Topics in Reinforcement Learning:
AlphaZero, ChatGPT, Neuro-Dynamic Programming,
Model Predictive Control, Discrete Optimization
Arizona State University

Course CSE 691, Spring 2024

Links to Class Notes, Videolectures, and Slides at
http://web.mit.edu/dimitrib/www/RLbook.html

Dimitri P. Bertsekas
dbertsek@asu.edu

Lecture 9
Combined Estimation/Control: Sequential Estimation, Bayesian Optimization, and
Adaptive Control with a POMDP Approach
Application to the Wordle Puzzle

Bertsekas Reinforcement Learning 1/23



° Sequential Estimation of a Parameter Vector
e Bayesian Optimization of Functions with Hard-to-Compute Values
e Combined Estimation and Control - Adaptive Control

@ On-Line Solution of the Wordle Puzzle by Rollout

Bertsekas Reinforcement Learning 2/23



Sequential Estimation of a Parameter Vector 6

Observation )
Type System Observation

» Unknown Parameter >
Outcome

Selection

(known distribution)

Decision u on
Next Observation

Stop Observations
Estimate of 0

Use of costly observations to estimate a parameter vector 6

@ The number and type of observations are subject to choice

@ Instead, the outcomes of the observations obtained are evaluated on-line with a
view towards stopping or modifying the observation process

@ This involves sequential decision making, thus bringing DP to bear

Example: Select one of two hypotheses using costly sequential observations

Given a new observation, we can accept one of the hypotheses or obtain a new
observation at cost C (cf. quality control, the sequential probability ratio test, 1940s).

Bertsekas Reinforcement Learning 4/23




Applications of Sequential Estimation

@ Classical sequential experiment design problems or sequential sampling
strategies in statistics.

Select one of multiple hypotheses.
Design of clinical trials or tests for medical diagnosis.

@ Classical sequential search problems (e.g., search and rescue).

@ Route planning through a sensor network for sequential information collection.

@ Sequential decoding problems (e.g., the Mastermind and Wordle puzzles, to be
discussed later).

@ Surrogate and Bayesian optimization for minimizing “black box" functions (to be
discussed first).

An important distinction: Does the current choice of observation affect the
availability, the quality, or the cost of future observations?
@ If no, we call this a simple sequential estimation problem (we will discuss it first in
the context of Bayesian optimization).

@ [f yes, this can be viewed as a combined estimation and control problem, and can
be viewed within the context of adaptive control.

Bertsekas Reinforcement Learning 5/23



Surrogate Optimization of “Black Box" Functions

Observation | Black Box Model | Observation

X > Unknown Parameter >
Selection U OW p aramete Outcome

Decision About
Next Observation

Stop Observations
Estimate of 6

Minimize approximately a function whose values at given points are obtained
only through time-consuming calculation, simulation, or experimentation

@ Introduce a parametric model of the cost function with parameter 6.

@ Observe sequentially the true cost function at a few observation points.

@ Construct a model of the cost function (the surrogate) by estimating 6.

@ Minimize the surrogate to obtain a suboptimal solution.

@ How to select observation points based on results of previous observations?

@ Exploration-exploitation tradeoff: Observing at points likely to have near-optimal
value vs observing at points in relatively unexplored areas of the search space.

Bertsekas Reinforcement Learning 7123



Surrogate Optimization Examples

@ Geostatistical interpolation (“kriging" pioneered by the South African engineers
Matheron and Krige in a goldmining context): Identify locations of high gold
distribution based on samples from a few boreholes.

@ Design optimization, e.g., aerodynamic design using hardware prototypes,
materials design, drug development, etc.

@ Hyperparameter selection of machine-learning models, including the architectural
parameters of the deep neural network of AlphaZero.

Bertsekas Reinforcement Learning 8/23



Bayesian Optimization of a Black Box Function f

Function
fu)=0,| 21 =0 +w

0, 24 =04 +wy
03
0.
P R o
2 Minimize f overu=1,...,m
Using measurements of the form
zp =02 + w2 IR
z=f(u)+w (wis “noise”)
1 2 3 4 U

@ Introduce a parameter vector 0 = (01,...,0m) € R where 0, = f(u), i.e., 0 is f
@ Observations are of the form z = f(u) + w (important special case is w = 0)
@ Estimate 8 with N << m noisy measurements at chosen points uy, ..., Uy

@ We assume that 6 has a given a priori distribution by = (bo 1, - - - , bo.m) over R
(values of f at “neighboring” points should be correlated)
@ After observations at points u, .. ., ux of the form z,, = 6., + wy;, we choose the

next point ux.1 at which to observe the value of f.

@ Update the posterior distribution by with an estimator b1 = Bk (bx, Uk+1, Zu,,) (bx
is essentially the surrogate cost function after the kth observation)

@ Gaussian case: If by and the noises w, are Gaussian, bx can be updated using

closed form Gaussian process regression formulas.
Bertsekas Reinforcement Learning 9/23




lllustration of the True Cost Function f and its Surrogate

Black is the true cost function
Purple is the surrogate cost function

True Cost Function f(u)

Surrogate by / \

After 7 noise-free observations

The surrogate is specified by the posterior distribution bx (mean and standard deviation
at the different points are shown in the figure) J

Bertsekas Reinforcement Learning 10/23



Myopic Bayesian Optimization

Key Question: How to select sequentially the observation point uk.¢ given the
observation results zy,, . .., zy, from previously selected points vy, . .., Uk

A DP view

@ Introduce a POMDP model: The posterior b, (given the observations up to time k)
is the belief state, ux is the control, the belief estimator b1 = Bi(bxk, Uk+1, Zu,,, ) iS
the system. The cost function is based on the cost of the observations, and the
“quality” of the surrogate obtained at the end.

@ The dominant method in practice: Use a greedy/myopic policy, based on an
acquisition function.

@ The acquisition function Ax(bx, ux+1) is a heuristic measure of “benefit" for
selecting point ux.1 for observation when the belief state is bx.

@ Myopic policy: Selects the next point at which to observe, Ux.1, as

Uk41 € arg max }Ak(bk7uk+1)

@ An alternative method: Use rollout with a myopic base policy; it has been
advocated in several research works since 2016, with promising results.

Bertsekas Reinforcement Learning 11/23



Examples of Acquisition Functions for Myopic Bayesian Optimization

The myopic policy maximizes over ux¢ the acquisition function Ax(bx, Uk+1):

ak+1 € arg max Ak(bk, Uk+1)
U1 €{1,...,m}

A common example of acquisition function: Upper confidence bound
Ax(bk, u) = Ti(bk, u) + BRk(bxk, u), B > 0 is a tunable parameter

@ Here Ti(bk,u) = —Mean of f(u), and Rk(bx, u) = Standard deviation of f(u)
(under the posterior distribution by).

@ Tk(bxk, u) can be viewed as an exploitation index (encoding our desire to search
within parts of the space where f takes low value), while Rk(bx, u) can be viewed
as an exploration index (encoding our desire to search within parts of the space
that are relatively unexplored).

Another example of acquisition function: Expected improvement

Ax(bx, u) is the expected value of the reduction of f(u) relative to the minimal value of f
obtained up to time k (under the posterior distribution by).

V.

Bertsekas Reinforcement Learning 12/23



Maximization Example (From Wikipedia Article on BO): True Function is

Black, Surrogate Function is Purple; Observations are Noise-Free

After 6 observations

After 7 observations

Score (Model Performance)

Bertsekas Reinforcement Learning 13/23



Maximization Example Il

After 7 observations

g
2
3
4
g
2
e
2
&

After 8 observations

0.66

Score (Model Performance)

Bertsekas Reinforcement Learning 14/23



Maximization Example IlI

After 8 observations

0.33

8
E
s
5
-4
3
8
=
5
3
@

U

After 9 observations

0.66

\

7N =

Bertsekas Reinforcement Learning 15/23

Score (Model Performance)




Maximization Example IV

After 9 observations

=
a
B
<
]

25 066
5% 0.33

After 10 observations

Score (Model Performance)

Bertsekas Reinforcement Learning 16/23



DP Algorithm for POMDP Formulation of Bayesian Optimization

Je(bx) = min , {C(Um) + Ez,,, {JI:H (Bi(br, U1, Zuy1)) | Bres Ukt }]

U 1€{1,....m

where c(u) is the cost of observation at u. Proceeds backwards from a terminal cost

Ju(bn) = G(bwn) (measures the quality of the surrogate obtained at the end)

Approximation in value space (replace J;_ ; with Jki1)
Ucprcarg  min Qk(bx, Uki1)

Ugr1€{1,...,m}

where Qk(bx, uk+1) is the (approximate) Q-factor corresponding to the pair (bx, Uk+1):

Q (b, Uk11) = C(uks1) + Ezy,,, 3 Jnr1 (Bi(B Ukit, Zug,y)) | Bry Uk
k+1

Rollout

Use as Jk.1 the cost function of a myopic base heuristic based on an acquisition
function (or approximation thereof); first proposed by Lam, Wilcox, and Wolpert (2016),
and followed up by others (promising, but relatively untested at present).

Reinforcement Learning

Bertsekas 17/23



Truncated Rollout with a Myopic Base Heuristic

) L@
Possible
Obseryation 5 S S
Rollout with
Cyrrent Y E_B?s_e_f_’(zh_czl ______ L@
Pogterior Using an Stages
. . Acquisition Function Beyond
Truncation
B @
Truncated Horizon
e Lr@
— - @
Possible
Posteriors|bg11
f— — >

Q-Factor Calculation
Qr(br, ur+1)

Bertsekas Reinforcement Learning 18/23



Adaptive Control with a POMDP Formulation and Rollout

Control uy

System
1 = fr(k, 0, ur)
Parameter 6
(known distribution)

State xj

Deterministic system xx,1 = f(xk, 0, ux), 6 € {0',...,0™}: unknown parameter

@ ¢ has known initial distribution by and stays constant. It is observed indirectly
through perfect observation of xx

@ View 0 as part of an augmented state (xk, 6) that is partially observed
@ Bellman equation for optin;al cost function J;:

Ji(h) = min D bri (9%, 0', i) + it (s Ui, F(x4,¢', 1))
i=1

where Ik = (xo, . - -, Xk, Uo, - - - , Uk—1) is the information state at time k, and
bri=P{6=06"| Ik}, i=1,...,m,is the belief state (estimated on-line)

@ Approximation in value space: Use approximation J'(f(xx,6', ux)) in place of
Jis1 (I, Uk, f(xk, 0", ux)). Minimize over uy to obtain a one-step lookahead policy

@ Example 1: J' is the cost function of the optimal policy corresponding to ¢’
@ Example 2: J' is the cost function of a known policy assuming 6 = ¢ (this is rollout)

Bertsekas

Reinforcement Learning

20/23



Rollout for Adaptive Control with a POMDP Formulation

Next States

Base Policy 7!

Current State “&
Base Policy 72 @

Base Policy 7!

Base Policy 72

ge Q-factors Q. (., ug)

Uy, € argminy, v, (z,) Qi (Tr, ur)
At xx, we minimize @k(xk, ux), the average Q-factor of uy, defined by
A () .
Qk(Xk, ux) = Z br,i Qi (X, Uk, 0'),
i=1
where Q«(xk, ux, 8") is the Q-factor computed assuming that 6§ = ¢’

Qu(Xic, Uk, 0") = Gr(Xk, 0, tic) + s 1.i (Fie(Xk, 0, i)

v

If 7' = 7, cost improvement over 7 can be proved '

Bertsekas Reinforcement Learning 21/238




A Rollout Approach for Solving On-Line the Wordle Puzzle (Joint Work

with Siddhant Bhambri and Amrita Bhattacharjee)

Overview

@ There is a hidden mystery word/code word 6 drawn from an initial mystery list
according to a known distribution. In the standard version of the puzzle this
distribution is uniform.

@ The mystery list shrinks as a result of guesses/observations.

@ The guesses are chosen based on feedback about the mystery word provided by
the preceding guesses.

@ The puzzle is solved when the mystery list shrinks to a single element.
@ We want to minimize the expected number of guesses to solve the puzzle.

@ Important fact: The belief distribution over the current mystery list remains uniform
through the solution process.

@ This makes possible the solution by exact DP, with days of computation (Selby
2022).

@ Without the uniform initial belief distribution assumption (and/or small variations in
the problem structure), the exact solution would be impossible.

@ Rollout can solve near optimally the puzzle (and its variations) on-line much faster.

Bertsekas Reinforcement Learning 23/23



Playing Wordle Using an Online Rollout
Algorithm for Deterministic POMDPs [ESl

ieee

conference on
games

Siddhant Bhambri Amrita Bhattacharjee Dimitri Bertsekas



The Wordle Puzzle

w

Easy mode

BB

Hard mode

How To Play
Guess the Wordle in 6 tries.

e Each guess must be a valid 5-letter word.

e The color of the tiles will change to show how close your
guess was to the word.

Examples

WEARY

W is in the word and in the correct spot.

PIlLIL|s

lis in the word but in the wrong spot.

V/A/G U E

U is not in the word in any spot.

Q to link your stats.

A new puzzle is released daily at midnight. If you haven't
already, you can for our daily reminder email.

Have feedback? Email us at




STERN STERN

I N E R T

Stage 1 Stage 2 Stage 3

States (S): Subset of the initial mystery list
of 2,315 words

Actions (A): Set of 12,972 guess words



Wordle as a POMDP

States (S): Subset of the initial mystery list
of 2,315 words

Actions (A): Set of 12,972 guess words

Transitions (T): probability of going from

one mystery word list to the next.

Stage 1 Stage 2 Stage 3



Wordle as a POMDP

States (S): Subset of the initial mystery list
of 2,315 words

Actions (A): Set of 12,972 guess words

Transitions (T): probability of going from

one mystery word list to the next.

Cost (C): cost of utilizing a guess word (=1)

= Observations from the game: colored

Stage 1 Stage 2 Stage 3 observations for each letter



L)

HE BoEEl B




NHEEEGE BEn

3l EpEEE B
/\rr‘»rr\ Optimal value function required to compute!
'/ N Enormous state space: 22315 = 105%°%7




ak

Current State

Next States

Q — factors

Base Policy

Base Policy

Base Policy

Base Policy

T

T

T

T

Final States




A Reinforcement Learning Approach Towards POMDP and
Adaptive Control

Let us denote by x, and u, the state and control of the system at time k, respectively.

Let us also denote by 6 the unknown system parameter. We assume that 0 stays fixed over time, at one of m

known values 0,,...,0,,:
: 0c{0,...,0m}.

The state x, is assumed to be perfectly observed by the controller at each time

k, and evolves according to a system equation
Lk+1 = f(xkv Hauk)a

Finally, we assume that the following information vector,
I ={xo,...,Tk,uq, .., Ug—1},

is available at time k, and is used to compute the conditional probabilities

bk,iZP{9=9i|Ik}, z'=1,...,m.



A Reinforcement Learning Approach Towards POMDP and
Adaptive Control

These probabilities form a vector

bk: — (bk,la S 7bk,m)7

Following the choice of u,, a cost g(x,,6,u,) is incurred, and we wish to choose controls to minimize the sum
of the incurred costs over a given number of stages N.

Note, b, can be updated according to an equation of the form

bk-}—l — Bk(xka bk) Uk, xk-l—l)a

where B, is an appropriate function, which can be viewed as a recursive estimator of ©.



A Reinforcement Learning Approach Towards Wordle

We view the mystery word 6 as the unknown system parameter,
and we view the list of the mystery words as the set {6i | i = 1,...,m} of possible values for 6.

The initial distribution of 6 is uniform over the list of the mystery words, as is the case in the New York
Times version of the puzzle. It can then be shown that the belief distribution b, at stage k continues to
be uniform over the list of eligible mystery words (those that have not been excluded by the preceding
word guesses). This is an important simplification, which obviates the need for the estimator.

An important consequence is that we may use as state x, the list of eligible mystery words at stage k,
which evolves according to a deterministic system equation x,,, = f(x,,u,), with u, being the guess word
at stage k.



The Exact DP Algorithm and its Approximation in Value Space

The algorithm operates in the space of information vectors |,. In particular, we denote by J,(l,) the optimal
cost starting at information vector |, at time k. This vector evolves over a finite number of stages N
according to the equation

It1 = Ik, Trv1,uk) = (I, f(zr, 0, uk), ur), k=0,...,N—1

It admits a DP algorithm that takes the form

Ji (Ix) = ukg}}&k)Ee{g(ﬂik,@, uk) + Jiyo1 Ik, f(Tr, 0, ur), ur) | Ik,uk},

fork=0,...,N-1, with
JNUN) = gn(zN),

where we use Eo{- | I,,u,} to denote expected value over 8, conditioned on I, and u,.



The Exact DP Algorithm, Approximation in Value Space
& Rollout

We can rewrite this DP algorithm in terms of the conditional belief probabilities b, ; as

J;:(Ik) = min Zbkz{g xk,O uk)—l—JkH(Ik f(:z;k,é’ uk) uk)}

ur €U (xk)
The control applied by the optimal policy is given by

UZ c arg ng%]l?mk)z bk 7,{ mk:70i7’u’k) + ‘]l:—i—l(-[ka f(xkaezauk)7uk))}

The corresponding approximation in value space scheme with one-step lookahead minimization is given by

U € arg min Zb’“{ a:k,Hi,uk)+j,i+1(f(a:k,9i,uk))};

uk €U (k)

Bhambri, S., Bhattacharjee, A. and Bertsekas, D., 2022.
Reinforcement learning methods for wordle: A
pomdp/adaptive control approach. arXiv preprint
arXiv:2211.10298.



Base Heuristic for Wordle — Information Gain!

Information gain —
calculating entropy of the distribution
(roughly based on how much
using a word reduces the uncertainty

about the mystery word)

< 35 patterns

Figure adapted from Grant’s video (3BluelBrown on YouTube)




Solving Wordle Using Rollout

Line 1: empty set to
store the average Q-
factors for each possible
action at stage k.

Algorithm 1: Rollout with One Step Look-ahead

Data: Current state s, € S, Currently possible goal

states G C S, Action space A, Transition
function 7, Cost function C, Base Heuristic .

Result: Next state sx 1.
1 Q_factors < [|;

2 for a in A do

0 N & nn AW

9

10
11

Cost_total < [];

for g € G do

Sk+1 < T (8k,ax), cost < 0;

while sx1 # g do
Sk+1 < argmin,, ¢ 4 H(T (sk, ar));
cost < cost + C(sg, ar)

| Cost_total.append(cost);
mean_cost < ﬁ > (Cost_total);

Q_factors.append(mean_cost);

12 Gy < argminy, o4 Q_factors, spy1 < T (sk,0k) ;
13 return si




Solving Wordle Using Rollout

Line 4-8: for all possible

Algorithm 1: Rollout with One Step Look-ahead

Data: Current state s, € S, Currently possible goal

states G C S, Action space A, Transition
function 7, Cost function C, Base Heuristic .

Result: Next state si 1.
1 Q_factors < [|;

2 for a in A do

Cost_total < [];

g € Gy, we perform the rollout

by applying the next action as
selected by our base heuristc —

cost function H and compute

(=" T WU BT R

for g € G do

Sk+1 < T (8k,ax), cost < 0;

while sx1 # g do
Sk+1 < argmin,, ¢ 4 H(T (sk, ar));
cost < cost + C(sg, ar)

the Q-factor or cost until we
reach the terminating state.

9

10
11

| Cost_total.append(cost);

n}ean_cost — ﬁ > (Cost_total);
Q_ factors.append(mean_cost);

12 Gy < argminy, o4 Q_factors, spy1 < T (sk,0k) ;
13 return si




Solving Wordle Using Rollout

Line 10: find the
average cost for
solving the game for g

Algorithm 1: Rollout with One Step Look-ahead

Data: Current state s, € S, Currently possible goal
states G C S, Action space A, Transition
function 7, Cost function C, Base Heuristic .

Result: Next state si 1.

1 Q_factors < [|;

2 for a in A do

Cost_total < [];

for g € Gi. do

Sk+1 < T (8k,ax), cost < 0;

while sx1 # g do
Sk+1 < argmin,, ¢ 4 H(T (sk, ar));
cost < cost + C(sg, ar)

(=" T WU BT R

9 Cost_total .agpend(cost);

>| 10 mean_cost < @% > (Cost_total); |

1 | Q_factors.append(mean_cost);

12 Gy < argminy, o4 Q_factors, spy1 < T (sk,0k) ;
13 return si




Solving Wordle Using Rollout

Line 12: we select the
action a, that
corresponds to the
minimum average cost
and apply it to state s,.

Algorithm 1: Rollout with One Step Look-ahead

1
2

Data: Current state s, € S, Currently possible goal
states G C S, Action space A, Transition
function 7, Cost function C, Base Heuristic .

Result: Next state si 1.

Q_factors « [];

for a in A do

Cost_total < [];

(=" T WU BT R

for g € Gi. do

Sk+1 < T (8k,ax), cost < 0;

while sx1 # g do
Sk+1 < argmin,, ¢ 4 H(T (sk, ar));
cost < cost + C(sg, ar)

9

Cost_total.append (cost);

Mo

mean_cost < @% > (Cost_total); |

11

Q_ factors.append(mean_cost);

'y

ar < argminy, 4 Q_factors, sp11 < T (Sk, k) |

13

return s;




Results for Rollout vs Optimal Scores

Opening Word Easy Mode Hard Mode
Rollout with Rollout with
B MIG as MIG as Optimal Score MIG as MIG as Optimal Score
ase Heuristic . .. Base Heuristic . .
Base Heuristic Base Heuristic

salet 3.6108 3.4345 3.4212 3.6078 3.5231 3.5084
reast 3.6 3.4462 3.4225 3.6181 3.53 3.5136
crate 3.6177 3.4414 3.4238 3.6289 3.5361 3.5175
trape 3.6319 ) 3.4604 ) 3.4454 3.6199 ) 3.5356 ) 3.5179
slane 3.6255 3.4444 34311 3.622 3.5378 3.5201
prate 3.6333 3.4535 3.4376 3.6173 3.5348 3.5210
crane 3.6091 3.4380 3.4255 3.6333 3.5374 3.5227
carle 3.6108 3.4419 3.4285 3.6384 3.5369 3.5261
train 3.6181 3.4622 3.4436 3.6216 3.5369 3.5248
clout 3.6955 3.5248 3.5097 3.7123 3.6125 3.5931

Table: Results using ‘Maximum Information Gain’ as base heuristic, and with rollout.




3.90

3.85

3.80

Average # of guesses
w
[=)]
(9}

| | | | |
MIG as Base Heuristic

Rollout with MIG as Base Heuristic -
MRD as Base Heuristic
Rollout with MRD as Base Heuristic -
Rollout with GEP as Base Heuristic
Optimal Score (salet): 3.5084 H




Our score: 3.5231

Optimal Score: 3.5084

3.90

3.85

w w w w
o ~ ~ (o)
) o v o

Average # of guesses
w
[=)]
o

/

3.50

3.45

|

MIG as Base Heuristic

|

1

|

1

Rollout with MIG as Base Heuristic |

MRD as Base Heuristic

Rollout with MRD as Base Heuristic |
Rollout with GEP as Base Heuristic

Optimal Score (salet): 3.5084




* The need for a reasonable base
policy — our experience with Wordle
has been that the rollout algorithm is
relatively insensitive to the base
policy (e.g., the GEP heuiristic in the

paper).

Next States

Base Policy m

Base Policy 7

Base Policy m

Base Policy =

Q — factors

Final States




Limitations of Rollout

*+» The need for a reasonable base
policy — our experience with Wordle

has been that the rollout algorithm is
relatively insensitive to the base
policy (e.g., the GEP heuiristic).

¢ The need for a posterior distribution
estimator - this is a limitation of most
POMDP algorithms.




Limitations of Rollout

“ The need for a reasonable base policy —
our experience with Wordle has been
that the rollout algé)rlthm IS relatlvel¥
insensitive to the base policy (e.g., the
GEP heuiristic).

“* The need for a posterior distribution

estimator - this Is a limitation of most
POMDP algorithms.

¢ The number of Q-factors that need to be
computed by the algorithm online,
PartlcularlY or a large action space -
his difficulty may possibly be mitigated
by mtethentIy pruning the action space
or by offline training using a neural
network.

Final States




** We introduced a DP-based online rollout strategy as
a computationally efficient solution to deterministic
POMDPs with unknown parameters, whose exact
solution is intractable.



Summary

** We introduced a DP-based online rollout strategy as
a computationally efficient solution to deterministic
POMDPs with unknown parameters, whose exact
solution is intractable.

** We demonstrated our approach using the
challenging online puzzle Wordle, and empirically
show that our approach provides near-optimal
performance and impressive improvement over the
heuristic approaches that have been used so far.



Summary

** We introduced a DP-based online rollout strategy as
a computationally efficient solution to deterministic
POMDPs with unknown parameters, whose exact
solution is intractable.

** We demonstrated our approach using the
challenging online puzzle Wordle, and empirically
show that our approach provides near-optimal
performance and impressive improvement over the
heuristic approaches that have been used so far.

*» Through the Wordle computational demonstration,
we identified the key obstacles in the way of solving
other challenging POMDP problems that involve
sequential estimation, possibly in conjunction with
simultaneous adaptive control.



Summary

< We introduced a DP-based online rollout strategy as a 2095 Atcuat Payg Wordlo Using am o O
computationally efficient solution to deterministic Rollout Algorithm for Deterministic POMDPs. In 2023
POMDPs with unknown parameters, whose exact IEEE Conference on Games (CoG) (pp. 1-4). IEEE.

solution is intractable.

*» We demonstrated our approach using the challenging
online puzzle Wordle, and e_mpwma!_lfy show that our
approach provides near-optimal performance and
Impressive improvement over the heuristic approaches

"
that have been used so far. -

¢ Through the Wordle computational demonstration, we
identified the key obstacles in the way of solving other
challenging POMDP problems that involve sequential
estimation, possibly in conjunction with simultaneous
adaptive control.

| |
| |
[ ]
Access our paper:
https://tinyurl.com/solving-wordle

Q
OIET— Thank You!
el

)



	Sequential Estimation of a Parameter Vector
	Bayesian Optimization of Functions with Hard-to-Compute Values
	Combined Estimation and Control - Adaptive Control
	On-Line Solution of the Wordle Puzzle by Rollout

