extension: ppred(nk) > psucc(nk) or pred(nk) succ(nk) nk Extension Contraction ε or

θ1 θ2 θ3 θ4 u1 u2 u3 uN Origin Node Destination Node r t

Path Extension: ppred(nk) > apred(nk)nk
+ anksucc(nk) + psucc(nk)

Path Contraction: ppred(nk) ≤ psucc(nk) apred(nk)nk
+ anksucc(nk) + psucc(nk)

(u1) (u1, u2) (u1, u2, u3) u = (u1, . . . , uN) Nodes

ppred(nk) − apred(nk)nk
anksucc(nk) + psucc(nk) apred(nk)nk

+ anksucc(nk) + psucc(nk)

ppred(nk) apred(nk)nk
+ pnk pnk ≤ ε or

0 1 2 3 4 5 6 7 8 9 s t L n n + 1 n − 1 1′ 2′ 3′ ... 2.5 r = 3 i j aij

Acyclic Graph Tree-Like Structure ps = 3 p1 = 3 p2 = 2 p3 = 3.2 p4 = 1 p5 = 1 p6 = 1.2 p7 = 1.5

p8 = 1 p9 = 1 pt = 0 pt = −0.5 Large ε Small ε

Interval I Interval II Interval III Interval IV Ks K∗ Kµ K − 1
2 −µ −1 J 0 Jµ = − 1

µ TµJ = −µ+(1−µ2)J

TJ = minµ∈(0,1] TµJ

L̃ = − abK̃

r + b2K̃

Region of Instability

. . . P Region of Stability TµJ = −µ + (1 − µ2)J K̂ Extension

Price Rise

State 1 State 2 K∗ K∗ = 0 K̄ K̂ 2-State/2-Control Example Contraction

Effective Cost Approximation Value Space Approximation State 1 State 2 (TJ)(1)

J̃ Jµ̃ Jµ̃ = Tµ̃Jµ̃ Tµ̃J TJ = minµ TµJ Cost of µ̃ − r
b2

Generic stable policy µ TµJ Generic unstable policy µ′ Tµ′J

Cost of Truncated Rollout Policy µ̃ 1 of the graph of T

J∗ J∗(1) J∗(2) (TJ∗)(1) = J∗(1) (TJ∗)(2) = J∗(2)

TJ = minµ TµJ One-Step Lookahead Policy Cost l J̃ Jµ̃ = Tµ̃Jµ̃ Tµ̃J

TJ = minµ TµJ Multistep Lookahead Policy Cost l J̃ Jµ̃ = Tµ̃Jµ̃ Tµ̃J

1

θ1 θ2 θ3 θ4

Function f(u) = θu u

z1 = θ1 + w1 z2 = θ2 + w2 z3 = θ3 + w3 z4 = θ4 + w4

Path Extension: ppred(nk) > psucc(nk) or pred(nk) succ(nk) nk Extension Contraction ε or

θ1 θ2 θ3 θ4 u1 u2 u3 uN Origin Node Destination Node r t

Path Extension: ppred(nk) > apred(nk)nk
+ anksucc(nk) + psucc(nk)

Path Contraction: ppred(nk) ≤ psucc(nk) apred(nk)nk
+ anksucc(nk) + psucc(nk)

(u1) (u1, u2) (u1, u2, u3) u = (u1, . . . , uN) Nodes

ppred(nk) − apred(nk)nk
anksucc(nk) + psucc(nk) apred(nk)nk

+ anksucc(nk) + psucc(nk)

ppred(nk) apred(nk)nk
+ pnk pnk ≤ ε or

0 1 2 3 4 5 6 7 8 9 s t L n n + 1 n − 1 1′ 2′ 3′ ... 2.5 r = 3 i j aij

Acyclic Graph Tree-Like Structure ps = 3 p1 = 3 p2 = 2 p3 = 3.2 p4 = 1 p5 = 1 p6 = 1.2 p7 = 1.5

p8 = 1 p9 = 1 pt = 0 pt = −0.5 Large ε Small ε

Interval I Interval II Interval III Interval IV Ks K∗ Kµ K − 1
2 −µ −1 J 0 Jµ = − 1

µ TµJ = −µ+(1−µ2)J

TJ = minµ∈(0,1] TµJ

L̃ = − abK̃

r + b2K̃

Region of Instability

. . . P Region of Stability TµJ = −µ + (1 − µ2)J K̂ Extension

Price Rise

State 1 State 2 K∗ K∗ = 0 K̄ K̂ 2-State/2-Control Example Contraction

Effective Cost Approximation Value Space Approximation State 1 State 2 (TJ)(1)

J̃ Jµ̃ Jµ̃ = Tµ̃Jµ̃ Tµ̃J TJ = minµ TµJ Cost of µ̃ − r
b2

Generic stable policy µ TµJ Generic unstable policy µ′ Tµ′J

Cost of Truncated Rollout Policy µ̃ 1 of the graph of T

J∗ J∗(1) J∗(2) (TJ∗)(1) = J∗(1) (TJ∗)(2) = J∗(2)

TJ = minµ TµJ One-Step Lookahead Policy Cost l J̃ Jµ̃ = Tµ̃Jµ̃ Tµ̃J

TJ = minµ TµJ Multistep Lookahead Policy Cost l J̃ Jµ̃ = Tµ̃Jµ̃ Tµ̃J

1

θ1 θ2 θ3 θ4

Function f(u) = θu u

z1 = θ1 + w1 z2 = θ2 + w2 z3 = θ3 + w3 z4 = θ4 + w4

Path Extension: ppred(nk) > psucc(nk) or pred(nk) succ(nk) nk Extension Contraction ε or

θ1 θ2 θ3 θ4 u1 u2 u3 uN Origin Node Destination Node r t

Path Extension: ppred(nk) > apred(nk)nk
+ anksucc(nk) + psucc(nk)

Path Contraction: ppred(nk) ≤ psucc(nk) apred(nk)nk
+ anksucc(nk) + psucc(nk)

(u1) (u1, u2) (u1, u2, u3) u = (u1, . . . , uN) Nodes

ppred(nk) − apred(nk)nk
anksucc(nk) + psucc(nk) apred(nk)nk

+ anksucc(nk) + psucc(nk)

ppred(nk) apred(nk)nk
+ pnk pnk ≤ ε or

0 1 2 3 4 5 6 7 8 9 s t L n n + 1 n − 1 1′ 2′ 3′ ... 2.5 r = 3 i j aij

Acyclic Graph Tree-Like Structure ps = 3 p1 = 3 p2 = 2 p3 = 3.2 p4 = 1 p5 = 1 p6 = 1.2 p7 = 1.5

p8 = 1 p9 = 1 pt = 0 pt = −0.5 Large ε Small ε

Interval I Interval II Interval III Interval IV Ks K∗ Kµ K − 1
2 −µ −1 J 0 Jµ = − 1

µ TµJ = −µ+(1−µ2)J

TJ = minµ∈(0,1] TµJ

L̃ = − abK̃

r + b2K̃

Region of Instability

. . . P Region of Stability TµJ = −µ + (1 − µ2)J K̂ Extension

Price Rise

State 1 State 2 K∗ K∗ = 0 K̄ K̂ 2-State/2-Control Example Contraction

Effective Cost Approximation Value Space Approximation State 1 State 2 (TJ)(1)

J̃ Jµ̃ Jµ̃ = Tµ̃Jµ̃ Tµ̃J TJ = minµ TµJ Cost of µ̃ − r
b2

Generic stable policy µ TµJ Generic unstable policy µ′ Tµ′J

Cost of Truncated Rollout Policy µ̃ 1 of the graph of T

J∗ J∗(1) J∗(2) (TJ∗)(1) = J∗(1) (TJ∗)(2) = J∗(2)

TJ = minµ TµJ One-Step Lookahead Policy Cost l J̃ Jµ̃ = Tµ̃Jµ̃ Tµ̃J

TJ = minµ TµJ Multistep Lookahead Policy Cost l J̃ Jµ̃ = Tµ̃Jµ̃ Tµ̃J

1

θ1 θ2 θ3 θ4

Function f(u) = θu u

z1 = θ1 + w1 z2 = θ2 + w2 z3 = θ3 + w3 z4 = θ4 + w4

Path Extension: ppred(nk) > psucc(nk) or pred(nk) succ(nk) nk Extension Contraction ε or

θ1 θ2 θ3 θ4 u1 u2 u3 uN Origin Node Destination Node r t

Path Extension: ppred(nk) > apred(nk)nk
+ anksucc(nk) + psucc(nk)

Path Contraction: ppred(nk) ≤ psucc(nk) apred(nk)nk
+ anksucc(nk) + psucc(nk)

(u1) (u1, u2) (u1, u2, u3) u = (u1, . . . , uN) Nodes

ppred(nk) − apred(nk)nk
anksucc(nk) + psucc(nk) apred(nk)nk

+ anksucc(nk) + psucc(nk)

ppred(nk) apred(nk)nk
+ pnk pnk ≤ ε or

0 1 2 3 4 5 6 7 8 9 s t L n n + 1 n − 1 1′ 2′ 3′ ... 2.5 r = 3 i j aij

Acyclic Graph Tree-Like Structure ps = 3 p1 = 3 p2 = 2 p3 = 3.2 p4 = 1 p5 = 1 p6 = 1.2 p7 = 1.5

p8 = 1 p9 = 1 pt = 0 pt = −0.5 Large ε Small ε

Interval I Interval II Interval III Interval IV Ks K∗ Kµ K − 1
2 −µ −1 J 0 Jµ = − 1

µ TµJ = −µ+(1−µ2)J

TJ = minµ∈(0,1] TµJ

L̃ = − abK̃

r + b2K̃

Region of Instability

. . . P Region of Stability TµJ = −µ + (1 − µ2)J K̂ Extension

Price Rise

State 1 State 2 K∗ K∗ = 0 K̄ K̂ 2-State/2-Control Example Contraction

Effective Cost Approximation Value Space Approximation State 1 State 2 (TJ)(1)

J̃ Jµ̃ Jµ̃ = Tµ̃Jµ̃ Tµ̃J TJ = minµ TµJ Cost of µ̃ − r
b2

Generic stable policy µ TµJ Generic unstable policy µ′ Tµ′J

Cost of Truncated Rollout Policy µ̃ 1 of the graph of T

J∗ J∗(1) J∗(2) (TJ∗)(1) = J∗(1) (TJ∗)(2) = J∗(2)

TJ = minµ TµJ One-Step Lookahead Policy Cost l J̃ Jµ̃ = Tµ̃Jµ̃ Tµ̃J

TJ = minµ TµJ Multistep Lookahead Policy Cost l J̃ Jµ̃ = Tµ̃Jµ̃ Tµ̃J

1

θ1 θ2 θ3 θ4

Function f(u) = θu u

z1 = θ1 + w1 z2 = θ2 + w2 z3 = θ3 + w3 z4 = θ4 + w4

Path Extension: ppred(nk) > psucc(nk) or pred(nk) succ(nk) nk Extension Contraction ε or

θ1 θ2 θ3 θ4 u1 u2 u3 uN Origin Node Destination Node r t

Path Extension: ppred(nk) > apred(nk)nk
+ anksucc(nk) + psucc(nk)

Path Contraction: ppred(nk) ≤ psucc(nk) apred(nk)nk
+ anksucc(nk) + psucc(nk)

(u1) (u1, u2) (u1, u2, u3) u = (u1, . . . , uN) Nodes

ppred(nk) − apred(nk)nk
anksucc(nk) + psucc(nk) apred(nk)nk

+ anksucc(nk) + psucc(nk)

ppred(nk) apred(nk)nk
+ pnk pnk ≤ ε or

0 1 2 3 4 5 6 7 8 9 s t L n n + 1 n − 1 1′ 2′ 3′ ... 2.5 r = 3 i j aij

Acyclic Graph Tree-Like Structure ps = 3 p1 = 3 p2 = 2 p3 = 3.2 p4 = 1 p5 = 1 p6 = 1.2 p7 = 1.5

p8 = 1 p9 = 1 pt = 0 pt = −0.5 Large ε Small ε

Interval I Interval II Interval III Interval IV Ks K∗ Kµ K − 1
2 −µ −1 J 0 Jµ = − 1

µ TµJ = −µ+(1−µ2)J

TJ = minµ∈(0,1] TµJ

L̃ = − abK̃

r + b2K̃

Region of Instability

. . . P Region of Stability TµJ = −µ + (1 − µ2)J K̂ Extension

Price Rise

State 1 State 2 K∗ K∗ = 0 K̄ K̂ 2-State/2-Control Example Contraction

Effective Cost Approximation Value Space Approximation State 1 State 2 (TJ)(1)

J̃ Jµ̃ Jµ̃ = Tµ̃Jµ̃ Tµ̃J TJ = minµ TµJ Cost of µ̃ − r
b2

Generic stable policy µ TµJ Generic unstable policy µ′ Tµ′J

Cost of Truncated Rollout Policy µ̃ 1 of the graph of T

J∗ J∗(1) J∗(2) (TJ∗)(1) = J∗(1) (TJ∗)(2) = J∗(2)

TJ = minµ TµJ One-Step Lookahead Policy Cost l J̃ Jµ̃ = Tµ̃Jµ̃ Tµ̃J

TJ = minµ TµJ Multistep Lookahead Policy Cost l J̃ Jµ̃ = Tµ̃Jµ̃ Tµ̃J

1

System Observation Outcome Decision u on Next Observation

Minimize f over u = 1, . . . , m

Using measurements of the form z = f(u) + w (w is “noise”)

Black Box Model Decision About

Control/Observation Type Selection Outcome Stop Observations

Control uk State xk xk+1 = fk(xk, θ, uk, wk) Controller

Unknown Parameter θ Estimate of θ

Corrected J̃ J̃ J* Cost J̃µ

(
F (i), r

)
of i ≈ Jµ(i) Jµ(i) Feature Map

J̃µ

(
F (i), r

)
: Feature-based parametric architecture State

r: Vector of weights Original States Aggregate States

Position “value” Move “probabilities” Simplify E{·}
Choose the Aggregation and Disaggregation Probabilities

Use a Neural Network or Other Scheme Form the Aggregate States
I1 Iq

Use a Neural Scheme or Other Scheme

Possibly Include “Handcrafted” Features

Generate Features F (i) of Formulate Aggregate Problem

Generate “Impoved” Policy µ̂ by “Solving” the Aggregate Problem

Same algorithm learned multiple games (Go, Shogi)

Aggregate costs r∗
! Cost function J̃0(i) Cost function J̃1(j)

Approximation in a space of basis functions Plays much better than
all chess programs

Cost αkg(i, u, j) Transition probabilities pij(u) Wp

Controlled Markov Chain Evaluate Approximate Cost J̃µ of

Evaluate Approximate Cost J̃µ

(
F (i)

)
of

F (i) =
(
F1(i), . . . , Fs(i)

)
: Vector of Features of i

J̃µ

(
F (i)

)
: Feature-based architecture Final Features

If J̃µ

(
F (i), r

)
=

∑s
!=1 F!(i)r! it is a linear feature-based architecture

(r1, . . . , rs: Scalar weights)

Wp: Functions J ≥ Ĵp with J(xk) → 0 for all p-stable π

1

System Observation Outcome Decision u on Next Observation

Minimize f over u = 1, . . . , m

Using measurements of the form z = f(u) + w (w is “noise”)

Black Box Model Decision About

Control/Observation Type Selection Outcome Stop Observations

Control uk State xk xk+1 = fk(xk, θ, uk, wk) Controller

Unknown Parameter θ Estimate of θ

Corrected J̃ J̃ J* Cost J̃µ

(
F (i), r

)
of i ≈ Jµ(i) Jµ(i) Feature Map

J̃µ

(
F (i), r

)
: Feature-based parametric architecture State

r: Vector of weights Original States Aggregate States

Position “value” Move “probabilities” Simplify E{·}
Choose the Aggregation and Disaggregation Probabilities

Use a Neural Network or Other Scheme Form the Aggregate States
I1 Iq

Use a Neural Scheme or Other Scheme

Possibly Include “Handcrafted” Features

Generate Features F (i) of Formulate Aggregate Problem

Generate “Impoved” Policy µ̂ by “Solving” the Aggregate Problem

Same algorithm learned multiple games (Go, Shogi)

Aggregate costs r∗
! Cost function J̃0(i) Cost function J̃1(j)

Approximation in a space of basis functions Plays much better than
all chess programs

Cost αkg(i, u, j) Transition probabilities pij(u) Wp

Controlled Markov Chain Evaluate Approximate Cost J̃µ of

Evaluate Approximate Cost J̃µ

(
F (i)

)
of

F (i) =
(
F1(i), . . . , Fs(i)

)
: Vector of Features of i

J̃µ

(
F (i)

)
: Feature-based architecture Final Features

If J̃µ

(
F (i), r

)
=

∑s
!=1 F!(i)r! it is a linear feature-based architecture

(r1, . . . , rs: Scalar weights)

Wp: Functions J ≥ Ĵp with J(xk) → 0 for all p-stable π

1

System Observation Outcome Decision u on Next Observation

Minimize f over u = 1, . . . , m

Using measurements of the form z = f(u) + w (w is “noise”)

Black Box Model Decision About

Control/Observation Type Selection Outcome Stop Observations

Control uk State xk xk+1 = fk(xk, θ, uk, wk) Controller

Unknown Parameter θ Estimate of θ

Corrected J̃ J̃ J* Cost J̃µ

(
F (i), r

)
of i ≈ Jµ(i) Jµ(i) Feature Map

J̃µ

(
F (i), r

)
: Feature-based parametric architecture State

r: Vector of weights Original States Aggregate States

Position “value” Move “probabilities” Simplify E{·}
Choose the Aggregation and Disaggregation Probabilities

Use a Neural Network or Other Scheme Form the Aggregate States
I1 Iq

Use a Neural Scheme or Other Scheme

Possibly Include “Handcrafted” Features

Generate Features F (i) of Formulate Aggregate Problem

Generate “Impoved” Policy µ̂ by “Solving” the Aggregate Problem

Same algorithm learned multiple games (Go, Shogi)

Aggregate costs r∗
! Cost function J̃0(i) Cost function J̃1(j)

Approximation in a space of basis functions Plays much better than
all chess programs

Cost αkg(i, u, j) Transition probabilities pij(u) Wp

Controlled Markov Chain Evaluate Approximate Cost J̃µ of

Evaluate Approximate Cost J̃µ

(
F (i)

)
of

F (i) =
(
F1(i), . . . , Fs(i)

)
: Vector of Features of i

J̃µ

(
F (i)

)
: Feature-based architecture Final Features

If J̃µ

(
F (i), r

)
=

∑s
!=1 F!(i)r! it is a linear feature-based architecture

(r1, . . . , rs: Scalar weights)

Wp: Functions J ≥ Ĵp with J(xk) → 0 for all p-stable π

1

System Observation Outcome Decision u on Next Observation

Minimize f over u = 1, . . . , m

Using measurements of the form z = f(u) + w (w is “noise”)

Black Box Model Decision About

Control/Observation Type Selection Outcome Stop Observations

Control uk State xk xk+1 = fk(xk, θ, uk, wk) Controller

Unknown Parameter θ Estimate of θ

Corrected J̃ J̃ J* Cost J̃µ

(
F (i), r

)
of i ≈ Jµ(i) Jµ(i) Feature Map

J̃µ

(
F (i), r

)
: Feature-based parametric architecture State

r: Vector of weights Original States Aggregate States

Position “value” Move “probabilities” Simplify E{·}
Choose the Aggregation and Disaggregation Probabilities

Use a Neural Network or Other Scheme Form the Aggregate States
I1 Iq

Use a Neural Scheme or Other Scheme

Possibly Include “Handcrafted” Features

Generate Features F (i) of Formulate Aggregate Problem

Generate “Impoved” Policy µ̂ by “Solving” the Aggregate Problem

Same algorithm learned multiple games (Go, Shogi)

Aggregate costs r∗
! Cost function J̃0(i) Cost function J̃1(j)

Approximation in a space of basis functions Plays much better than
all chess programs

Cost αkg(i, u, j) Transition probabilities pij(u) Wp

Controlled Markov Chain Evaluate Approximate Cost J̃µ of

Evaluate Approximate Cost J̃µ

(
F (i)

)
of

F (i) =
(
F1(i), . . . , Fs(i)

)
: Vector of Features of i

J̃µ

(
F (i)

)
: Feature-based architecture Final Features

If J̃µ

(
F (i), r

)
=

∑s
!=1 F!(i)r! it is a linear feature-based architecture

(r1, . . . , rs: Scalar weights)

Wp: Functions J ≥ Ĵp with J(xk) → 0 for all p-stable π

1

Introduce a parameter vector θ = (θ1, . . . , θm) ∈ <m where θu = f (u), i.e., θ is f

Observations are of the form z = f (u) + w (important special case is w = 0)

Estimate θ with N << m noisy measurements at chosen points u1, . . . , uN

We assume that θ has a given a priori distribution b0 = (b0,1, . . . , b0,m) over <m

(values of f at “neighboring" points should be correlated)

After observations at points u1, . . . , uk of the form zui = θui + wui , we choose the
next point uk+1 at which to observe the value of f .

Update the posterior distribution bk with an estimator bk+1 = Bk (bk , uk+1, zuk+1) (bk

is essentially the surrogate cost function after the k th observation)

Gaussian case: If b0 and the noises wu are Gaussian, bk can be updated using
closed form Gaussian process regression formulas.

Bertsekas Reinforcement Learning 9 / 23

Illustration of the True Cost Function f and its Surrogate

After 7 noise-free observations

Black is the true cost function
Purple is the surrogate cost function

System Observation Outcome Decision u on Next Observation

xk+1 = fk(xk, ✓, uk) xk+1 = fk(xk, ✓, uk, wk)

Minimize f over u = 1, . . . , m xk+1 = fk(xk, ✓, uk)

Using measurements of the form z = f(u) + w (w is “noise”)

Black Box Model Decision About True Cost Function f(u) u

ũk 2 arg minuk2Uk(xk) Q̂k(xk, uk) Average Q-factors Q̂k(xk, uk)

Control/Observation Type Selection Outcome Stop Observations

Control uk State xk xk+1 = fk(xk, ✓, uk, wk) Controller

Unknown Parameter ✓ Estimate of ✓ (known distribution)

Corrected J̃ J̃ J* Cost J̃µ

�
F (i), r

�
of i ⇡ Jµ(i) Jµ(i) Feature Map

J̃µ

�
F (i), r

�
: Feature-based parametric architecture State

r: Vector of weights Original States Aggregate States

Position “value” Move “probabilities” Simplify E{·}
Choose the Aggregation and Disaggregation Probabilities

Use a Neural Network or Other Scheme Form the Aggregate States
I1 Iq

Use a Neural Scheme or Other Scheme

Possibly Include “Handcrafted” Features

Generate Features F (i) of Formulate Aggregate Problem

Generate “Impoved” Policy µ̂ by “Solving” the Aggregate Problem

Same algorithm learned multiple games (Go, Shogi)

Aggregate costs r⇤` Cost function J̃0(i) Cost function J̃1(j)

Approximation in a space of basis functions Plays much better than
all chess programs

Cost ↵kg(i, u, j) Transition probabilities pij(u) Wp

Controlled Markov Chain Evaluate Approximate Cost J̃µ of

Evaluate Approximate Cost J̃µ

�
F (i)

�
of

F (i) =
�
F1(i), . . . , Fs(i)

�
: Vector of Features of i

J̃µ

�
F (i)

�
: Feature-based architecture Final Features

If J̃µ

�
F (i), r

�
=

Ps
`=1 F`(i)r` it is a linear feature-based architecture

(r1, . . . , rs: Scalar weights)

1

System Observation Outcome Decision u on Next Observation

xk+1 = fk(xk, θ, uk) xk+1 = fk(xk, θ, uk, wk)

Minimize f over u = 1, . . . , m xk+1 = fk(xk, θ, uk) Surrogate b7

Using measurements of the form z = f(u) + w (w is “noise”)

Black Box Model Decision About True Cost Function f(u) u

ũk ∈ arg minuk∈Uk(xk) Q̂k(xk, uk) Average Q-factors Q̂k(xk, uk)

Control/Observation Type Selection Outcome Stop Observations

Control uk State xk xk+1 = fk(xk, θ, uk, wk) Controller

Unknown Parameter θ Estimate of θ (known distribution)

Corrected J̃ J̃ J* Cost J̃µ

(
F (i), r

)
of i ≈ Jµ(i) Jµ(i) Feature Map

J̃µ

(
F (i), r

)
: Feature-based parametric architecture State

r: Vector of weights Original States Aggregate States

Position “value” Move “probabilities” Simplify E{·}
Choose the Aggregation and Disaggregation Probabilities

Use a Neural Network or Other Scheme Form the Aggregate States
I1 Iq

Use a Neural Scheme or Other Scheme

Possibly Include “Handcrafted” Features

Generate Features F (i) of Formulate Aggregate Problem

Generate “Impoved” Policy µ̂ by “Solving” the Aggregate Problem

Same algorithm learned multiple games (Go, Shogi)

Aggregate costs r∗
! Cost function J̃0(i) Cost function J̃1(j)

Approximation in a space of basis functions Plays much better than
all chess programs

Cost αkg(i, u, j) Transition probabilities pij(u) Wp

Controlled Markov Chain Evaluate Approximate Cost J̃µ of

Evaluate Approximate Cost J̃µ

(
F (i)

)
of

F (i) =
(
F1(i), . . . , Fs(i)

)
: Vector of Features of i

J̃µ

(
F (i)

)
: Feature-based architecture Final Features

If J̃µ

(
F (i), r

)
=

∑s
!=1 F!(i)r! it is a linear feature-based architecture

(r1, . . . , rs: Scalar weights)

1

System Observation Outcome Decision u on Next Observation

xk+1 = fk(xk, θ, uk) xk+1 = fk(xk, θ, uk, wk)

Minimize f over u = 1, . . . , m xk+1 = fk(xk, θ, uk) Surrogate b7

Using measurements of the form z = f(u) + w (w is “noise”)

Black Box Model Decision About True Cost Function f(u) u

ũk ∈ arg minuk∈Uk(xk) Q̂k(xk, uk) Average Q-factors Q̂k(xk, uk)

Control/Observation Type Selection Outcome Stop Observations

Control uk State xk xk+1 = fk(xk, θ, uk, wk) Controller

Unknown Parameter θ Estimate of θ (known distribution)

Corrected J̃ J̃ J* Cost J̃µ

(
F (i), r

)
of i ≈ Jµ(i) Jµ(i) Feature Map

J̃µ

(
F (i), r

)
: Feature-based parametric architecture State

r: Vector of weights Original States Aggregate States

Position “value” Move “probabilities” Simplify E{·}
Choose the Aggregation and Disaggregation Probabilities

Use a Neural Network or Other Scheme Form the Aggregate States
I1 Iq

Use a Neural Scheme or Other Scheme

Possibly Include “Handcrafted” Features

Generate Features F (i) of Formulate Aggregate Problem

Generate “Impoved” Policy µ̂ by “Solving” the Aggregate Problem

Same algorithm learned multiple games (Go, Shogi)

Aggregate costs r∗
! Cost function J̃0(i) Cost function J̃1(j)

Approximation in a space of basis functions Plays much better than
all chess programs

Cost αkg(i, u, j) Transition probabilities pij(u) Wp

Controlled Markov Chain Evaluate Approximate Cost J̃µ of

Evaluate Approximate Cost J̃µ

(
F (i)

)
of

F (i) =
(
F1(i), . . . , Fs(i)

)
: Vector of Features of i

J̃µ

(
F (i)

)
: Feature-based architecture Final Features

If J̃µ

(
F (i), r

)
=

∑s
!=1 F!(i)r! it is a linear feature-based architecture

(r1, . . . , rs: Scalar weights)

1

The surrogate is specified by the posterior distribution bk (mean and standard deviation
at the different points are shown in the figure)

Bertsekas Reinforcement Learning 10 / 23

Myopic Bayesian Optimization

Key Question: How to select sequentially the observation point uk+1 given the
observation results zu1 , . . . , zuk from previously selected points u1, . . . , uk

A DP view
Introduce a POMDP model: The posterior bk (given the observations up to time k)
is the belief state, uk is the control, the belief estimator bk+1 = Bk (bk , uk+1, zuk+1) is
the system. The cost function is based on the cost of the observations, and the
“quality" of the surrogate obtained at the end.

The dominant method in practice: Use a greedy/myopic policy, based on an
acquisition function.

The acquisition function Ak (bk , uk+1) is a heuristic measure of “benefit" for
selecting point uk+1 for observation when the belief state is bk .

Myopic policy: Selects the next point at which to observe, ûk+1, as

ûk+1 ∈ arg max
uk+1∈{1,...,m}

Ak (bk , uk+1)

An alternative method: Use rollout with a myopic base policy; it has been
advocated in several research works since 2016, with promising results.

Bertsekas Reinforcement Learning 11 / 23

Examples of Acquisition Functions for Myopic Bayesian Optimization

The myopic policy maximizes over uk+1 the acquisition function Ak (bk , uk+1):

ûk+1 ∈ arg max
uk+1∈{1,...,m}

Ak (bk , uk+1)

A common example of acquisition function: Upper confidence bound

Ak (bk , u) = Tk (bk , u) + βRk (bk , u), β > 0 is a tunable parameter

Here Tk (bk , u) = −Mean of f (u), and Rk (bk , u) = Standard deviation of f (u)
(under the posterior distribution bk).

Tk (bk , u) can be viewed as an exploitation index (encoding our desire to search
within parts of the space where f takes low value), while Rk (bk , u) can be viewed
as an exploration index (encoding our desire to search within parts of the space
that are relatively unexplored).

Another example of acquisition function: Expected improvement
Ak (bk , u) is the expected value of the reduction of f (u) relative to the minimal value of f
obtained up to time k (under the posterior distribution bk).

Bertsekas Reinforcement Learning 12 / 23

Maximization Example (From Wikipedia Article on BO): True Function is
Black, Surrogate Function is Purple; Observations are Noise-Free

After 6 observations

Bertsekas Reinforcement Learning 13 / 23

Maximization Example II

After 7 observations

Bertsekas Reinforcement Learning 14 / 23

Maximization Example III

After 8 observations

Bertsekas Reinforcement Learning 15 / 23

Maximization Example IV

Bertsekas Reinforcement Learning 16 / 23

DP Algorithm for POMDP Formulation of Bayesian Optimization

J∗k (bk) = min
uk+1∈{1,...,m}

[
c(uk+1) + Ezuk+1

{
J∗k+1

(
Bk (bk , uk+1, zuk+1)

) ∣∣ bk , uk+1

}]
where c(u) is the cost of observation at u. Proceeds backwards from a terminal cost

J∗N(bN) = G(bN) (measures the quality of the surrogate obtained at the end)

Approximation in value space (replace J∗
k+1 with J̃k+1)

ũk+1 ∈ arg min
uk+1∈{1,...,m}

Qk (bk , uk+1)

where Qk (bk , uk+1) is the (approximate) Q-factor corresponding to the pair (bk , uk+1):

Qk (bk , uk+1) = c(uk+1) + Ezuk+1

{
J̃k+1

(
Bk (bk , uk+1, zuk+1)

) ∣∣ bk , uk+1

}

Rollout

Use as J̃k+1 the cost function of a myopic base heuristic based on an acquisition
function (or approximation thereof); first proposed by Lam, Wilcox, and Wolpert (2016),
and followed up by others (promising, but relatively untested at present).

Bertsekas Reinforcement Learning 17 / 23

Truncated Rollout with a Myopic Base Heuristic

Base Policy Rollout Policy Approximation in Value Space n n − 1
n − 2

One-Step or Multistep Lookahead for stages Possible

Approximation in Policy Space Heuristic Cost Approximation for

for Stages Beyond Truncation

Approximate Q-Factor Q̃(x, u) At x

min
u∈U(x)

E
w

{
g(x, u, w) + αJ̃

(
f(x, u, w)

)}

Approximate Q-Factor Q̃(x, u) At x

Cost Data Policy Data System: xk+1 = 2xk + uk Control constraint:
|uk| ≤ 1

Cost per stage: x2
k + u2

k

{X0, X1, . . . , XN} must be reachable Largest reachable tube

x0 Control uk (" − 1)-Stages Base Heuristic Minimization

Target Tube 0 k Sample Q-Factors (" − 1)-Stages State xk+! = 0

Complete Tours Current Partial Tour Next Cities Next States

Q1,n +R1,n Q2,n +R2,n Q3,n +R3,n Stage k Stages k+1, . . . , k+ "−1

Base Heuristic Minimization Possible Path

Simulation Nearest Neighbor Heuristic Move to the Right Possible
Path

J̃k+1(xk+1) = min
uk+1∈Uk+1(xk+1)

E
{

gk+1(xk+1, uk+1, wk+1)

+J̃k+2

(
fk+1(xk+1, uk+1, wk+1)

)}
,

2-Step Lookahead (onestep lookahead plus one step approx-
imation)

Certainty equivalence Monte Carlo tree search Lookahead tree "-Step
Shortest path problem xk xk States xk+1 States xk+2 u u′

Truncated Rollout Terminal Cost Approximation J̃

Parametric approximation Neural nets Discretization

Parametric approximation Neural nets Discretization

Cost Function Approximation J̃k+!

Rollout, Model Predictive Control

1

s i1 im�1 im . . .

j1 j2 j3 j4

p(j1) p(j2) p(j3) p(j4)

Neighbors of im Projections of Neighbors of im

State x Feature Vector �(x) Approximator �(x)0r

` Stages Riccati Equation Iterates P P0 P1 P2 �2 � 1 �2P
P+1

Cost of Period k Stock Ordered at Period k Inventory System
r(uk) + cuk xk+1 = xk + u + k � wk

Stock at Period k +1 Initial State A C AB AC CA CD ABC

ACB ACD CAB CAD CDA

SA SB CAB CAC CCA CCD CBC CCB CCD

CAB CAD CDA CCD CBD CDB CAB

Do not Repair Repair 1 2 n�1 n p11 p12 p1n p1(n�1) p2(n�1)

...

p22 p2n p2(n�1) p2(n�1) p(n�1)(n�1) p(n�1)n pnn

2nd Game / Timid Play 2nd Game / Bold Play

1st Game / Timid Play 1st Game / Bold Play pd 1� pd pw 1� pw

0 � 0 1 � 0 0 � 1 1.5 � 0.5 1 � 1 0.5 � 1.5 0 � 2

System xk+1 = fk(xk, uk, wk) uk = µk(xk) µk wk xk

3 5 2 4 6 2

1

Termination State Constraint Set X X = X X̃ ỹ0 = x̃0 = x0

x1
k, u1

k u2
k x2

k dk τ

I0 Info Vectors Ik+1Current Info VectorIk

u1 û1 10 11 12 R(yk+1) Tk(ỹk, uk) =
(
ỹk, uk, R(yk+1)

)
∈ C

x0 u∗
0 x∗

1 u∗
1 x∗

2 u∗
2 x∗

3 ũ1 x̃2 ũ2 x̃3

x0 u∗
0 x∗

1 u∗
1 x∗

2 u∗
2 x∗

3 ũ0 x̃1 ũ1 x̃1

High Cost Transition Chosen by Heuristic at x∗
1 Rollout Choice

Capacity=1 Optimal Solution

Permanent Trajectory Tentative Trajectory Optimal Trajectory Cho-
sen by Base Heuristic at x0 Initial

Base Policy Rollout Policy Approximation in Value Space n n − 1
n − 2

One-Step or Multistep Lookahead for stages Possible Terminal Cost

Approximation in Policy Space Heuristic Cost Approximation for

for Stages Beyond Truncation yk Feature States yk+1 Cost gk(xk, uk)

Approximate Q-Factor Q̃(x, u) At x Approximation Ĵ

min
u∈U(x)

E
w

{
g(x, u, w) + αJ̃

(
f(x, u, w)

)}

Truncated Rollout Policy µ m Steps

Approximate Q-Factor Q̃(x, u) At x

Cost Data Policy Data System: xk+1 = 2xk + uk Control constraint:
|uk| ≤ 1

Cost per stage: x2
k + u2

k

{X0, X1, . . . , XN} must be reachable Largest reachable tube

x0 Control uk (# − 1)-Stages Base Heuristic Minimization

Target Tube 0 k Sample Q-Factors (# − 1)-Stages State xk+! = 0

Complete Tours Current Partial Tour Next Cities Next States

Q1,n +R1,n Q2,n +R2,n Q3,n +R3,n Stage k Stages k+1, . . . , k+ #−1

Base Heuristic Minimization Possible Path

Simulation Nearest Neighbor Heuristic Move to the Right Possible
Path

1

Termination State Constraint Set X X = X X̃ ỹ0 = x̃0 = x0

x1
k, u1

k u2
k x2

k dk τ

I0 Info Vectors Ik+1Current Info Vector Ik Possible

u1 û1 10 11 12 R(yk+1) Tk(ỹk, uk) =
(
ỹk, uk, R(yk+1)

)
∈ C

x0 u∗
0 x∗

1 u∗
1 x∗

2 u∗
2 x∗

3 ũ1 x̃2 ũ2 x̃3

x0 u∗
0 x∗

1 u∗
1 x∗

2 u∗
2 x∗

3 ũ0 x̃1 ũ1 x̃1

High Cost Transition Chosen by Heuristic at x∗
1 Rollout Choice

Capacity=1 Optimal Solution

Permanent Trajectory Tentative Trajectory Optimal Trajectory Cho-
sen by Base Heuristic at x0 Initial

Base Policy Rollout Policy Approximation in Value Space n n − 1
n − 2

One-Step or Multistep Lookahead for stages Possible Terminal Cost

Approximation in Policy Space Heuristic Cost Approximation for

for Stages Beyond Truncation yk Feature States yk+1 Cost gk(xk, uk)

Approximate Q-Factor Q̃(x, u) At x Approximation Ĵ

min
u∈U(x)

E
w

{
g(x, u, w) + αJ̃

(
f(x, u, w)

)}

Truncated Rollout Policy µ m Steps

Approximate Q-Factor Q̃(x, u) At x

Cost Data Policy Data System: xk+1 = 2xk + uk Control constraint:
|uk| ≤ 1

Cost per stage: x2
k + u2

k

{X0, X1, . . . , XN} must be reachable Largest reachable tube

x0 Control uk (# − 1)-Stages Base Heuristic Minimization

Target Tube 0 k Sample Q-Factors (# − 1)-Stages State xk+! = 0

Complete Tours Current Partial Tour Next Cities Next States

Q1,n +R1,n Q2,n +R2,n Q3,n +R3,n Stage k Stages k+1, . . . , k+ #−1

Base Heuristic Minimization Possible Path

Simulation Nearest Neighbor Heuristic Move to the Right Possible
Path

1

Termination State Constraint Set X X = X X̃ ỹ0 = x̃0 = x0

x1
k, u1

k u2
k x2

k dk τ

I0 Info Vectors Ik+1 Stages Beyond Truncation

Rollout with Base Policy Using an Acquisition Function

Current Info Vector Ik Possible Base Policy Using an Acquisition
Function

u1 û1 10 11 12 R(yk+1) Tk(ỹk, uk) =
(
ỹk, uk, R(yk+1)

)
∈ C

x0 u∗
0 x∗

1 u∗
1 x∗

2 u∗
2 x∗

3 ũ1 x̃2 ũ2 x̃3

x0 u∗
0 x∗

1 u∗
1 x∗

2 u∗
2 x∗

3 ũ0 x̃1 ũ1 x̃1

High Cost Transition Chosen by Heuristic at x∗
1 Rollout Choice

Capacity=1 Optimal Solution

Permanent Trajectory Tentative Trajectory Optimal Trajectory Cho-
sen by Base Heuristic at x0 Initial

Base Policy Rollout Policy Approximation in Value Space n n − 1
n − 2

One-Step or Multistep Lookahead for stages Possible Terminal Cost

Approximation in Policy Space Heuristic Cost Approximation for

for Stages Beyond Truncation yk Feature States yk+1 Cost gk(xk, uk)

Approximate Q-Factor Q̃(x, u) At x Approximation Ĵ

min
u∈U(x)

E
w

{
g(x, u, w) + αJ̃

(
f(x, u, w)

)}

Truncated Rollout Policy µ m Steps

Approximate Q-Factor Q̃(x, u) At x

Cost Data Policy Data System: xk+1 = 2xk + uk Control constraint:
|uk| ≤ 1

Cost per stage: x2
k + u2

k

{X0, X1, . . . , XN} must be reachable Largest reachable tube

x0 Control uk (# − 1)-Stages Base Heuristic Minimization

Target Tube 0 k Sample Q-Factors (# − 1)-Stages State xk+! = 0

Complete Tours Current Partial Tour Next Cities Next States

Q1,n +R1,n Q2,n +R2,n Q3,n +R3,n Stage k Stages k+1, . . . , k+ #−1

Base Heuristic Minimization Possible Path

1

Termination State Constraint Set X X = X X̃ ỹ0 = x̃0 = x0

x1
k, u1

k u2
k x2

k dk τ

I0 Info Vectors Ik+1 Stages Beyond Truncation

Rollout with Base Policy Using an Acquisition Function

Current Info Vector Ik Possible Base Policy Using an Acquisition
Function

u1 û1 10 11 12 R(yk+1) Tk(ỹk, uk) =
(
ỹk, uk, R(yk+1)

)
∈ C

x0 u∗
0 x∗

1 u∗
1 x∗

2 u∗
2 x∗

3 ũ1 x̃2 ũ2 x̃3

x0 u∗
0 x∗

1 u∗
1 x∗

2 u∗
2 x∗

3 ũ0 x̃1 ũ1 x̃1

High Cost Transition Chosen by Heuristic at x∗
1 Rollout Choice

Capacity=1 Optimal Solution

Permanent Trajectory Tentative Trajectory Optimal Trajectory Cho-
sen by Base Heuristic at x0 Initial

Base Policy Rollout Policy Approximation in Value Space n n − 1
n − 2

One-Step or Multistep Lookahead for stages Possible Terminal Cost

Approximation in Policy Space Heuristic Cost Approximation for

for Stages Beyond Truncation yk Feature States yk+1 Cost gk(xk, uk)

Approximate Q-Factor Q̃(x, u) At x Approximation Ĵ

min
u∈U(x)

E
w

{
g(x, u, w) + αJ̃

(
f(x, u, w)

)}

Truncated Rollout Policy µ m Steps

Approximate Q-Factor Q̃(x, u) At x

Cost Data Policy Data System: xk+1 = 2xk + uk Control constraint:
|uk| ≤ 1

Cost per stage: x2
k + u2

k

{X0, X1, . . . , XN} must be reachable Largest reachable tube

x0 Control uk (# − 1)-Stages Base Heuristic Minimization

Target Tube 0 k Sample Q-Factors (# − 1)-Stages State xk+! = 0

Complete Tours Current Partial Tour Next Cities Next States

Q1,n +R1,n Q2,n +R2,n Q3,n +R3,n Stage k Stages k+1, . . . , k+ #−1

Base Heuristic Minimization Possible Path

1

Termination State Constraint Set X X = X X̃ ỹ0 = x̃0 = x0

x1
k, u1

k u2
k x2

k dk τ

I0 Info Vectors Ik+1 Stages Beyond Truncation

Rollout with Base Policy Using an Acquisition Function

Current Info Vector Ik Possible Base Policy Using an Acquisition
Function

u1 û1 10 11 12 R(yk+1) Tk(ỹk, uk) =
(
ỹk, uk, R(yk+1)

)
∈ C

x0 u∗
0 x∗

1 u∗
1 x∗

2 u∗
2 x∗

3 ũ1 x̃2 ũ2 x̃3

x0 u∗
0 x∗

1 u∗
1 x∗

2 u∗
2 x∗

3 ũ0 x̃1 ũ1 x̃1

High Cost Transition Chosen by Heuristic at x∗
1 Rollout Choice

Capacity=1 Optimal Solution

Permanent Trajectory Tentative Trajectory Optimal Trajectory Cho-
sen by Base Heuristic at x0 Initial

Base Policy Rollout Policy Approximation in Value Space n n − 1
n − 2

One-Step or Multistep Lookahead for stages Possible Terminal Cost

Approximation in Policy Space Heuristic Cost Approximation for

for Stages Beyond Truncation yk Feature States yk+1 Cost gk(xk, uk)

Approximate Q-Factor Q̃(x, u) At x Approximation Ĵ

min
u∈U(x)

E
w

{
g(x, u, w) + αJ̃

(
f(x, u, w)

)}

Truncated Rollout Policy µ m Steps

Approximate Q-Factor Q̃(x, u) At x

Cost Data Policy Data System: xk+1 = 2xk + uk Control constraint:
|uk| ≤ 1

Cost per stage: x2
k + u2

k

{X0, X1, . . . , XN} must be reachable Largest reachable tube

x0 Control uk (# − 1)-Stages Base Heuristic Minimization

Target Tube 0 k Sample Q-Factors (# − 1)-Stages State xk+! = 0

Complete Tours Current Partial Tour Next Cities Next States

Q1,n +R1,n Q2,n +R2,n Q3,n +R3,n Stage k Stages k+1, . . . , k+ #−1

Base Heuristic Minimization Possible Path

1

Termination State Constraint Set X X = X X̃ ỹ0 = x̃0 = x0

x1
k, u1

k u2
k x2

k dk τ

I0 Info Vectors Ik+1 Stages Beyond Truncation

Rollout with Base Policy Using an Acquisition Function

Current Info Vector Ik Possible Base Policy Using an Acquisition
Function

u1 û1 10 11 12 R(yk+1) Tk(ỹk, uk) =
(
ỹk, uk, R(yk+1)

)
∈ C

x0 u∗
0 x∗

1 u∗
1 x∗

2 u∗
2 x∗

3 ũ1 x̃2 ũ2 x̃3

x0 u∗
0 x∗

1 u∗
1 x∗

2 u∗
2 x∗

3 ũ0 x̃1 ũ1 x̃1

High Cost Transition Chosen by Heuristic at x∗
1 Rollout Choice

Capacity=1 Optimal Solution

Permanent Trajectory Tentative Trajectory Optimal Trajectory Cho-
sen by Base Heuristic at x0 Initial

Base Policy Rollout Policy Approximation in Value Space n n − 1
n − 2

One-Step or Multistep Lookahead for stages Possible Terminal Cost

Approximation in Policy Space Heuristic Cost Approximation for

for Stages Beyond Truncation yk Feature States yk+1 Cost gk(xk, uk)

Approximate Q-Factor Q̃(x, u) At x Approximation Ĵ

min
u∈U(x)

E
w

{
g(x, u, w) + αJ̃

(
f(x, u, w)

)}

Truncated Rollout Policy µ m Steps

Approximate Q-Factor Q̃(x, u) At x

Cost Data Policy Data System: xk+1 = 2xk + uk Control constraint:
|uk| ≤ 1

Cost per stage: x2
k + u2

k

{X0, X1, . . . , XN} must be reachable Largest reachable tube

x0 Control uk (# − 1)-Stages Base Heuristic Minimization

Target Tube 0 k Sample Q-Factors (# − 1)-Stages State xk+! = 0

Complete Tours Current Partial Tour Next Cities Next States

Q1,n +R1,n Q2,n +R2,n Q3,n +R3,n Stage k Stages k+1, . . . , k+ #−1

Base Heuristic Minimization Possible Path

1

Termination State Constraint Set X X = X X̃ ỹ0 = x̃0 = x0

x1
k, u1

k u2
k x2

k dk τ

I0 Info Vectors Ik+1 Stages Beyond Truncation

Rollout with Base Policy Using an Acquisition Function

Current Info Vector Ik Possible Base Policy Using an Acquisition
Function

u1 û1 10 11 12 R(yk+1) Tk(ỹk, uk) =
(
ỹk, uk, R(yk+1)

)
∈ C

x0 u∗
0 x∗

1 u∗
1 x∗

2 u∗
2 x∗

3 ũ1 x̃2 ũ2 x̃3

x0 u∗
0 x∗

1 u∗
1 x∗

2 u∗
2 x∗

3 ũ0 x̃1 ũ1 x̃1

High Cost Transition Chosen by Heuristic at x∗
1 Rollout Choice

Capacity=1 Optimal Solution

Permanent Trajectory Tentative Trajectory Optimal Trajectory Cho-
sen by Base Heuristic at x0 Initial

Base Policy Rollout Policy Approximation in Value Space n n − 1
n − 2

One-Step or Multistep Lookahead for stages Possible Terminal Cost

Approximation in Policy Space Heuristic Cost Approximation for

for Stages Beyond Truncation yk Feature States yk+1 Cost gk(xk, uk)

Approximate Q-Factor Q̃(x, u) At x Approximation Ĵ

min
u∈U(x)

E
w

{
g(x, u, w) + αJ̃

(
f(x, u, w)

)}

Truncated Rollout Policy µ m Steps

Approximate Q-Factor Q̃(x, u) At x

Cost Data Policy Data System: xk+1 = 2xk + uk Control constraint:
|uk| ≤ 1

Cost per stage: x2
k + u2

k

{X0, X1, . . . , XN} must be reachable Largest reachable tube

x0 Control uk (# − 1)-Stages Base Heuristic Minimization

Target Tube 0 k Sample Q-Factors (# − 1)-Stages State xk+! = 0

Complete Tours Current Partial Tour Next Cities Next States

Q1,n +R1,n Q2,n +R2,n Q3,n +R3,n Stage k Stages k+1, . . . , k+ #−1

Base Heuristic Minimization Possible Path

1

Termination State Constraint Set X X = X X̃ ỹ0 = x̃0 = x0

x1
k, u1

k u2
k x2

k dk τ

I0 Info Vectors Ik+1 Stages Beyond Truncation

Rollout with Base Policy Using an Acquisition Function

Current Info Vector Ik Possible Base Policy Using an Acquisition
Function

u1 û1 10 11 12 R(yk+1) Tk(ỹk, uk) =
(
ỹk, uk, R(yk+1)

)
∈ C

x0 u∗
0 x∗

1 u∗
1 x∗

2 u∗
2 x∗

3 ũ1 x̃2 ũ2 x̃3

x0 u∗
0 x∗

1 u∗
1 x∗

2 u∗
2 x∗

3 ũ0 x̃1 ũ1 x̃1

High Cost Transition Chosen by Heuristic at x∗
1 Rollout Choice

Capacity=1 Optimal Solution

Permanent Trajectory Tentative Trajectory Optimal Trajectory Cho-
sen by Base Heuristic at x0 Initial

Base Policy Rollout Policy Approximation in Value Space n n − 1
n − 2

One-Step or Multistep Lookahead for stages Possible Terminal Cost

Approximation in Policy Space Heuristic Cost Approximation for

for Stages Beyond Truncation yk Feature States yk+1 Cost gk(xk, uk)

Approximate Q-Factor Q̃(x, u) At x Approximation Ĵ

min
u∈U(x)

E
w

{
g(x, u, w) + αJ̃

(
f(x, u, w)

)}

Truncated Rollout Policy µ m Steps

Approximate Q-Factor Q̃(x, u) At x

Cost Data Policy Data System: xk+1 = 2xk + uk Control constraint:
|uk| ≤ 1

Cost per stage: x2
k + u2

k

{X0, X1, . . . , XN} must be reachable Largest reachable tube

x0 Control uk (# − 1)-Stages Base Heuristic Minimization

Target Tube 0 k Sample Q-Factors (# − 1)-Stages State xk+! = 0

Complete Tours Current Partial Tour Next Cities Next States

Q1,n +R1,n Q2,n +R2,n Q3,n +R3,n Stage k Stages k+1, . . . , k+ #−1

Base Heuristic Minimization Possible Path

1

Termination State Constraint Set X X = X X̃ ỹ0 = x̃0 = x0

x1
k, u1

k u2
k x2

k dk τ

I0 Info Vectors Ik+1 Stages Beyond Truncation

Rollout with Base Policy Using an Acquisition Function

Current Info Vector Ik Possible Base Policy Using an Acquisition
Function

u1 û1 10 11 12 R(yk+1) Tk(ỹk, uk) =
(
ỹk, uk, R(yk+1)

)
∈ C

x0 u∗
0 x∗

1 u∗
1 x∗

2 u∗
2 x∗

3 ũ1 x̃2 ũ2 x̃3

x0 u∗
0 x∗

1 u∗
1 x∗

2 u∗
2 x∗

3 ũ0 x̃1 ũ1 x̃1

High Cost Transition Chosen by Heuristic at x∗
1 Rollout Choice

Capacity=1 Optimal Solution

Permanent Trajectory Tentative Trajectory Optimal Trajectory Cho-
sen by Base Heuristic at x0 Initial

Base Policy Rollout Policy Approximation in Value Space n n − 1
n − 2

One-Step or Multistep Lookahead for stages Possible Terminal Cost

Approximation in Policy Space Heuristic Cost Approximation for

for Stages Beyond Truncation yk Feature States yk+1 Cost gk(xk, uk)

Approximate Q-Factor Q̃(x, u) At x Approximation Ĵ

min
u∈U(x)

E
w

{
g(x, u, w) + αJ̃

(
f(x, u, w)

)}

Truncated Rollout Policy µ m Steps

Approximate Q-Factor Q̃(x, u) At x

Cost Data Policy Data System: xk+1 = 2xk + uk Control constraint:
|uk| ≤ 1

Cost per stage: x2
k + u2

k

{X0, X1, . . . , XN} must be reachable Largest reachable tube

x0 Control uk (# − 1)-Stages Base Heuristic Minimization

Target Tube 0 k Sample Q-Factors (# − 1)-Stages State xk+! = 0

Complete Tours Current Partial Tour Next Cities Next States

Q1,n +R1,n Q2,n +R2,n Q3,n +R3,n Stage k Stages k+1, . . . , k+ #−1

Base Heuristic Minimization Possible Path

1

Termination State Constraint Set X X = X X̃ ỹ0 = x̃0 = x0

x1
k, u1

k u2
k x2

k dk τ

I0 Info Vectors Ik+1 Stages Beyond Truncation

Rollout with Base Policy Using an Acquisition Function

Truncated Horizon

Current Info Vector Ik Possible Base Policy Using an Acquisition
Function

u1 û1 10 11 12 R(yk+1) Tk(ỹk, uk) =
(
ỹk, uk, R(yk+1)

)
∈ C

x0 u∗
0 x∗

1 u∗
1 x∗

2 u∗
2 x∗

3 ũ1 x̃2 ũ2 x̃3

x0 u∗
0 x∗

1 u∗
1 x∗

2 u∗
2 x∗

3 ũ0 x̃1 ũ1 x̃1

High Cost Transition Chosen by Heuristic at x∗
1 Rollout Choice

Capacity=1 Optimal Solution

Permanent Trajectory Tentative Trajectory Optimal Trajectory Cho-
sen by Base Heuristic at x0 Initial

Base Policy Rollout Policy Approximation in Value Space n n − 1
n − 2

One-Step or Multistep Lookahead for stages Possible Terminal Cost

Approximation in Policy Space Heuristic Cost Approximation for

for Stages Beyond Truncation yk Feature States yk+1 Cost gk(xk, uk)

Approximate Q-Factor Q̃(x, u) At x Approximation Ĵ

min
u∈U(x)

E
w

{
g(x, u, w) + αJ̃

(
f(x, u, w)

)}

Truncated Rollout Policy µ m Steps

Approximate Q-Factor Q̃(x, u) At x

Cost Data Policy Data System: xk+1 = 2xk + uk Control constraint:
|uk| ≤ 1

Cost per stage: x2
k + u2

k

{X0, X1, . . . , XN} must be reachable Largest reachable tube

x0 Control uk (# − 1)-Stages Base Heuristic Minimization

Target Tube 0 k Sample Q-Factors (# − 1)-Stages State xk+! = 0

Complete Tours Current Partial Tour Next Cities Next States

Q1,n +R1,n Q2,n +R2,n Q3,n +R3,n Stage k Stages k+1, . . . , k+ #−1

1

Current Posterior bk uk+1

b0 Posteriors bk+1

u1 u2 u3 uN Origin Node Destination Node r t

Path Extension: ppred(nk) > apred(nk)nk
+ anksucc(nk) + psucc(nk)

Path Contraction: ppred(nk) ≤ psucc(nk) apred(nk)nk
+ anksucc(nk) + psucc(nk)

(u1) (u1, u2) (u1, u2, u3) u = (u1, . . . , uN) Nodes

ppred(nk) − apred(nk)nk
anksucc(nk) + psucc(nk) apred(nk)nk

+ anksucc(nk) + psucc(nk)

1

Current Posterior bk uk+1

b0 Posteriors bk+1

u1 u2 u3 uN Origin Node Destination Node r t

Path Extension: ppred(nk) > apred(nk)nk
+ anksucc(nk) + psucc(nk)

Path Contraction: ppred(nk) ≤ psucc(nk) apred(nk)nk
+ anksucc(nk) + psucc(nk)

(u1) (u1, u2) (u1, u2, u3) u = (u1, . . . , uN) Nodes

ppred(nk) − apred(nk)nk
anksucc(nk) + psucc(nk) apred(nk)nk

+ anksucc(nk) + psucc(nk)

1

Current Posterior bk uk+1

b0 Posteriors bk+1

u1 u2 u3 uN Origin Node Destination Node r t

Path Extension: ppred(nk) > apred(nk)nk
+ anksucc(nk) + psucc(nk)

Path Contraction: ppred(nk) ≤ psucc(nk) apred(nk)nk
+ anksucc(nk) + psucc(nk)

(u1) (u1, u2) (u1, u2, u3) u = (u1, . . . , uN) Nodes

ppred(nk) − apred(nk)nk
anksucc(nk) + psucc(nk) apred(nk)nk

+ anksucc(nk) + psucc(nk)

1

Current Posterior bk uk+1

b0 Posteriors bk+1

u1 u2 u3 uN Origin Node Destination Node r t

Path Extension: ppred(nk) > apred(nk)nk
+ anksucc(nk) + psucc(nk)

Path Contraction: ppred(nk) ≤ psucc(nk) apred(nk)nk
+ anksucc(nk) + psucc(nk)

(u1) (u1, u2) (u1, u2, u3) u = (u1, . . . , uN) Nodes

ppred(nk) − apred(nk)nk
anksucc(nk) + psucc(nk) apred(nk)nk

+ anksucc(nk) + psucc(nk)

1

Current Posterior bk uk+1 Q-Factor Calculation Qk(bk, uk+1)

b0 Posteriors bk+1

Simulation

u1 u2 u3 uN Origin Node Destination Node r t

Path Extension: ppred(nk) > apred(nk)nk
+ anksucc(nk) + psucc(nk)

Path Contraction: ppred(nk) ≤ psucc(nk) apred(nk)nk
+ anksucc(nk) + psucc(nk)

(u1) (u1, u2) (u1, u2, u3) u = (u1, . . . , uN) Nodes

ppred(nk) − apred(nk)nk
anksucc(nk) + psucc(nk) apred(nk)nk

+ anksucc(nk) + psucc(nk)

1

Current Posterior bk uk+1 Q-Factor Calculation Qk(bk, uk+1)

b0 Posteriors bk+1

Simulation

u1 u2 u3 uN Origin Node Destination Node r t

Path Extension: ppred(nk) > apred(nk)nk
+ anksucc(nk) + psucc(nk)

Path Contraction: ppred(nk) ≤ psucc(nk) apred(nk)nk
+ anksucc(nk) + psucc(nk)

(u1) (u1, u2) (u1, u2, u3) u = (u1, . . . , uN) Nodes

ppred(nk) − apred(nk)nk
anksucc(nk) + psucc(nk) apred(nk)nk

+ anksucc(nk) + psucc(nk)

1

Current Posterior bk uk+1 Q-Factor Calculation Qk(bk, uk+1)

b0 Posteriors bk+1

Simulation

u1 u2 u3 uN Origin Node Destination Node r t

Path Extension: ppred(nk) > apred(nk)nk
+ anksucc(nk) + psucc(nk)

Path Contraction: ppred(nk) ≤ psucc(nk) apred(nk)nk
+ anksucc(nk) + psucc(nk)

(u1) (u1, u2) (u1, u2, u3) u = (u1, . . . , uN) Nodes

ppred(nk) − apred(nk)nk
anksucc(nk) + psucc(nk) apred(nk)nk

+ anksucc(nk) + psucc(nk)

1

Current Posterior bk uk+1 Q-Factor Calculation Qk(bk, uk+1) Observations

b0 Posteriors bk+1

Simulation

u1 u2 u3 uN Origin Node Destination Node r t

Path Extension: ppred(nk) > apred(nk)nk
+ anksucc(nk) + psucc(nk)

Path Contraction: ppred(nk) ≤ psucc(nk) apred(nk)nk
+ anksucc(nk) + psucc(nk)

(u1) (u1, u2) (u1, u2, u3) u = (u1, . . . , uN) Nodes

ppred(nk) − apred(nk)nk
anksucc(nk) + psucc(nk) apred(nk)nk

+ anksucc(nk) + psucc(nk)

1

Bertsekas Reinforcement Learning 18 / 23

Adaptive Control with a POMDP Formulation and Rollout

System Unknown Parameter ✓

Corrected J̃ J̃ J* Cost J̃µ

�
F (i), r

�
of i ⇡ Jµ(i) Jµ(i) Feature Map

J̃µ

�
F (i), r

�
: Feature-based parametric architecture State

r: Vector of weights Original States Aggregate States

Position “value” Move “probabilities” Simplify E{·}
Choose the Aggregation and Disaggregation Probabilities

Use a Neural Network or Other Scheme Form the Aggregate States
I1 Iq

Use a Neural Scheme or Other Scheme

Possibly Include “Handcrafted” Features

Generate Features F (i) of Formulate Aggregate Problem

Generate “Impoved” Policy µ̂ by “Solving” the Aggregate Problem

Same algorithm learned multiple games (Go, Shogi)

Aggregate costs r⇤` Cost function J̃0(i) Cost function J̃1(j)

Approximation in a space of basis functions Plays much better than
all chess programs

Cost ↵kg(i, u, j) Transition probabilities pij(u) Wp

Controlled Markov Chain Evaluate Approximate Cost J̃µ of

Evaluate Approximate Cost J̃µ

�
F (i)

�
of

F (i) =
�
F1(i), . . . , Fs(i)

�
: Vector of Features of i

J̃µ

�
F (i)

�
: Feature-based architecture Final Features

If J̃µ

�
F (i), r

�
=
Ps

`=1 F`(i)r` it is a linear feature-based architecture

(r1, . . . , rs: Scalar weights)

Wp: Functions J � Ĵp with J(xk) ! 0 for all p-stable ⇡

Wp0 : Functions J � Ĵp0 with J(xk) ! 0 for all p0-stable ⇡

W+ =
�
J | J � J+, J(t) = 0

VI converges to J+ from within W+

Cost: g(xk, uk) � 0 VI converges to Ĵp from within Wp

1

System Observation Outcome Decision u on Next Observation

Control/Observation Type Selection Outcome Stop Observations

Control State xk

Unknown Parameter θ Estimate of θ

Corrected J̃ J̃ J* Cost J̃µ

(
F (i), r

)
of i ≈ Jµ(i) Jµ(i) Feature Map

J̃µ

(
F (i), r

)
: Feature-based parametric architecture State

r: Vector of weights Original States Aggregate States

Position “value” Move “probabilities” Simplify E{·}
Choose the Aggregation and Disaggregation Probabilities

Use a Neural Network or Other Scheme Form the Aggregate States
I1 Iq

Use a Neural Scheme or Other Scheme

Possibly Include “Handcrafted” Features

Generate Features F (i) of Formulate Aggregate Problem

Generate “Impoved” Policy µ̂ by “Solving” the Aggregate Problem

Same algorithm learned multiple games (Go, Shogi)

Aggregate costs r∗
! Cost function J̃0(i) Cost function J̃1(j)

Approximation in a space of basis functions Plays much better than
all chess programs

Cost αkg(i, u, j) Transition probabilities pij(u) Wp

Controlled Markov Chain Evaluate Approximate Cost J̃µ of

Evaluate Approximate Cost J̃µ

(
F (i)

)
of

F (i) =
(
F1(i), . . . , Fs(i)

)
: Vector of Features of i

J̃µ

(
F (i)

)
: Feature-based architecture Final Features

If J̃µ

(
F (i), r

)
=

∑s
!=1 F!(i)r! it is a linear feature-based architecture

(r1, . . . , rs: Scalar weights)

Wp: Functions J ≥ Ĵp with J(xk) → 0 for all p-stable π

Wp′ : Functions J ≥ Ĵp′ with J(xk) → 0 for all p′-stable π

W+ =
{
J | J ≥ J+, J(t) = 0

}

1

System Observation Outcome Decision u on Next Observation

Control/Observation Type Selection Outcome Stop Observations

Control State xk

Unknown Parameter θ Estimate of θ

Corrected J̃ J̃ J* Cost J̃µ

(
F (i), r

)
of i ≈ Jµ(i) Jµ(i) Feature Map

J̃µ

(
F (i), r

)
: Feature-based parametric architecture State

r: Vector of weights Original States Aggregate States

Position “value” Move “probabilities” Simplify E{·}
Choose the Aggregation and Disaggregation Probabilities

Use a Neural Network or Other Scheme Form the Aggregate States
I1 Iq

Use a Neural Scheme or Other Scheme

Possibly Include “Handcrafted” Features

Generate Features F (i) of Formulate Aggregate Problem

Generate “Impoved” Policy µ̂ by “Solving” the Aggregate Problem

Same algorithm learned multiple games (Go, Shogi)

Aggregate costs r∗
! Cost function J̃0(i) Cost function J̃1(j)

Approximation in a space of basis functions Plays much better than
all chess programs

Cost αkg(i, u, j) Transition probabilities pij(u) Wp

Controlled Markov Chain Evaluate Approximate Cost J̃µ of

Evaluate Approximate Cost J̃µ

(
F (i)

)
of

F (i) =
(
F1(i), . . . , Fs(i)

)
: Vector of Features of i

J̃µ

(
F (i)

)
: Feature-based architecture Final Features

If J̃µ

(
F (i), r

)
=

∑s
!=1 F!(i)r! it is a linear feature-based architecture

(r1, . . . , rs: Scalar weights)

Wp: Functions J ≥ Ĵp with J(xk) → 0 for all p-stable π

Wp′ : Functions J ≥ Ĵp′ with J(xk) → 0 for all p′-stable π

W+ =
{
J | J ≥ J+, J(t) = 0

}

1

System Observation Outcome Decision u on Next Observation

Control/Observation Type Selection Outcome Stop Observations

Control uk State xk xk+1 = fk(xk, θ, uk, wk)

Unknown Parameter θ Estimate of θ

Corrected J̃ J̃ J* Cost J̃µ

(
F (i), r

)
of i ≈ Jµ(i) Jµ(i) Feature Map

J̃µ

(
F (i), r

)
: Feature-based parametric architecture State

r: Vector of weights Original States Aggregate States

Position “value” Move “probabilities” Simplify E{·}
Choose the Aggregation and Disaggregation Probabilities

Use a Neural Network or Other Scheme Form the Aggregate States
I1 Iq

Use a Neural Scheme or Other Scheme

Possibly Include “Handcrafted” Features

Generate Features F (i) of Formulate Aggregate Problem

Generate “Impoved” Policy µ̂ by “Solving” the Aggregate Problem

Same algorithm learned multiple games (Go, Shogi)

Aggregate costs r∗
! Cost function J̃0(i) Cost function J̃1(j)

Approximation in a space of basis functions Plays much better than
all chess programs

Cost αkg(i, u, j) Transition probabilities pij(u) Wp

Controlled Markov Chain Evaluate Approximate Cost J̃µ of

Evaluate Approximate Cost J̃µ

(
F (i)

)
of

F (i) =
(
F1(i), . . . , Fs(i)

)
: Vector of Features of i

J̃µ

(
F (i)

)
: Feature-based architecture Final Features

If J̃µ

(
F (i), r

)
=

∑s
!=1 F!(i)r! it is a linear feature-based architecture

(r1, . . . , rs: Scalar weights)

Wp: Functions J ≥ Ĵp with J(xk) → 0 for all p-stable π

Wp′ : Functions J ≥ Ĵp′ with J(xk) → 0 for all p′-stable π

W+ =
{
J | J ≥ J+, J(t) = 0

}

1

System Observation Outcome Decision u on Next Observation

Control/Observation Type Selection Outcome Stop Observations

Control uk State xk xk+1 = fk(xk, θ, uk, wk) Controller

Unknown Parameter θ Estimate of θ

Corrected J̃ J̃ J* Cost J̃µ

(
F (i), r

)
of i ≈ Jµ(i) Jµ(i) Feature Map

J̃µ

(
F (i), r

)
: Feature-based parametric architecture State

r: Vector of weights Original States Aggregate States

Position “value” Move “probabilities” Simplify E{·}
Choose the Aggregation and Disaggregation Probabilities

Use a Neural Network or Other Scheme Form the Aggregate States
I1 Iq

Use a Neural Scheme or Other Scheme

Possibly Include “Handcrafted” Features

Generate Features F (i) of Formulate Aggregate Problem

Generate “Impoved” Policy µ̂ by “Solving” the Aggregate Problem

Same algorithm learned multiple games (Go, Shogi)

Aggregate costs r∗
! Cost function J̃0(i) Cost function J̃1(j)

Approximation in a space of basis functions Plays much better than
all chess programs

Cost αkg(i, u, j) Transition probabilities pij(u) Wp

Controlled Markov Chain Evaluate Approximate Cost J̃µ of

Evaluate Approximate Cost J̃µ

(
F (i)

)
of

F (i) =
(
F1(i), . . . , Fs(i)

)
: Vector of Features of i

J̃µ

(
F (i)

)
: Feature-based architecture Final Features

If J̃µ

(
F (i), r

)
=

∑s
!=1 F!(i)r! it is a linear feature-based architecture

(r1, . . . , rs: Scalar weights)

Wp: Functions J ≥ Ĵp with J(xk) → 0 for all p-stable π

Wp′ : Functions J ≥ Ĵp′ with J(xk) → 0 for all p′-stable π

W+ =
{
J | J ≥ J+, J(t) = 0

}

1

System Observation Outcome Decision u on Next Observation

xk+1 = fk(xk, θ, uk)

Minimize f over u = 1, . . . , m xk+1 = fk(xk, θ, uk)

Using measurements of the form z = f(u) + w (w is “noise”)

Black Box Model Decision About

ũk ∈ arg minuk∈Uk(xk) Q̂k(xk, uk) Average Q-factors Q̂k(xk, uk)

Control/Observation Type Selection Outcome Stop Observations

Control uk State xk xk+1 = fk(xk, θ, uk, wk) Controller

Unknown Parameter θ Estimate of θ (known distribution)

Corrected J̃ J̃ J* Cost J̃µ

(
F (i), r

)
of i ≈ Jµ(i) Jµ(i) Feature Map

J̃µ

(
F (i), r

)
: Feature-based parametric architecture State

r: Vector of weights Original States Aggregate States

Position “value” Move “probabilities” Simplify E{·}
Choose the Aggregation and Disaggregation Probabilities

Use a Neural Network or Other Scheme Form the Aggregate States
I1 Iq

Use a Neural Scheme or Other Scheme

Possibly Include “Handcrafted” Features

Generate Features F (i) of Formulate Aggregate Problem

Generate “Impoved” Policy µ̂ by “Solving” the Aggregate Problem

Same algorithm learned multiple games (Go, Shogi)

Aggregate costs r∗
! Cost function J̃0(i) Cost function J̃1(j)

Approximation in a space of basis functions Plays much better than
all chess programs

Cost αkg(i, u, j) Transition probabilities pij(u) Wp

Controlled Markov Chain Evaluate Approximate Cost J̃µ of

Evaluate Approximate Cost J̃µ

(
F (i)

)
of

F (i) =
(
F1(i), . . . , Fs(i)

)
: Vector of Features of i

J̃µ

(
F (i)

)
: Feature-based architecture Final Features

If J̃µ

(
F (i), r

)
=

∑s
!=1 F!(i)r! it is a linear feature-based architecture

(r1, . . . , rs: Scalar weights)

1

System Observation Outcome Decision u on Next Observation

xk+1 = fk(xk, θ, uk)

Minimize f over u = 1, . . . , m xk+1 = fk(xk, θ, uk)

Using measurements of the form z = f(u) + w (w is “noise”)

Black Box Model Decision About

ũk ∈ arg minuk∈Uk(xk) Q̂k(xk, uk) Average Q-factors Q̂k(xk, uk)

Control/Observation Type Selection Outcome Stop Observations

Control uk State xk xk+1 = fk(xk, θ, uk, wk) Controller

Unknown Parameter θ Estimate of θ (known distribution)

Corrected J̃ J̃ J* Cost J̃µ

(
F (i), r

)
of i ≈ Jµ(i) Jµ(i) Feature Map

J̃µ

(
F (i), r

)
: Feature-based parametric architecture State

r: Vector of weights Original States Aggregate States

Position “value” Move “probabilities” Simplify E{·}
Choose the Aggregation and Disaggregation Probabilities

Use a Neural Network or Other Scheme Form the Aggregate States
I1 Iq

Use a Neural Scheme or Other Scheme

Possibly Include “Handcrafted” Features

Generate Features F (i) of Formulate Aggregate Problem

Generate “Impoved” Policy µ̂ by “Solving” the Aggregate Problem

Same algorithm learned multiple games (Go, Shogi)

Aggregate costs r∗
! Cost function J̃0(i) Cost function J̃1(j)

Approximation in a space of basis functions Plays much better than
all chess programs

Cost αkg(i, u, j) Transition probabilities pij(u) Wp

Controlled Markov Chain Evaluate Approximate Cost J̃µ of

Evaluate Approximate Cost J̃µ

(
F (i)

)
of

F (i) =
(
F1(i), . . . , Fs(i)

)
: Vector of Features of i

J̃µ

(
F (i)

)
: Feature-based architecture Final Features

If J̃µ

(
F (i), r

)
=

∑s
!=1 F!(i)r! it is a linear feature-based architecture

(r1, . . . , rs: Scalar weights)

1

Deterministic system xk+1 = f (xk , θ,uk), θ ∈ {θ1, . . . , θm}: unknown parameter
θ has known initial distribution b0 and stays constant. It is observed indirectly
through perfect observation of xk

View θ as part of an augmented state (xk , θ) that is partially observed

Bellman equation for optimal cost function J∗k :

J∗k (Ik) = min
uk

m∑
i=1

bk,i
(
g(xk , θ

i , uk) + J∗k+1
(
Ik , uk , f (xk , θ

i , uk)
)

where Ik = (x0, . . . , xk , u0, . . . , uk−1) is the information state at time k , and
bk,i = P{θ = θi | Ik}, i = 1, . . . ,m, is the belief state (estimated on-line)
Approximation in value space: Use approximation J̃ i(f (xk , θ

i , uk)
)

in place of
J∗k+1

(
Ik , uk , f (xk , θ

i , uk)
)
. Minimize over uk to obtain a one-step lookahead policy

Example 1: J̃ i is the cost function of the optimal policy corresponding to θi

Example 2: J̃ i is the cost function of a known policy assuming θ = θi (this is rollout)
Bertsekas Reinforcement Learning 20 / 23

Rollout for Adaptive Control with a POMDP Formulation
Initial State 15 1 5 18 4 19 9 21 25 8 12 13 c(0) c(k) c(k + 1) c(N � 1) Parking Spaces

Stage 1 Stage 2 Stage 3 Stage N N � 1 c(N) c(N � 1) k k + 1

Heuristic Cost “Future” System xk+1 = fk(xk, uk, wk) xk Observations

Belief State pk Controller µk Control uk = µk(pk)

x0 x1 xk xN uk xk+1

Initial State x0 s Terminal State t Length = 1

x0 a 0 1 2 t b C Destination

J(xk) ! 0 for all p-stable ⇡ from x0 with x0 2 X and ⇡ 2 Pp,x0 Wp+ = {J 2 J | J+ J} Wp+ from

within Wp+

Prob. u Prob. 1 � u Cost 1 Cost 1 �p
u

J(1) = min
�
c, a + J(2)

J(2) = b + J(1)

J⇤ Jµ Jµ0 Jµ00Jµ0 Jµ1 Jµ2 Jµ3 Jµ0

f(x; ✓k) f(x; ✓k+1) xk F (xk) F (x) xk+1 F (xk+1) xk+2 x⇤ = F (x⇤) Fµk
(x) Fµk+1

(x)

Improper policy µ

Proper policy µ

1

Initial State 15 1 5 18 4 19 9 21 25 8 12 13 c(0) c(k) c(k + 1) c(N � 1) Parking Spaces

Stage 1 Stage 2 Stage 3 Stage N N � 1 c(N) c(N � 1) k k + 1

Heuristic Cost “Future” System xk+1 = fk(xk, uk, wk) xk Observations

Belief State pk Controller µk Control uk = µk(pk) . . .

x0 x1 xk xN uk xk+1

Initial State x0 s Terminal State t Length = 1

x0 a 0 1 2 t b C Destination

J(xk) ! 0 for all p-stable ⇡ from x0 with x0 2 X and ⇡ 2 Pp,x0 Wp+ = {J 2 J | J+ J} Wp+ from

within Wp+

Prob. u Prob. 1 � u Cost 1 Cost 1 �p
u

J(1) = min
�
c, a + J(2)

J(2) = b + J(1)

J⇤ Jµ Jµ0 Jµ00Jµ0 Jµ1 Jµ2 Jµ3 Jµ0

f(x; ✓k) f(x; ✓k+1) xk F (xk) F (x) xk+1 F (xk+1) xk+2 x⇤ = F (x⇤) Fµk
(x) Fµk+1

(x)

Improper policy µ

Proper policy µ

1

In
itia

l
S
ta

te
1
5

1
5

1
8

4
1
9

9
2
1

2
5

8
1
2

1
3

c(0
)

c(k
)

c(k
+

1
)

c(N
�

1
)

P
a
rk

in
g

S
p
a
ces

S
ta

g
e

1
S
ta

g
e

2
S
ta

g
e

3
S
ta

g
e

N
N

�
1

c(N
)

c(N
�

1
)

k
k

+
1

H
e
u
ristic

C
o
st

“
F
u
tu

re”
S
y
stem

x
k
+

1
=

f
k (x

k ,u
k ,w

k)
x

k
O

b
serva

tio
n
s

B
elief

S
ta

te
p

k
C

o
n
tro

ller
µ

k
C

o
n
tro

l
u

k
=

µ
k (p

k)
...

x
0

x
1

x
k

x
N

u
k

x
k
+

1

In
itia

l
S
ta

te
x

0
s

T
erm

in
a
l
S
ta

te
t

L
en

g
th

=
1

x
0

a
0

1
2

t
b

C
D

estin
a
tio

n

J
(x

k)!
0

fo
r

a
ll

p
-sta

b
le

⇡
fro

m
x

0
w

ith
x

0 2
X

a
n
d
⇡
2

P
p
,x

0
W

p
+

=
{
J
2

J
|
J

+

J}
W

p
+

fro
m

w
ith

in
W

p
+

P
ro

b
.
u

P
ro

b
.
1�

u
C

o
st

1
C

o
st

1�
p

u

J
(1

)
=

m
in �

c,a
+

J
(2

)

J
(2

)
=

b
+

J
(1

)

J
⇤

J
µ

J
µ
0
J

µ
00J

µ
0

J
µ

1
J

µ
2

J
µ

3
J

µ
0

f
(x

;✓
k)

f
(x

;✓
k
+

1)
x

k
F

(x
k)

F
(x

)
x

k
+

1
F

(x
k
+

1)
x

k
+

2
x
⇤

=
F

(x
⇤)

F
µ

k(x
)

F
µ

k
+

1(x
)

Im
p
ro

p
er

p
o
licy

µ

P
ro

p
er

p
o
licy

µ

1

In
itia

l
S
ta

te
1
5

1
5

1
8

4
1
9

9
2
1

2
5

8
1
2

1
3

c(0
)

c(k
)

c(k
+

1
)

c(N
�

1
)

P
a
rk

in
g

S
p
a
ces

S
ta

g
e

1
S
ta

g
e

2
S
ta

g
e

3
S
ta

g
e

N
N

�
1

c(N
)

c(N
�

1
)

k
k

+
1

H
e
u
ristic

C
o
st

“
F
u
tu

re”
S
y
stem

x
k
+

1
=

f
k (x

k ,u
k ,w

k)
x

k
O

b
serva

tio
n
s

B
elief

S
ta

te
p

k
C

o
n
tro

ller
µ

k
C

o
n
tro

l
u

k
=

µ
k (p

k)
...

x
0

x
1

x
k

x
N

u
k

x
k
+

1

In
itia

l
S
ta

te
x

0
s

T
erm

in
a
l
S
ta

te
t

L
en

g
th

=
1

x
0

a
0

1
2

t
b

C
D

estin
a
tio

n

J
(x

k)!
0

fo
r

a
ll

p
-sta

b
le

⇡
fro

m
x

0
w

ith
x

0 2
X

a
n
d
⇡
2

P
p
,x

0
W

p
+

=
{
J
2

J
|
J

+

J}
W

p
+

fro
m

w
ith

in
W

p
+

P
ro

b
.
u

P
ro

b
.
1�

u
C

o
st

1
C

o
st

1�
p

u

J
(1

)
=

m
in �

c,a
+

J
(2

)

J
(2

)
=

b
+

J
(1

)

J
⇤

J
µ

J
µ
0
J

µ
00J

µ
0

J
µ

1
J

µ
2

J
µ

3
J

µ
0

f
(x

;✓
k)

f
(x

;✓
k
+

1)
x

k
F

(x
k)

F
(x

)
x

k
+

1
F

(x
k
+

1)
x

k
+

2
x
⇤

=
F

(x
⇤)

F
µ

k(x
)

F
µ

k
+

1(x
)

Im
p
ro

p
er

p
o
licy

µ

P
ro

p
er

p
o
licy

µ

1

Initial State 15 1 5 18 4 19 9 21 25 8 12 13 c(0) c(k) c(k + 1) c(N � 1) Parking Spaces

Stage 1 Stage 2 Stage 3 Stage N N � 1 c(N) c(N � 1) k k + 1

Heuristic Cost “Future” System xk+1 = fk(xk, uk, wk) xk Observations

Belief State pk Controller µk Control uk = µk(pk) . . .

x0 x1 xk xN uk xk+1

Initial State x0 s Terminal State t Length = 1

x0 a 0 1 2 t b C Destination

J(xk) ! 0 for all p-stable ⇡ from x0 with x0 2 X and ⇡ 2 Pp,x0 Wp+ = {J 2 J | J+ J} Wp+ from

within Wp+

Prob. u Prob. 1 � u Cost 1 Cost 1 �p
u

J(1) = min
�
c, a + J(2)

J(2) = b + J(1)

J⇤ Jµ Jµ0 Jµ00Jµ0 Jµ1 Jµ2 Jµ3 Jµ0

f(x; ✓k) f(x; ✓k+1) xk F (xk) F (x) xk+1 F (xk+1) xk+2 x⇤ = F (x⇤) Fµk
(x) Fµk+1

(x)

Improper policy µ

Proper policy µ

1

Initial State 15 1 5 18 4 19 9 21 25 8 12 13 c(0) c(k) c(k + 1) c(N � 1) Parking Spaces

Stage 1 Stage 2 Stage 3 Stage N N � 1 c(N) c(N � 1) k k + 1

Heuristic Cost “Future” System xk+1 = fk(xk, uk, wk) xk Observations

Belief State pk Controller µk Control uk = µk(pk) . . .

x0 x1 xk xN uk xk+1

Initial State x0 s Terminal State t Length = 1

x0 a 0 1 2 t b C Destination

J(xk) ! 0 for all p-stable ⇡ from x0 with x0 2 X and ⇡ 2 Pp,x0 Wp+ = {J 2 J | J+ J} Wp+ from

within Wp+

Prob. u Prob. 1 � u Cost 1 Cost 1 �p
u

J(1) = min
�
c, a + J(2)

J(2) = b + J(1)

J⇤ Jµ Jµ0 Jµ00Jµ0 Jµ1 Jµ2 Jµ3 Jµ0

f(x; ✓k) f(x; ✓k+1) xk F (xk) F (x) xk+1 F (xk+1) xk+2 x⇤ = F (x⇤) Fµk
(x) Fµk+1

(x)

Improper policy µ

Proper policy µ

1

Initial State 15 1 5 18 4 19 9 21 25 8 12 13 c(0) c(k) c(k + 1) c(N � 1) Parking Spaces

Stage 1 Stage 2 Stage 3 Stage N N � 1 c(N) c(N � 1) k k + 1

Heuristic Cost “Future” System xk+1 = fk(xk, uk, wk) xk Observations

Belief State pk Controller µk Control uk = µk(pk) . . .

x0 x1 xk xN uk xk+1

Initial State x0 s Terminal State t Length = 1

x0 a 0 1 2 t b C Destination

J(xk) ! 0 for all p-stable ⇡ from x0 with x0 2 X and ⇡ 2 Pp,x0 Wp+ = {J 2 J | J+ J} Wp+ from

within Wp+

Prob. u Prob. 1 � u Cost 1 Cost 1 �p
u

J(1) = min
�
c, a + J(2)

J(2) = b + J(1)

J⇤ Jµ Jµ0 Jµ00Jµ0 Jµ1 Jµ2 Jµ3 Jµ0

f(x; ✓k) f(x; ✓k+1) xk F (xk) F (x) xk+1 F (xk+1) xk+2 x⇤ = F (x⇤) Fµk
(x) Fµk+1

(x)

Improper policy µ

Proper policy µ

1

Initial State 15 1 5 18 4 19 9 21 25 8 12 13 c(0) c(k) c(k + 1) c(N � 1) Parking Spaces

Stage 1 Stage 2 Stage 3 Stage N N � 1 c(N) c(N � 1) k k + 1

Heuristic Cost “Future” System xk+1 = fk(xk, uk, wk) xk Observations

Belief State pk Controller µk Control uk = µk(pk) . . .

x0 x1 xk xN uk u0
k u00

k xk+1

Initial State x0 s Terminal State t Length = 1

x0 a 0 1 2 t b C Destination

J(xk) ! 0 for all p-stable ⇡ from x0 with x0 2 X and ⇡ 2 Pp,x0 Wp+ = {J 2 J | J+ J} Wp+ from

within Wp+

Prob. u Prob. 1 � u Cost 1 Cost 1 �p
u

J(1) = min
�
c, a + J(2)

J(2) = b + J(1)

J⇤ Jµ Jµ0 Jµ00Jµ0 Jµ1 Jµ2 Jµ3 Jµ0

f(x; ✓k) f(x; ✓k+1) xk F (xk) F (x) xk+1 F (xk+1) xk+2 x⇤ = F (x⇤) Fµk
(x) Fµk+1

(x)

Improper policy µ

Proper policy µ

1

Initial State 15 1 5 18 4 19 9 21 25 8 12 13 c(0) c(k) c(k + 1) c(N − 1) Parking Spaces

Stage 1 Stage 2 Stage 3 Stage N N − 1 c(N) c(N − 1) k k + 1

Heuristic Cost Heuristic “Future” System xk+1 = fk(xk, uk, wk) xk Observations

Belief State pk Controller µk Control uk = µk(pk) . . . Q-Factors Current State xk

x0 x1 xk xN x′
N x′′

N uk u′
k u′′

k xk+1 x′
k+1 x′′

k+1

Initial State x0 s Terminal State t Length = 1

x0 a 0 1 2 t b C Destination

J(xk) → 0 for all p-stable π from x0 with x0 ∈ X and π ∈ Pp,x0 Wp+ = {J ∈ J | J+ ≤ J} Wp+ from

within Wp+

Prob. u Prob. 1 − u Cost 1 Cost 1 − √
u

J(1) = min
{
c, a + J(2)

}

J(2) = b + J(1)

J∗ Jµ Jµ′ Jµ′′Jµ0 Jµ1 Jµ2 Jµ3 Jµ0

f(x; θk) f(x; θk+1) xk F (xk) F (x) xk+1 F (xk+1) xk+2 x∗ = F (x∗) Fµk
(x) Fµk+1

(x)

Improper policy µ

Proper policy µ

1

Initial State 15 1 5 18 4 19 9 21 25 8 12 13 c(0) c(k) c(k + 1) c(N − 1) Parking Spaces

Stage 1 Stage 2 Stage 3 Stage N N − 1 c(N) c(N − 1) k k + 1

Heuristic Cost Heuristic “Future” System xk+1 = fk(xk, uk, wk) xk Observations

Belief State pk Controller µk Control uk = µk(pk) . . . Q-Factors Current State xk

x0 x1 xk xN x′
N x′′

N uk u′
k u′′

k xk+1 x′
k+1 x′′

k+1

Initial State x0 s Terminal State t Length = 1

x0 a 0 1 2 t b C Destination

J(xk) → 0 for all p-stable π from x0 with x0 ∈ X and π ∈ Pp,x0 Wp+ = {J ∈ J | J+ ≤ J} Wp+ from

within Wp+

Prob. u Prob. 1 − u Cost 1 Cost 1 − √
u

J(1) = min
{
c, a + J(2)

}

J(2) = b + J(1)

J∗ Jµ Jµ′ Jµ′′Jµ0 Jµ1 Jµ2 Jµ3 Jµ0

f(x; θk) f(x; θk+1) xk F (xk) F (x) xk+1 F (xk+1) xk+2 x∗ = F (x∗) Fµk
(x) Fµk+1

(x)

Improper policy µ

Proper policy µ

1

Start End Plus Terminal Cost Approximation S1 S2 S3 S` Sm�1 Sm

State i y(i) Ay(i) + b �1(i, v) �m(i, v) �2(i, v) Ĵ(i, v) = r0�(i, v)

Deterministic Transition xk+1 = fk(xk, uk)

Cost Vector r⇤ J̃1 = Corrected V Enlarged State Space Cost J̃0 Cost J̃1 Cost r⇤

Representative States Controls u are associated with states i

N Stages jN�1 jN i 2 Ix j 2 Iy

Sx1 Sx` Sxm x1 x` xm r⇤x1
r⇤x`

r⇤xm
Footprint Sets J̃(i) J̃(j) =

P
y2A �jyr⇤y

min
u2U(i)

nX

j=1

pij(u)
�
g(i, u, j) + ↵J̃(j)

�
i = x Ix

⇡/4 Sample State xs
k Sample Control us

k Sample Next State xs
k+1 Sample Transition Cost gs

k Simulator

Representative States x (Coarse Grid) Critic Actor Approximate PI Aggregate Problem

p̂xy(u) =

nX

j=1

pxj(u)�jy ĝ(x, u) =

nX

j=1

pxj(u)g(x, u, j)

Range of Weighted Projections J⇤(i) Original States to States (Fine Grid) Original State Space

dxi = 0 for i /2 Ix �jy = 1 for j 2 Iy �jy = 0 or 1 for all j and y Each j connects to a single x

x pxj1(u) pxj2(u) pxj3(u) �j1y1 �j1y2 �j1y3 �jy with Aggregation Probabilities �jy = 0 or 1

Relate to Rm r⇤m�1 r⇤m x0
k+1

Policy Q-Factor Evaluation Evaluate Q-Factor Qµ of Current policy µ Width (✏ + 2↵�)/(1 � ↵)

Random Transition xk+1 = fk(xk, uk, wk) Random Cost gk(xk, uk, wk) Representative Features

Control v (j, v) Cost = 0 State-Control Pairs Transitions under policy µ Evaluate Cost Function

1

Initial State 15 1 5 18 4 19 9 21 25 8 12 13 c(0) c(k) c(k + 1) c(N � 1) Parking Spaces

Stage 1 Stage 2 Stage 3 Stage N N � 1 c(N) c(N � 1) k k + 1

Heuristic Cost “Future” System xk+1 = fk(xk, uk, wk) xk Observations

Belief State pk Controller µk Control uk = µk(pk)

x0 x1 xk xN uk xk+1

Initial State x0 s Terminal State t Length = 1

x0 a 0 1 2 t b C Destination

J(xk) ! 0 for all p-stable ⇡ from x0 with x0 2 X and ⇡ 2 Pp,x0 Wp+ = {J 2 J | J+ J} Wp+ from

within Wp+

Prob. u Prob. 1 � u Cost 1 Cost 1 �p
u

J(1) = min
�
c, a + J(2)

J(2) = b + J(1)

J⇤ Jµ Jµ0 Jµ00Jµ0 Jµ1 Jµ2 Jµ3 Jµ0

f(x; ✓k) f(x; ✓k+1) xk F (xk) F (x) xk+1 F (xk+1) xk+2 x⇤ = F (x⇤) Fµk
(x) Fµk+1

(x)

Improper policy µ

Proper policy µ

1

x
00
k+1 x

000
k+1 xk+1 xk+1

Iteration backtracks to the previously visited node x̄2

x0 x1 x2 x3 x4 x5 x6 xk x` Layer 1 Layer 2 Layer k ` x J̃(x`)

Subgraph S Tree T TµJ = �µ + (1 � µ2)J K̂

x̄1 x̄2 Path P

Path P Path P x7 Tree T Path P Subgraph S

Terminal Cost Approximation State 1 State 2 Acyclic Graph G

2-State/2-Control Example (a) (b) (c)

E↵ective Cost Approximation Value Space Approximation State 1
State 2 (TJ)(1)

J̃ Jµ̃ Jµ̃ = Tµ̃Jµ̃ Tµ̃J TJ = minµ TµJ Cost of µ̃

Generic stable policy µ TµJ Generic unstable policy µ0 Tµ0J

Cost of Truncated Rollout Policy µ̃ 1 of the graph of T

J⇤ J⇤(1) J⇤(2) (TJ⇤)(1) = J⇤(1) (TJ⇤)(2) = J⇤(2)

TJ = minµ TµJ One-Step Lookahead Policy Cost l J̃ Jµ̃ = Tµ̃Jµ̃ Tµ̃J

TJ = minµ TµJ Multistep Lookahead Policy Cost l J̃ Jµ̃ = Tµ̃Jµ̃ Tµ̃J

Multistep Lookahead Policy Cost J is a function of x

FL(K) = (a + bL)2K + q + rL2 FL̃(K)

T 2J̃ T J̃ J̃ Region where Sequential Improvement Holds TJ J Tµ̃J

TJ Instability Region Stability Region 0 Tm
µ J̃

1

x
00
k+1 x

000
k+1 xk+1 xk+1

Iteration backtracks to the previously visited node x̄2

x0 x1 x2 x3 x4 x5 x6 xk x` Layer 1 Layer 2 Layer k ` x J̃(x`)

Subgraph S Tree T TµJ = �µ + (1 � µ2)J K̂

x̄1 x̄2 Path P

Path P Path P x7 Tree T Path P Subgraph S

Terminal Cost Approximation State 1 State 2 Acyclic Graph G

2-State/2-Control Example (a) (b) (c)

E↵ective Cost Approximation Value Space Approximation State 1
State 2 (TJ)(1)

J̃ Jµ̃ Jµ̃ = Tµ̃Jµ̃ Tµ̃J TJ = minµ TµJ Cost of µ̃

Generic stable policy µ TµJ Generic unstable policy µ0 Tµ0J

Cost of Truncated Rollout Policy µ̃ 1 of the graph of T

J⇤ J⇤(1) J⇤(2) (TJ⇤)(1) = J⇤(1) (TJ⇤)(2) = J⇤(2)

TJ = minµ TµJ One-Step Lookahead Policy Cost l J̃ Jµ̃ = Tµ̃Jµ̃ Tµ̃J

TJ = minµ TµJ Multistep Lookahead Policy Cost l J̃ Jµ̃ = Tµ̃Jµ̃ Tµ̃J

Multistep Lookahead Policy Cost J is a function of x

FL(K) = (a + bL)2K + q + rL2 FL̃(K)

T 2J̃ T J̃ J̃ Region where Sequential Improvement Holds TJ J Tµ̃J

TJ Instability Region Stability Region 0 Tm
µ J̃

1

x
00
k+1 x

000
k+1 xk+1 ✓1 ✓2 Next States Final States

Iteration backtracks to the previously visited node x̄2

x0 x1 x2 x3 x4 x5 x6 xk x` Layer 1 Layer 2 Layer k ` x J̃(x`)

Subgraph S Tree T TµJ = �µ + (1 � µ2)J K̂

x̄1 x̄2 Path P

Path P Path P x7 Tree T Path P Subgraph S

Terminal Cost Approximation State 1 State 2 Acyclic Graph G

2-State/2-Control Example (a) (b) (c)

E↵ective Cost Approximation Value Space Approximation State 1
State 2 (TJ)(1)

J̃ Jµ̃ Jµ̃ = Tµ̃Jµ̃ Tµ̃J TJ = minµ TµJ Cost of µ̃

Generic stable policy µ TµJ Generic unstable policy µ0 Tµ0J

Cost of Truncated Rollout Policy µ̃ 1 of the graph of T

J⇤ J⇤(1) J⇤(2) (TJ⇤)(1) = J⇤(1) (TJ⇤)(2) = J⇤(2)

TJ = minµ TµJ One-Step Lookahead Policy Cost l J̃ Jµ̃ = Tµ̃Jµ̃ Tµ̃J

TJ = minµ TµJ Multistep Lookahead Policy Cost l J̃ Jµ̃ = Tµ̃Jµ̃ Tµ̃J

Multistep Lookahead Policy Cost J is a function of x

FL(K) = (a + bL)2K + q + rL2 FL̃(K)

T 2J̃ T J̃ J̃ Region where Sequential Improvement Holds TJ J Tµ̃J

TJ Instability Region Stability Region 0 Tm
µ J̃

1

θ1 θ2 θ3 θ4

Function f(u) = θu u θ1 θ2

z1 = θ1 + w1 z2 = θ2 + w2 z3 = θ3 + w3 z4 = θ4 + w4

Path Extension: ppred(nk) > psucc(nk) or pred(nk) succ(nk) nk Extension Contraction ε or

θ1 θ2 θ3 θ4 u1 u2 u3 uN Origin Node Destination Node r t

Path Extension: ppred(nk) > apred(nk)nk
+ anksucc(nk) + psucc(nk)

Path Contraction: ppred(nk) ≤ psucc(nk) apred(nk)nk
+ anksucc(nk) + psucc(nk)

(u1) (u1, u2) (u1, u2, u3) u = (u1, . . . , uN) Nodes

ppred(nk) − apred(nk)nk
anksucc(nk) + psucc(nk) apred(nk)nk

+ anksucc(nk) + psucc(nk)

ppred(nk) apred(nk)nk
+ pnk pnk ≤ ε or

0 1 2 3 4 5 6 7 8 9 s t L n n + 1 n − 1 1′ 2′ 3′ ... 2.5 r = 3 i j aij

Acyclic Graph Tree-Like Structure ps = 3 p1 = 3 p2 = 2 p3 = 3.2 p4 = 1 p5 = 1 p6 = 1.2 p7 = 1.5

p8 = 1 p9 = 1 pt = 0 pt = −0.5 Large ε Small ε

Interval I Interval II Interval III Interval IV Ks K∗ Kµ K − 1
2 −µ −1 J 0 Jµ = − 1

µ TµJ = −µ+(1−µ2)J

TJ = minµ∈(0,1] TµJ

L̃ = − abK̃

r + b2K̃

Region of Instability

. . . P Region of Stability TµJ = −µ + (1 − µ2)J K̂ Extension

Price Rise

State 1 State 2 K∗ K∗ = 0 K̄ K̂ 2-State/2-Control Example Contraction

Effective Cost Approximation Value Space Approximation State 1 State 2 (TJ)(1)

J̃ Jµ̃ Jµ̃ = Tµ̃Jµ̃ Tµ̃J TJ = minµ TµJ Cost of µ̃ − r
b2

Generic stable policy µ TµJ Generic unstable policy µ′ Tµ′J

Cost of Truncated Rollout Policy µ̃ 1 of the graph of T

J∗ J∗(1) J∗(2) (TJ∗)(1) = J∗(1) (TJ∗)(2) = J∗(2)

TJ = minµ TµJ One-Step Lookahead Policy Cost l J̃ Jµ̃ = Tµ̃Jµ̃ Tµ̃J

TJ = minµ TµJ Multistep Lookahead Policy Cost l J̃ Jµ̃ = Tµ̃Jµ̃ Tµ̃J

1

θ1 θ2 θ3 θ4

Function f(u) = θu u θ1 θ2

z1 = θ1 + w1 z2 = θ2 + w2 z3 = θ3 + w3 z4 = θ4 + w4

Path Extension: ppred(nk) > psucc(nk) or pred(nk) succ(nk) nk Extension Contraction ε or

θ1 θ2 θ3 θ4 u1 u2 u3 uN Origin Node Destination Node r t

Path Extension: ppred(nk) > apred(nk)nk
+ anksucc(nk) + psucc(nk)

Path Contraction: ppred(nk) ≤ psucc(nk) apred(nk)nk
+ anksucc(nk) + psucc(nk)

(u1) (u1, u2) (u1, u2, u3) u = (u1, . . . , uN) Nodes

ppred(nk) − apred(nk)nk
anksucc(nk) + psucc(nk) apred(nk)nk

+ anksucc(nk) + psucc(nk)

ppred(nk) apred(nk)nk
+ pnk pnk ≤ ε or

0 1 2 3 4 5 6 7 8 9 s t L n n + 1 n − 1 1′ 2′ 3′ ... 2.5 r = 3 i j aij

Acyclic Graph Tree-Like Structure ps = 3 p1 = 3 p2 = 2 p3 = 3.2 p4 = 1 p5 = 1 p6 = 1.2 p7 = 1.5

p8 = 1 p9 = 1 pt = 0 pt = −0.5 Large ε Small ε

Interval I Interval II Interval III Interval IV Ks K∗ Kµ K − 1
2 −µ −1 J 0 Jµ = − 1

µ TµJ = −µ+(1−µ2)J

TJ = minµ∈(0,1] TµJ

L̃ = − abK̃

r + b2K̃

Region of Instability

. . . P Region of Stability TµJ = −µ + (1 − µ2)J K̂ Extension

Price Rise

State 1 State 2 K∗ K∗ = 0 K̄ K̂ 2-State/2-Control Example Contraction

Effective Cost Approximation Value Space Approximation State 1 State 2 (TJ)(1)

J̃ Jµ̃ Jµ̃ = Tµ̃Jµ̃ Tµ̃J TJ = minµ TµJ Cost of µ̃ − r
b2

Generic stable policy µ TµJ Generic unstable policy µ′ Tµ′J

Cost of Truncated Rollout Policy µ̃ 1 of the graph of T

J∗ J∗(1) J∗(2) (TJ∗)(1) = J∗(1) (TJ∗)(2) = J∗(2)

TJ = minµ TµJ One-Step Lookahead Policy Cost l J̃ Jµ̃ = Tµ̃Jµ̃ Tµ̃J

TJ = minµ TµJ Multistep Lookahead Policy Cost l J̃ Jµ̃ = Tµ̃Jµ̃ Tµ̃J

1

θ1 θ2 θ3 θ4

Function f(u) = θu u θ1 θ2

z1 = θ1 + w1 z2 = θ2 + w2 z3 = θ3 + w3 z4 = θ4 + w4

Path Extension: ppred(nk) > psucc(nk) or pred(nk) succ(nk) nk Extension Contraction ε or

θ1 θ2 θ3 θ4 u1 u2 u3 uN Origin Node Destination Node r t

Path Extension: ppred(nk) > apred(nk)nk
+ anksucc(nk) + psucc(nk)

Path Contraction: ppred(nk) ≤ psucc(nk) apred(nk)nk
+ anksucc(nk) + psucc(nk)

(u1) (u1, u2) (u1, u2, u3) u = (u1, . . . , uN) Nodes

ppred(nk) − apred(nk)nk
anksucc(nk) + psucc(nk) apred(nk)nk

+ anksucc(nk) + psucc(nk)

ppred(nk) apred(nk)nk
+ pnk pnk ≤ ε or

0 1 2 3 4 5 6 7 8 9 s t L n n + 1 n − 1 1′ 2′ 3′ ... 2.5 r = 3 i j aij

Acyclic Graph Tree-Like Structure ps = 3 p1 = 3 p2 = 2 p3 = 3.2 p4 = 1 p5 = 1 p6 = 1.2 p7 = 1.5

p8 = 1 p9 = 1 pt = 0 pt = −0.5 Large ε Small ε

Interval I Interval II Interval III Interval IV Ks K∗ Kµ K − 1
2 −µ −1 J 0 Jµ = − 1

µ TµJ = −µ+(1−µ2)J

TJ = minµ∈(0,1] TµJ

L̃ = − abK̃

r + b2K̃

Region of Instability

. . . P Region of Stability TµJ = −µ + (1 − µ2)J K̂ Extension

Price Rise

State 1 State 2 K∗ K∗ = 0 K̄ K̂ 2-State/2-Control Example Contraction

Effective Cost Approximation Value Space Approximation State 1 State 2 (TJ)(1)

J̃ Jµ̃ Jµ̃ = Tµ̃Jµ̃ Tµ̃J TJ = minµ TµJ Cost of µ̃ − r
b2

Generic stable policy µ TµJ Generic unstable policy µ′ Tµ′J

Cost of Truncated Rollout Policy µ̃ 1 of the graph of T

J∗ J∗(1) J∗(2) (TJ∗)(1) = J∗(1) (TJ∗)(2) = J∗(2)

TJ = minµ TµJ One-Step Lookahead Policy Cost l J̃ Jµ̃ = Tµ̃Jµ̃ Tµ̃J

TJ = minµ TµJ Multistep Lookahead Policy Cost l J̃ Jµ̃ = Tµ̃Jµ̃ Tµ̃J

1

θ1 θ2 θ3 θ4

Function f(u) = θu u θ1 θ2

z1 = θ1 + w1 z2 = θ2 + w2 z3 = θ3 + w3 z4 = θ4 + w4

Path Extension: ppred(nk) > psucc(nk) or pred(nk) succ(nk) nk Extension Contraction ε or

θ1 θ2 θ3 θ4 u1 u2 u3 uN Origin Node Destination Node r t

Path Extension: ppred(nk) > apred(nk)nk
+ anksucc(nk) + psucc(nk)

Path Contraction: ppred(nk) ≤ psucc(nk) apred(nk)nk
+ anksucc(nk) + psucc(nk)

(u1) (u1, u2) (u1, u2, u3) u = (u1, . . . , uN) Nodes

ppred(nk) − apred(nk)nk
anksucc(nk) + psucc(nk) apred(nk)nk

+ anksucc(nk) + psucc(nk)

ppred(nk) apred(nk)nk
+ pnk pnk ≤ ε or

0 1 2 3 4 5 6 7 8 9 s t L n n + 1 n − 1 1′ 2′ 3′ ... 2.5 r = 3 i j aij

Acyclic Graph Tree-Like Structure ps = 3 p1 = 3 p2 = 2 p3 = 3.2 p4 = 1 p5 = 1 p6 = 1.2 p7 = 1.5

p8 = 1 p9 = 1 pt = 0 pt = −0.5 Large ε Small ε

Interval I Interval II Interval III Interval IV Ks K∗ Kµ K − 1
2 −µ −1 J 0 Jµ = − 1

µ TµJ = −µ+(1−µ2)J

TJ = minµ∈(0,1] TµJ

L̃ = − abK̃

r + b2K̃

Region of Instability

. . . P Region of Stability TµJ = −µ + (1 − µ2)J K̂ Extension

Price Rise

State 1 State 2 K∗ K∗ = 0 K̄ K̂ 2-State/2-Control Example Contraction

Effective Cost Approximation Value Space Approximation State 1 State 2 (TJ)(1)

J̃ Jµ̃ Jµ̃ = Tµ̃Jµ̃ Tµ̃J TJ = minµ TµJ Cost of µ̃ − r
b2

Generic stable policy µ TµJ Generic unstable policy µ′ Tµ′J

Cost of Truncated Rollout Policy µ̃ 1 of the graph of T

J∗ J∗(1) J∗(2) (TJ∗)(1) = J∗(1) (TJ∗)(2) = J∗(2)

TJ = minµ TµJ One-Step Lookahead Policy Cost l J̃ Jµ̃ = Tµ̃Jµ̃ Tµ̃J

TJ = minµ TµJ Multistep Lookahead Policy Cost l J̃ Jµ̃ = Tµ̃Jµ̃ Tµ̃J

1

θ1 θ2 θ3 θ4

Function f(u) = θu u θ1 θ2

z1 = θ1 + w1 z2 = θ2 + w2 z3 = θ3 + w3 z4 = θ4 + w4

Path Extension: ppred(nk) > psucc(nk) or pred(nk) succ(nk) nk Extension Contraction ε or

θ1 θ2 θ3 θ4 u1 u2 u3 uN Origin Node Destination Node r t

Path Extension: ppred(nk) > apred(nk)nk
+ anksucc(nk) + psucc(nk)

Path Contraction: ppred(nk) ≤ psucc(nk) apred(nk)nk
+ anksucc(nk) + psucc(nk)

(u1) (u1, u2) (u1, u2, u3) u = (u1, . . . , uN) Nodes

ppred(nk) − apred(nk)nk
anksucc(nk) + psucc(nk) apred(nk)nk

+ anksucc(nk) + psucc(nk)

ppred(nk) apred(nk)nk
+ pnk pnk ≤ ε or

0 1 2 3 4 5 6 7 8 9 s t L n n + 1 n − 1 1′ 2′ 3′ ... 2.5 r = 3 i j aij

Acyclic Graph Tree-Like Structure ps = 3 p1 = 3 p2 = 2 p3 = 3.2 p4 = 1 p5 = 1 p6 = 1.2 p7 = 1.5

p8 = 1 p9 = 1 pt = 0 pt = −0.5 Large ε Small ε

Interval I Interval II Interval III Interval IV Ks K∗ Kµ K − 1
2 −µ −1 J 0 Jµ = − 1

µ TµJ = −µ+(1−µ2)J

TJ = minµ∈(0,1] TµJ

L̃ = − abK̃

r + b2K̃

Region of Instability

. . . P Region of Stability TµJ = −µ + (1 − µ2)J K̂ Extension

Price Rise Base Policy π1 Base Policy π2

State 1 State 2 K∗ K∗ = 0 K̄ K̂ 2-State/2-Control Example Contraction

Effective Cost Approximation Value Space Approximation State 1 State 2 (TJ)(1)

J̃ Jµ̃ Jµ̃ = Tµ̃Jµ̃ Tµ̃J TJ = minµ TµJ Cost of µ̃ − r
b2

Generic stable policy µ TµJ Generic unstable policy µ′ Tµ′J

Cost of Truncated Rollout Policy µ̃ 1 of the graph of T

J∗ J∗(1) J∗(2) (TJ∗)(1) = J∗(1) (TJ∗)(2) = J∗(2)

TJ = minµ TµJ One-Step Lookahead Policy Cost l J̃ Jµ̃ = Tµ̃Jµ̃ Tµ̃J

TJ = minµ TµJ Multistep Lookahead Policy Cost l J̃ Jµ̃ = Tµ̃Jµ̃ Tµ̃J

1

θ1 θ2 θ3 θ4

Function f(u) = θu u θ1 θ2

z1 = θ1 + w1 z2 = θ2 + w2 z3 = θ3 + w3 z4 = θ4 + w4

Path Extension: ppred(nk) > psucc(nk) or pred(nk) succ(nk) nk Extension Contraction ε or

θ1 θ2 θ3 θ4 u1 u2 u3 uN Origin Node Destination Node r t

Path Extension: ppred(nk) > apred(nk)nk
+ anksucc(nk) + psucc(nk)

Path Contraction: ppred(nk) ≤ psucc(nk) apred(nk)nk
+ anksucc(nk) + psucc(nk)

(u1) (u1, u2) (u1, u2, u3) u = (u1, . . . , uN) Nodes

ppred(nk) − apred(nk)nk
anksucc(nk) + psucc(nk) apred(nk)nk

+ anksucc(nk) + psucc(nk)

ppred(nk) apred(nk)nk
+ pnk pnk ≤ ε or

0 1 2 3 4 5 6 7 8 9 s t L n n + 1 n − 1 1′ 2′ 3′ ... 2.5 r = 3 i j aij

Acyclic Graph Tree-Like Structure ps = 3 p1 = 3 p2 = 2 p3 = 3.2 p4 = 1 p5 = 1 p6 = 1.2 p7 = 1.5

p8 = 1 p9 = 1 pt = 0 pt = −0.5 Large ε Small ε

Interval I Interval II Interval III Interval IV Ks K∗ Kµ K − 1
2 −µ −1 J 0 Jµ = − 1

µ TµJ = −µ+(1−µ2)J

TJ = minµ∈(0,1] TµJ

L̃ = − abK̃

r + b2K̃

Region of Instability

. . . P Region of Stability TµJ = −µ + (1 − µ2)J K̂ Extension

Price Rise Base Policy π1 Base Policy π2

State 1 State 2 K∗ K∗ = 0 K̄ K̂ 2-State/2-Control Example Contraction

Effective Cost Approximation Value Space Approximation State 1 State 2 (TJ)(1)

J̃ Jµ̃ Jµ̃ = Tµ̃Jµ̃ Tµ̃J TJ = minµ TµJ Cost of µ̃ − r
b2

Generic stable policy µ TµJ Generic unstable policy µ′ Tµ′J

Cost of Truncated Rollout Policy µ̃ 1 of the graph of T

J∗ J∗(1) J∗(2) (TJ∗)(1) = J∗(1) (TJ∗)(2) = J∗(2)

TJ = minµ TµJ One-Step Lookahead Policy Cost l J̃ Jµ̃ = Tµ̃Jµ̃ Tµ̃J

TJ = minµ TµJ Multistep Lookahead Policy Cost l J̃ Jµ̃ = Tµ̃Jµ̃ Tµ̃J

1

θ1 θ2 θ3 θ4

Function f(u) = θu u θ1 θ2

z1 = θ1 + w1 z2 = θ2 + w2 z3 = θ3 + w3 z4 = θ4 + w4

Path Extension: ppred(nk) > psucc(nk) or pred(nk) succ(nk) nk Extension Contraction ε or

θ1 θ2 θ3 θ4 u1 u2 u3 uN Origin Node Destination Node r t

Path Extension: ppred(nk) > apred(nk)nk
+ anksucc(nk) + psucc(nk)

Path Contraction: ppred(nk) ≤ psucc(nk) apred(nk)nk
+ anksucc(nk) + psucc(nk)

(u1) (u1, u2) (u1, u2, u3) u = (u1, . . . , uN) Nodes

ppred(nk) − apred(nk)nk
anksucc(nk) + psucc(nk) apred(nk)nk

+ anksucc(nk) + psucc(nk)

ppred(nk) apred(nk)nk
+ pnk pnk ≤ ε or

0 1 2 3 4 5 6 7 8 9 s t L n n + 1 n − 1 1′ 2′ 3′ ... 2.5 r = 3 i j aij

Acyclic Graph Tree-Like Structure ps = 3 p1 = 3 p2 = 2 p3 = 3.2 p4 = 1 p5 = 1 p6 = 1.2 p7 = 1.5

p8 = 1 p9 = 1 pt = 0 pt = −0.5 Large ε Small ε

Interval I Interval II Interval III Interval IV Ks K∗ Kµ K − 1
2 −µ −1 J 0 Jµ = − 1

µ TµJ = −µ+(1−µ2)J

TJ = minµ∈(0,1] TµJ

L̃ = − abK̃

r + b2K̃

Region of Instability

. . . P Region of Stability TµJ = −µ + (1 − µ2)J K̂ Extension

Price Rise Base Policy π1 Base Policy π2

State 1 State 2 K∗ K∗ = 0 K̄ K̂ 2-State/2-Control Example Contraction

Effective Cost Approximation Value Space Approximation State 1 State 2 (TJ)(1)

J̃ Jµ̃ Jµ̃ = Tµ̃Jµ̃ Tµ̃J TJ = minµ TµJ Cost of µ̃ − r
b2

Generic stable policy µ TµJ Generic unstable policy µ′ Tµ′J

Cost of Truncated Rollout Policy µ̃ 1 of the graph of T

J∗ J∗(1) J∗(2) (TJ∗)(1) = J∗(1) (TJ∗)(2) = J∗(2)

TJ = minµ TµJ One-Step Lookahead Policy Cost l J̃ Jµ̃ = Tµ̃Jµ̃ Tµ̃J

TJ = minµ TµJ Multistep Lookahead Policy Cost l J̃ Jµ̃ = Tµ̃Jµ̃ Tµ̃J

1

θ1 θ2 θ3 θ4

Function f(u) = θu u θ1 θ2

z1 = θ1 + w1 z2 = θ2 + w2 z3 = θ3 + w3 z4 = θ4 + w4

Path Extension: ppred(nk) > psucc(nk) or pred(nk) succ(nk) nk Extension Contraction ε or

θ1 θ2 θ3 θ4 u1 u2 u3 uN Origin Node Destination Node r t

Path Extension: ppred(nk) > apred(nk)nk
+ anksucc(nk) + psucc(nk)

Path Contraction: ppred(nk) ≤ psucc(nk) apred(nk)nk
+ anksucc(nk) + psucc(nk)

(u1) (u1, u2) (u1, u2, u3) u = (u1, . . . , uN) Nodes

ppred(nk) − apred(nk)nk
anksucc(nk) + psucc(nk) apred(nk)nk

+ anksucc(nk) + psucc(nk)

ppred(nk) apred(nk)nk
+ pnk pnk ≤ ε or

0 1 2 3 4 5 6 7 8 9 s t L n n + 1 n − 1 1′ 2′ 3′ ... 2.5 r = 3 i j aij

Acyclic Graph Tree-Like Structure ps = 3 p1 = 3 p2 = 2 p3 = 3.2 p4 = 1 p5 = 1 p6 = 1.2 p7 = 1.5

p8 = 1 p9 = 1 pt = 0 pt = −0.5 Large ε Small ε

Interval I Interval II Interval III Interval IV Ks K∗ Kµ K − 1
2 −µ −1 J 0 Jµ = − 1

µ TµJ = −µ+(1−µ2)J

TJ = minµ∈(0,1] TµJ

L̃ = − abK̃

r + b2K̃

Region of Instability

. . . P Region of Stability TµJ = −µ + (1 − µ2)J K̂ Extension

Price Rise Base Policy π1 Base Policy π2

State 1 State 2 K∗ K∗ = 0 K̄ K̂ 2-State/2-Control Example Contraction

Effective Cost Approximation Value Space Approximation State 1 State 2 (TJ)(1)

J̃ Jµ̃ Jµ̃ = Tµ̃Jµ̃ Tµ̃J TJ = minµ TµJ Cost of µ̃ − r
b2

Generic stable policy µ TµJ Generic unstable policy µ′ Tµ′J

Cost of Truncated Rollout Policy µ̃ 1 of the graph of T

J∗ J∗(1) J∗(2) (TJ∗)(1) = J∗(1) (TJ∗)(2) = J∗(2)

TJ = minµ TµJ One-Step Lookahead Policy Cost l J̃ Jµ̃ = Tµ̃Jµ̃ Tµ̃J

TJ = minµ TµJ Multistep Lookahead Policy Cost l J̃ Jµ̃ = Tµ̃Jµ̃ Tµ̃J

1

System Observation Outcome Decision u on Next Observation

Minimize f over u = 1, . . . , m

Using measurements of the form z = f(u) + w (w is “noise”)

Black Box Model Decision About

ũk ∈ arg minuk∈Uk(xk) Q̂k(xk, uk) Average Q-factors Q̂k(xk, uk)

Control/Observation Type Selection Outcome Stop Observations

Control uk State xk xk+1 = fk(xk, θ, uk, wk) Controller

Unknown Parameter θ Estimate of θ (known distribution)

Corrected J̃ J̃ J* Cost J̃µ

(
F (i), r

)
of i ≈ Jµ(i) Jµ(i) Feature Map

J̃µ

(
F (i), r

)
: Feature-based parametric architecture State

r: Vector of weights Original States Aggregate States

Position “value” Move “probabilities” Simplify E{·}
Choose the Aggregation and Disaggregation Probabilities

Use a Neural Network or Other Scheme Form the Aggregate States
I1 Iq

Use a Neural Scheme or Other Scheme

Possibly Include “Handcrafted” Features

Generate Features F (i) of Formulate Aggregate Problem

Generate “Impoved” Policy µ̂ by “Solving” the Aggregate Problem

Same algorithm learned multiple games (Go, Shogi)

Aggregate costs r∗
! Cost function J̃0(i) Cost function J̃1(j)

Approximation in a space of basis functions Plays much better than
all chess programs

Cost αkg(i, u, j) Transition probabilities pij(u) Wp

Controlled Markov Chain Evaluate Approximate Cost J̃µ of

Evaluate Approximate Cost J̃µ

(
F (i)

)
of

F (i) =
(
F1(i), . . . , Fs(i)

)
: Vector of Features of i

J̃µ

(
F (i)

)
: Feature-based architecture Final Features

If J̃µ

(
F (i), r

)
=

∑s
!=1 F!(i)r! it is a linear feature-based architecture

(r1, . . . , rs: Scalar weights)

Wp: Functions J ≥ Ĵp with J(xk) → 0 for all p-stable π

1

System Observation Outcome Decision u on Next Observation

Minimize f over u = 1, . . . , m

Using measurements of the form z = f(u) + w (w is “noise”)

Black Box Model Decision About

ũk ∈ arg minuk∈Uk(xk) Q̂k(xk, uk) Average Q-factors Q̂k(xk, uk)

Control/Observation Type Selection Outcome Stop Observations

Control uk State xk xk+1 = fk(xk, θ, uk, wk) Controller

Unknown Parameter θ Estimate of θ (known distribution)

Corrected J̃ J̃ J* Cost J̃µ

(
F (i), r

)
of i ≈ Jµ(i) Jµ(i) Feature Map

J̃µ

(
F (i), r

)
: Feature-based parametric architecture State

r: Vector of weights Original States Aggregate States

Position “value” Move “probabilities” Simplify E{·}
Choose the Aggregation and Disaggregation Probabilities

Use a Neural Network or Other Scheme Form the Aggregate States
I1 Iq

Use a Neural Scheme or Other Scheme

Possibly Include “Handcrafted” Features

Generate Features F (i) of Formulate Aggregate Problem

Generate “Impoved” Policy µ̂ by “Solving” the Aggregate Problem

Same algorithm learned multiple games (Go, Shogi)

Aggregate costs r∗
! Cost function J̃0(i) Cost function J̃1(j)

Approximation in a space of basis functions Plays much better than
all chess programs

Cost αkg(i, u, j) Transition probabilities pij(u) Wp

Controlled Markov Chain Evaluate Approximate Cost J̃µ of

Evaluate Approximate Cost J̃µ

(
F (i)

)
of

F (i) =
(
F1(i), . . . , Fs(i)

)
: Vector of Features of i

J̃µ

(
F (i)

)
: Feature-based architecture Final Features

If J̃µ

(
F (i), r

)
=

∑s
!=1 F!(i)r! it is a linear feature-based architecture

(r1, . . . , rs: Scalar weights)

Wp: Functions J ≥ Ĵp with J(xk) → 0 for all p-stable π

1

At xk , we minimize Q̂k (xk , uk), the average Q-factor of uk , defined by

Q̂k (xk , uk) =
m∑

i=1

bk,iQk (xk , uk , θ
i),

where Qk (xk , uk , θ
i) is the Q-factor computed assuming that θ = θi

Qk (xk , uk , θ
i) = gk (xk , θ

i , uk) + Jk+1,πi

(
fk (xk , θ

i , uk)
)

If πi ≡ π, cost improvement over π can be proved
Bertsekas Reinforcement Learning 21 / 23

A Rollout Approach for Solving On-Line the Wordle Puzzle (Joint Work
with Siddhant Bhambri and Amrita Bhattacharjee)

Overview
There is a hidden mystery word/code word θ drawn from an initial mystery list
according to a known distribution. In the standard version of the puzzle this
distribution is uniform.

The mystery list shrinks as a result of guesses/observations.

The guesses are chosen based on feedback about the mystery word provided by
the preceding guesses.

The puzzle is solved when the mystery list shrinks to a single element.

We want to minimize the expected number of guesses to solve the puzzle.

Important fact: The belief distribution over the current mystery list remains uniform
through the solution process.

This makes possible the solution by exact DP, with days of computation (Selby
2022).

Without the uniform initial belief distribution assumption (and/or small variations in
the problem structure), the exact solution would be impossible.

Rollout can solve near optimally the puzzle (and its variations) on-line much faster.

Bertsekas Reinforcement Learning 23 / 23

Playing Wordle Using an Online Rollout
Algorithm for Deterministic POMDPs

1Siddhant Bhambri Amrita Bhattacharjee Dimitri Bertsekas

The Wordle Puzzle

2

Easy mode

Hard mode

Wordle as a POMDP

3

Stage 1 Stage 2 Stage 3

States (S): Subset of the initial mystery list
of 2,315 words

Actions (A): Set of 12,972 guess words

Wordle as a POMDP

4

Stage 1 Stage 2 Stage 3

States (S): Subset of the initial mystery list
of 2,315 words

Actions (A): Set of 12,972 guess words

Transitions (T): probability of going from
one mystery word list to the next.

Wordle as a POMDP

5

Stage 1 Stage 2 Stage 3

States (S): Subset of the initial mystery list
of 2,315 words

Actions (A): Set of 12,972 guess words

Transitions (T): probability of going from
one mystery word list to the next.

Cost (C): cost of utilizing a guess word (=1)

Observations from the game: colored
observations for each letter

Optimal Solution using Dynamic Programming

Figure adapted from Bertsimas, D. and Paskov, A., 2022. An Exact and Interpretable Solution to Wordle.
Selby A., 2022. ``The best strategies for Wordle”.

Optimal Solution using Dynamic Programming

Figure adapted from Bertsimas, D. and Paskov, A., 2022. An Exact and Interpretable Solution to Wordle.
Selby A., 2022. ``The best strategies for Wordle”.

Optimal value function required to compute!

Enormous state space: 22315 ≅ 10697

Solution? - Approximate the Value Function!

Value Function --> Rollout Cost function: A Newton Step to solve the Bellman Eq.

A Reinforcement Learning Approach Towards POMDP and
Adaptive Control

Let us denote by xk and uk the state and control of the system at time k, respectively.

Let us also denote by θ the unknown system parameter. We assume that θ stays fixed over time, at one of m
known values θ1,...,θm:

The state xk is assumed to be perfectly observed by the controller at each time
k, and evolves according to a system equation

Finally, we assume that the following information vector,

is available at time k, and is used to compute the conditional probabilities

A Reinforcement Learning Approach Towards POMDP and
Adaptive Control

These probabilities form a vector

Following the choice of uk, a cost g(xk,θ,uk) is incurred, and we wish to choose controls to minimize the sum
of the incurred costs over a given number of stages N.

Note, bk can be updated according to an equation of the form

where Bk is an appropriate function, which can be viewed as a recursive estimator of θ.

A Reinforcement Learning Approach Towards Wordle

• We view the mystery word θ as the unknown system parameter,

• and we view the list of the mystery words as the set {θi | i = 1,...,m} of possible values for θ.

• The initial distribution of θ is uniform over the list of the mystery words, as is the case in the New York
Times version of the puzzle. It can then be shown that the belief distribution bk at stage k continues to
be uniform over the list of eligible mystery words (those that have not been excluded by the preceding
word guesses). This is an important simplification, which obviates the need for the estimator.

• An important consequence is that we may use as state xk the list of eligible mystery words at stage k,
which evolves according to a deterministic system equation xk+1 = f(xk,uk), with uk being the guess word
at stage k.

The Exact DP Algorithm and its Approximation in Value Space

The algorithm operates in the space of information vectors Ik. In particular, we denote by Jk(Ik) the optimal
cost starting at information vector Ik at time k. This vector evolves over a finite number of stages N
according to the equation

It admits a DP algorithm that takes the form

for k = 0, . . . , N − 1, with

where we use Eθ{· | Ik,uk} to denote expected value over θ, conditioned on Ik and uk.

The Exact DP Algorithm, Approximation in Value Space
& Rollout

We can rewrite this DP algorithm in terms of the conditional belief probabilities bk,i as

The control applied by the optimal policy is given by

The corresponding approximation in value space scheme with one-step lookahead minimization is given by

Bhambri, S., Bhattacharjee, A. and Bertsekas, D., 2022.
Reinforcement learning methods for wordle: A
pomdp/adaptive control approach. arXiv preprint
arXiv:2211.10298.

Base Heuristic for Wordle – Information Gain!

Information gain –
calculating entropy of the distribution

(roughly based on how much
using a word reduces the uncertainty

about the mystery word)

Figure adapted from Grant’s video (3Blue1Brown on YouTube)

Solving Wordle Using Rollout

Line 1: empty set to
store the average Q-
factors for each possible
action at stage k.

Solving Wordle Using Rollout

Line 4-8: for all possible
g ∈ 𝐺!, we perform the rollout
by applying the next action as
selected by our base heuristic
cost function 𝐻	and compute
the Q-factor or cost until we
reach the terminating state.

Solving Wordle Using Rollout

Line 10: find the
average cost for
solving the game for 𝑔	

Solving Wordle Using Rollout

Line 12: we select the
action ãk that
corresponds to the
minimum average cost
and apply it to state sk.

Results for Rollout vs Optimal Scores

Table: Results using ‘Maximum Information Gain’ as base heuristic, and with rollout.

Advantage of Rollout vs Only Base Heuristic

Advantage of Rollout vs Only Base Heuristic

Optimal Score: 3.5084

Our score: 3.5231

Limitations of Rollout

v The need for a reasonable base
policy – our experience with Wordle
has been that the rollout algorithm is
relatively insensitive to the base
policy (e.g., the GEP heuristic in the
paper).

Limitations of Rollout

v The need for a reasonable base
policy – our experience with Wordle
has been that the rollout algorithm is
relatively insensitive to the base
policy (e.g., the GEP heuristic).

v The need for a posterior distribution
estimator - this is a limitation of most
POMDP algorithms.

Limitations of Rollout

v The need for a reasonable base policy –
our experience with Wordle has been
that the rollout algorithm is relatively
insensitive to the base policy (e.g., the
GEP heuristic).

v The need for a posterior distribution
estimator - this is a limitation of most
POMDP algorithms.

v The number of Q-factors that need to be
computed by the algorithm online,
particularly for a large action space -
this difficulty may possibly be mitigated
by intelligently pruning the action space
or by offline training using a neural
network.

Summary

v We introduced a DP-based online rollout strategy as
a computationally efficient solution to deterministic
POMDPs with unknown parameters, whose exact
solution is intractable.

Summary

v We introduced a DP-based online rollout strategy as
a computationally efficient solution to deterministic
POMDPs with unknown parameters, whose exact
solution is intractable.

v We demonstrated our approach using the
challenging online puzzle Wordle, and empirically
show that our approach provides near-optimal
performance and impressive improvement over the
heuristic approaches that have been used so far.

Summary

v We introduced a DP-based online rollout strategy as
a computationally efficient solution to deterministic
POMDPs with unknown parameters, whose exact
solution is intractable.

v We demonstrated our approach using the
challenging online puzzle Wordle, and empirically
show that our approach provides near-optimal
performance and impressive improvement over the
heuristic approaches that have been used so far.

v Through the Wordle computational demonstration,
we identified the key obstacles in the way of solving
other challenging POMDP problems that involve
sequential estimation, possibly in conjunction with
simultaneous adaptive control.

Summary

v We introduced a DP-based online rollout strategy as a
computationally efficient solution to deterministic
POMDPs with unknown parameters, whose exact
solution is intractable.

v We demonstrated our approach using the challenging
online puzzle Wordle, and empirically show that our
approach provides near-optimal performance and
impressive improvement over the heuristic approaches
that have been used so far.

v Through the Wordle computational demonstration, we
identified the key obstacles in the way of solving other
challenging POMDP problems that involve sequential
estimation, possibly in conjunction with simultaneous
adaptive control.

Access our paperThank You!

Access our paper:
https://tinyurl.com/solving-wordle

Bhambri, S., Bhattacharjee, A. and Bertsekas, D.,
2023, August. Playing Wordle Using an Online
Rollout Algorithm for Deterministic POMDPs. In 2023
IEEE Conference on Games (CoG) (pp. 1-4). IEEE.

	Sequential Estimation of a Parameter Vector
	Bayesian Optimization of Functions with Hard-to-Compute Values
	Combined Estimation and Control - Adaptive Control
	On-Line Solution of the Wordle Puzzle by Rollout

