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Chess and Backgammon - Off-Line Training and On-Line Play

Uncertainty System Environment Cost Control Current State i

Controller Production Center Delay Retail Storage Demand

Possible Moves Average Score by Monte-Carlo Simulation

��1,�2,�(x) = ��1,�(x) � ��2,�(x) �3 �4 (a) (b) ��1,�2,�3,�4,�(x)

x �(x � �3) �(x � �4) + � max{0, ⇠} Linear Unit Rectifier ��,�(x)
Slope � �

High Cost Suboptimal u0 “Deceptive” Low Cost u Optimal trajectory
` + 1 Stages Optimal trajectory

(ciy � bi)2 R mini y⇤
i maxi y⇤

i

J̃k+1(xk+1) = min
uk+12Uk+1(xk+1)

E
n

gk+1(xk+1, uk+1, wk+1)

+J̃k+2

�
fk+1(xk+1, uk+1, wk+1)

�o
,

2-Step Lookahead (onestep lookahead plus one step approx-
imation)

Certainty equivalence Monte Carlo tree search Lookahead tree `-Step
Shortest path problem xk xk States xk+1 States xk+2 u u0

Truncated Rollout Terminal Cost Approximation J̃

Parametric approximation Neural nets Discretization

Parametric approximation Neural nets Discretization

Cost Function Approximation J̃k+`

Rollout, Model Predictive Control

b+
k b�k Permanent trajectory P k Tentative trajectory T k

min
uk

E
n

gk(xk, uk, wk)+J̃k+1(xk+1)
o

Approximate Min Approximate E{·} Approximate Cost-to-Go J̃k+1

Optimal control sequence {u⇤
0, . . . , u⇤

k, . . . , u⇤
N�1} Simplify E{·}

Tail subproblem Time x⇤
k Future Stages Terminal Cost k N

Stage k Future Stages Terminal Cost gN (xN )

Control uk Cost gk(xk, uk) x0 xk xk+1 xN xN x0
N

ũk uk x̃k+1 xk+1 x̃N xN x0
N

�r = ⇧
�
T

(�)
µ (�r)

�
⇧(Jµ) µ(i) 2 arg minu2U(i) Q̃µ(i, u, r)

Subspace M = {�r | r 2 <m} Based on J̃µ(i, r) Jµk
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Policy Improvement by Rollout Policy Space Approximation of Rollout Policy at state i

One-step Lookahead with J̃(j) =
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y∈A φjyr∗
y

p(z; r) 0 z r r + ϵ1 r + ϵ2 r + ϵm r − ϵ1 r − ϵ2 r − ϵm · · · p1 p2 pm

... (e.g., a NN) Data (xs, cs)

V Corrected V Solution of the Aggregate Problem J∗

Start End Plus Terminal Cost Approximation S1 S2 S3 Sℓ Sm−1 Sm

Disaggregation Probabilities dxi dxi = 0 for i /∈ Ix

Aggregation Probabilities φjy φjy = 1 for j ∈ Iy

State xk Policy µ̃k(xk, rk) h̃u(xk, rk) Randomized Policy Idealized

Generate “Improved” Policy µ̃ by µ̃(i) ∈ arg minu∈U(i) Q̃µ(i, u, r)

State i y(i) Ay(i) + b φ1(i, v) φm(i, v) φ2(i, v) Ĵ(i, v) = r′φ(i, v)

Deterministic Transition xk+1 = fk(xk, uk)

Aggregate Problem Cost Vector r∗ J̃1 = Corrected V Enlarged State Space

Aggregate States Cost J̃0 Cost J̃1 Cost r∗ *Best Score*

Representative States Controls u are associated with states i Optimal Aggregate Costs r∗
x y1 y2 y3

N Stages jN−1 jN i ∈ Ix j ∈ Iy

Sx1 Sxℓ Sxm x1 xℓ xm r∗
x1 r∗

xℓ r∗
xm Footprint Sets J̃(i) J̃(j) =

∑
y∈A φjyr∗
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min
u∈U(i)

n∑

j=1

pij(u)
(
g(i, u, j) + αJ̃(j)

)
i = x Ix

π/4 Sample State xs
k Sample Control us

k Sample Next State xs
k+1 Sample Transition Cost gs

k Simulator

1

Both AlphaZero (2017) and TD-Gammon (1996) involve two algorithms:
Off-line training of value and/or policy neural network approximations

On-line play by multistep lookahead, rollout, and cost function approximation

Strong connections to DP, policy iteration, and RL-type methodology
We aim to understand this methodology, so it applies far more generally

For example, in control system design (model predictive and adaptive control),
large language models, and discrete optimization
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Wp′ : Functions J ≥ Ĵp′ with J(xk) → 0 for all p′-stable π

W+ =
{
J | J ≥ J+, J(t) = 0

}

1

Current Position xk ON-LINE PLAY

Off-Line Obtained Player Off-Line Obtained Cost Approximation

OFF-LINE TRAINING

6 1 3 2 9 5 8 7 10

Player Corrected J̃ J̃ J* Cost J̃µ

(
F (i), r

)
of i ≈ Jµ(i) Jµ(i) Feature

Map

J̃µ

(
F (i), r

)
: Feature-based parametric architecture State

r: Vector of weights Original States Aggregate States

Position “value” Move “probabilities” Simplify E{·}
Choose the Aggregation and Disaggregation Probabilities

Use a Neural Network or Other Scheme Form the Aggregate States
I1 Iq

Use a Neural Scheme or Other Scheme

Possibly Include “Handcrafted” Features

Generate Features F (i) of Formulate Aggregate Problem

Generate “Impoved” Policy µ̂ by “Solving” the Aggregate Problem

Same algorithm learned multiple games (Go, Shogi)

Aggregate costs r∗
! Cost function J̃0(i) Cost function J̃1(j)

Approximation in a space of basis functions Plays much better than
all chess programs

Cost αkg(i, u, j) Transition probabilities pij(u) Wp

Controlled Markov Chain Evaluate Approximate Cost J̃µ of

Evaluate Approximate Cost J̃µ

(
F (i)

)
of

F (i) =
(
F1(i), . . . , Fs(i)

)
: Vector of Features of i

J̃µ

(
F (i)

)
: Feature-based architecture Final Features

If J̃µ

(
F (i), r

)
=

∑s
!=1 F!(i)r! it is a linear feature-based architecture

(r1, . . . , rs: Scalar weights)
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Cost Function Approximation

‖Jµ̃ − J∗‖
‖J̃ − J∗‖

≤ 2α!

1 − α

1

Approximation Error ‖J̃ − J∗‖ Performance Error ‖Jµ̃ − J∗‖ xk

1st Step Future 1st ! Steps

J∗(x) = min
u∈U(x)

{
g(x, u) + αJ∗(f(x, u)

)}
, x ∈ X,

µ̃(x) ∈ arg min
u∈U(x)

{
g(x, u) + αJ̃

(
f(x, u)

)}
, x ∈ X ;

min
uk,uk+1,...,uk+!−1

{
!−1∑

m=0

αmg(xk+m, uk+m) + α!J̃
(
f(xk+!−1, uk+!−1)

)
}

min
u∈U(x)

{
g(x, u) + αJ̃

(
f(x, u)

)}

uk At x At xk

Input (Control) Output (Function of the State) Changing Fixed . . .

Time 0 Time k Transformer Heuristic

Region of convergence d θ x l Stage N u = (u0, . . . , uN−1)
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Find the Most Likely Path Given the Data Rollout with One-Step Lookahead

Rollout with Multi-Step Lookahead Q-Factor Maximization On-Line Simulation

WE ASSUME A KNOWN OPPONENT Riccati Operator All legal moves uk

Nominal Opponent Position Evaluator Engine Newton step Starting point enhancement

Nominal Opponent Position Evaluator Engine

`-STEP LOOKAHEAD ON K̃ IS ONE STEP LOOKAHEAD ON F `�1(K̃)

K̃ Stable K̃ Unstable Region of Stability

Expansion Slope =1

Apply the first control ũk, discard the remaining controls

Transition Probabilities Depend on Data (Are Available) ⇡ Greedy Rollout Policy ⇡̃

x⇤ minimizes D(x) + H(x) over the leaf nodes x 2 S Current State J̃(xk+`) · · · Critical

xk+` x0 x⇤ xk (Current State) xn xk+1 xn x0
n xk+2 xk+n xk+` Shortest Path Move Chosen

Multistep Lookahead xn Layer n xn+1 Layer n + 1 (may be the cost of a heuristic)

Base Policy ¯̀-Step Lookahead xn+1

Layer ¯̀ x¯̀ Terminal node to expand

F (K)x2 = min
u2<

�
qx2 + ru2 + K(ax + bu)2

 

= min
L2<

min
u=Lx

�
qx2 + ru2 + K(ax + bu)2

 

= min
L2<

�
q + rL2 + K(a + bL)2

 
x2

or Pruned States (with one-step lookahead) Rollout

F (K) = min
L2<

FL(K), with FL(K) = (a + bL)2K + q + rL2

y0 y1 H(y) = G(y) � y G(y) Region of Attraction of y⇤

Belief State is a “Probabilistic Estimate” of the Unknown State

Given quadratic cost approximation J̃(x) = K̃x2, we find

L̃ = arg min
L

FL(K̃) H(y) = G(y) � y G(y)

c(2) c(m�1) c(m) c(m+1) c(M) c(M �1) Linear Stable Policy Quadratic Cost Approximation J̃(x) = K̃x2

to construct the one-step lookahead policy µ̃(x) = L̃x
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1

Multistep lookahead with position evaluation at the end

On-line play uses the result of off-line training, which is the position evaluator

An example of a fundamental RL approach that we will use extensively in this
course: Approximation in value space
Strong similarities with Model Predictive Control (MPC) except that:

▶ State is discrete in chess, but continuous in MPC (usually)
▶ In chess the lookahead tree is usually “pruned", while in MPC the lookahead

optimization is usually exact (more on this later)
▶ Another difference is that chess is a two-player game. More on this later, but think of

chess against a fixed opponent (this makes chess a one-player game)
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Off-Line Training in AlphaZero: Approximate Policy Iteration (PI) Using
Self-Generated Data

φjf̄ =

{
1 if j ∈ If̄

0 if j /∈ If̄

dfi = 0 if i /∈ If̄

p̂ff̄(u) =

n∑

i=1

dfi

n∑

j=1

pij(u)φjf̄

ĝ(f, u) =
n∑

i=1

dfi

n∑

j=1

pij(u)g(i, u, j)

Representative Features Feature Space F F (j) φjf1 φjf2 φjf3 φjf4

f1 f2 f3 f4 f5 f6 f7

Neural Network Features Approximate Cost J̃µ Policy Improvement

Neural Network Features Approximate Cost J̃µ Policy Improvement

F̂ = {f1, f2, f3, f4, f5, f6, f7}

Representative Feature States dfi f f̄ with Aggregation

Current Policy µ Improved Policy µ̃µ̂

TµΦr Φr = ΠTµΦr

Generate “Improved” Policy µ̂

State Space Feature Space Subspace J = {Φr | s ∈ ℜs} ∑s
ℓ=1 Fℓ(i, v)rℓ

r = (r1, . . . , rs)

State i y(i) Ay(i) + b Fs(i, v) F1(i, v) F2(i, v) Linear Weighting of
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αJk(2) (2αrk, 2αrk)
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Policy Evaluation for µk and for µk+1 Evaluation Policy µ̃ with Tµ̃J̃ =
T J̃

Position Evaluation Policy µ̃ with Tµ̃J̃ = T J̃

Cost of µk Cost of µk+1

NOTE: J is a function (an n-vector for n states)

The figure is a one-dimensional “slice” of the graph of J

OFF-LINE TRAINING Off-Line Training of Value and/or Policy Re-
sult of
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Map
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Position “value” Move “probabilities” Simplify E{·}
Choose the Aggregation and Disaggregation Probabilities

Use a Neural Network or Other Scheme Form the Aggregate States
I1 Iq
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Generate Features F (i) of Formulate Aggregate Problem

Generate “Impoved” Policy µ̂ by “Solving” the Aggregate Problem
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1

The current player is used to train an improved player, and the process is repeated

The current player/policy is “evaluated" by playing many games

Its evaluation function is represented by a value neural net through training

The “improved player" is represented by a policy neural net through training

The “improvement" is done by using a form of approximate multistep lookahead
minimization, called Monte-Carlo Tree Search (MCTS)

The results of off-line training are the “final player" and its corresponding position
evaluator
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On-Line Play in TD-Gammon: Approximation in Value Space with
Rollout

bk Belief States bk+1 bk+2 Policy µ m Steps

Truncated Rollout Policy µ m Steps

B(b, u, z) h(u) Artificial Terminal to Terminal Cost gN(xN ) ik bk ik+1 bk+1 ik+2 uk uk+1 uk+2

Original System Observer Controller Belief Estimator zk+1 zk+2 with Cost gN (xN )

µ COMPOSITE SYSTEM SIMULATOR FOR POMDP

(a) (b) Category c̃(x, r̄) c∗(x) System PID Controller yk y ek = yk − y + − τ Object x h̃c(x, r̄) p(c | x)

uk = rpek + rizk + rddk ξij(u) pij(u)

Aggregate States j ∈ S f(u) u u1 = 0 u2 uq uq−1 . . . b = 0 b∗ b∗ = Optimized b Transition Cost

Policy Improvement by Rollout Policy Space Approximation of Rollout Policy at state i

One-step Lookahead with J̃(j) =
∑

y∈A φjyr∗
y

p(z; r) 0 z r r + ε1 r + ε2 r + εm r − ε1 r − ε2 r − εm · · · p1 p2 pm

... (e.g., a NN) Data (xs, cs)

V Corrected V Solution of the Aggregate Problem Transition Cost Transition Cost J∗

Start End Plus Terminal Cost Approximation S1 S2 S3 S! Sm−1 Sm

Disaggregation Probabilities dxi dxi = 0 for i /∈ Ix Base Heuristic Truncated Rollout

Aggregation Probabilities φjy φjy = 1 for j ∈ Iy

Maxu State xk Policy µ̃k(xk, rk) h̃(u, xk, rk) h̃(c, x, r) h̃u(xk, rk) Randomized Policy Idealized

Generate “Improved” Policy µ̃ by µ̃(i) ∈ arg minu∈U(i) Q̃µ(i, u, r)

State i y(i) Ay(i) + b φ1(i, v) φm(i, v) φ2(i, v) Ĵ(i, v) = r′φ(i, v)

Deterministic Transition xk+1 = fk(xk, uk)

Aggregate Problem Cost Vector r∗ J̃1 = Corrected V Enlarged State Space

Aggregate States Cost J̃0 Cost J̃1 Cost r∗ *Best Score*

Representative States Controls u are associated with states i Optimal Aggregate Costs r∗
x y1 y2 y3
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On-line play uses the results of off-line training, which are: A position evaluator
and a (base) player
It aims to improve the base player by:

▶ Generating forward a lookahead tree involving several moves
▶ Simulating the base player for some more moves at the tree leaves (rollout)
▶ Approximating the effect of future moves by using the terminal position evaluation
▶ Calculating the “values" of the available moves at the root and playing the best move

An important connection: Discrete optimization by rollout (using a base heuristic)
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Some Major Empirical Observations

Truncated
Rollout

. . . xk

ON-LINE
PLAY

OFF-LINE
TRAININGStates xk+1

States xk+2

NEWTON
STEP

for Bellman Eq.

Minimization

Off-Line Obtained
Base Policy

Cost Function
Approximation J̃

Enhancements to the Starting Point
of Newton Step

� − 1 Lookahead Minimization Steps
m Steps of Rollout

�-Step Lookahead

m Steps

The AlphaZero on-line player plays much better than the off-line-trained player

TD-Gammon plays much better with truncated rollout than without rollout

We will aim for explanations, insights, and generalizations through abstract
Bellman operators, visualization, and a deep theoretical insight:

Approximation in value space is connected to Newton’s method
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Framework of the Course

We aim to unify several areas of large scale computation:
Reinforcement learning (RL) as practiced by the AI community

Approximate dynamic programming (DP) as practiced by parts of the
optimization/OR community

Model predictive and adaptive control as practiced by the control systems
community

Parts of discrete optimization as practiced by the algorithms/CS community

Parts of the emerging area of large language models as practiced by the LLM
community

We rely on:
The algorithmic theory of exact, approximate, and abstract DP

The paradigm of AlphaZero/TD-Gammon and similar design architectures

Intuitive visualization based on Bellman operators and Newton’s method

We aim, through unification, to:
Bridge the gap between cultures of different communities

Bring to bear the power of RL to a very broad range of applications
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Evolution of Approximate DP/RL: A Fruitful Synergy

Decision/
Control/DP

Principle of Optimality

Markov Decision 
Problems

POMDP
 

Policy Iteration
Value Iteration

AI/RL
Learning through 
Data/Experience

Simulation,
Model-Free Methods

 
Feature-Based 

Representations

A*/Games/
Heuristics

Complementary 
Ideas

Late 80s-Early 90s

Neural Nets

MPC
Optimal Control

Historical highlights
Exact DP, optimal control (Bellman, Shannon, and others 1950s ...)

AI/RL and Decision/Control/DP ideas meet (mid 80s-mid 90s)

First major successes: Backgammon programs (Tesauro, 1992, 1996)

Algorithmic progress, analysis, applications, first books (mid 90s ...)

Machine Learning, BIG Data, Robotics, Deep Neural Networks (mid 2000s ...)

AlphaGo and AlphaZero (DeepMind, 2016, 2017)

Large Language Models, ChatGPT (OpenAI, 2022)
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Approximate DP/RL Methodology is now Ambitious and Universal

Exact DP applies (in principle) to a very broad range of optimization problems
Deterministic <—-> Stochastic

Combinatorial optimization <—-> Optimal control w/ infinite state/control spaces

One decision maker <—-> Two player games

... BUT is plagued by the curse of dimensionality and need for a math model

Approximate DP/RL overcomes the difficulties of exact DP by:
Approximation (use neural nets and other architectures to reduce dimension)

Simulation (use a computer model in place of a math model)

State of the art:
Broadly applicable methodology: Can address a very broad range of challenging
problems. Deterministic-stochastic-dynamic, discrete-continuous, games, etc

There are no methods that are guaranteed to work for all or even most problems

There are enough methods to try with a reasonable chance of success for most
types of optimization problems

Objective of our course: Structure mathematically the methodology, guide the art,
delineate the sound ideas (from the crazy and unhinged ideas)
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A Relevant Quotation from ∼ 30 Years Ago

From preface of Neuro-Dynamic Programming, Bertsekas and Tsitsiklis, 1996

A few years ago our curiosity was aroused by reports on new methods in reinforcement
learning, a field that was developed primarily within the artificial intelligence community,
starting a few decades ago. These methods were aiming to provide effective
suboptimal solutions to complex problems of planning and sequential decision making
under uncertainty, that for a long time were thought to be intractable.

Our first impression was that the new methods were ambitious, overly optimistic, and
lacked firm foundation. Yet there were claims of impressive successes and indications
of a solid core to the modern developments in reinforcement learning, suggesting that
the correct approach to their understanding was through dynamic programming.

Three years later, after a lot of study, analysis, and experimentation, we believe that our
initial impressions were largely correct. This is indeed an ambitious, often ad hoc,
methodology, but for reasons that we now understand much better, it does have the
potential of success with important and challenging problems.

This assessment still holds true!
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Aims and References

This course is research-oriented. It aims:
To explore the state of the art of approximate DP/RL at a graduate level

To explore in depth some special research topics (rollout, policy iteration, etc)

To provide the opportunity for you to explore research in the area

Main references:
Bertsekas, Reinforcement Learning and Optimal Control, 2019

Bertsekas, Rollout, Policy Iteration, and Distributed Reinforcement Learning, 2020

Bertsekas, Lessons from AlphaZero for Optimal, Model Predictive, and Adaptive
Control, 2022 (on-line; focus on Newton step view of approximation in value space)

Bertsekas: A Course in Reinforcement Learning, 2nd Ed., 2024 (text on-line)

Slides, papers, and videos from the 2019-2023 ASU courses; check my web site

Supplementary references
Exact DP: Bertsekas, DP and Optimal Control, Vols. I, II, 2017, Abstract DP 2022

Bertsekas and Tsitsiklis, Neuro-Dynamic Programming, 1996

Sutton and Barto, 1998, Reinforcement Learning (2nd edition 2018, on-line)

Machine Learning/Deep Learning books (e.g., Bishop and Bishop, 2024)
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Terminology in RL/AI and DP/Control

RL uses Max/Value, DP uses Min/Cost
Reward of a stage = (Opposite of) Cost of a stage.

State value = (Opposite of) State cost.

Value (or state-value) function = (Opposite of) Cost function.

Controlled system terminology
Agent = Decision maker or controller.

Action = Decision or control.

Environment = Dynamic system.

Methods terminology
Learning = Solving a DP-related problem using simulation.

Self-learning (or self-play in the context of games) = Solving a DP problem using
simulation-based policy iteration.

Planning vs Learning distinction = Solving a DP problem with model-based vs
model-free simulation.

Bertsekas Reinforcement Learning 16 / 46



Notation in RL/AI and DP/Control

RL poses problems as stochastic and uses transition probability notation

p(s, a, s′)

(s, s′ are states, a is action); standard in stochastic finite-state problems (MDP)

Control theory uses discrete-time system equation

xk+1 = f (xk , uk ,wk )

which is standard in continuous spaces problems

Operations research uses both notations [typically pij(u) for transition probabilities]

These two notational systems are mathematically equivalent but:
Transition probabilities are cumbersome for deterministic problems and continuous
spaces problems

System equations are cumbersome for finite-state problems

We will use both notational systems, depending on the context
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A Fifteen-Minute Break

All our lectures will have a 15-minute break, somewhere in the middle
Catch our breath and think about issues relating to the first half of the lecture.

A short discussion/questions/answers period will follow each break.
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Finite Horizon Deterministic Optimal Control Model
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Set of States (u1) Set of States (u1, u2) Set of States (u1, u2, u3)

Run the Heuristics From Each Candidate (m+2)-Solution (ũ1, . . . , ũm, um+1)
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ũk uk x̃k+1 xk+1 x̃N xN x′
N

Φr = Π
(
T

(λ)
µ (Φr)

)
Π(Jµ) µ(i) ∈ arg minu∈U(i) Q̃µ(i, u, r)

Subspace M = {Φr | r ∈ ℜm} Based on J̃µ(i, r) Jµk

minu∈U(i)

∑n
j=1 pij(u)

(
g(i, u, j) + J̃(j)

)
Computation of J̃ :

Good approximation Poor Approximation σ(ξ) = ln(1 + eξ)

max{0, ξ} J̃(x)

Cost 0 Cost g(i, u, j) Monte Carlo tree search First Step “Future”
Feature Extraction

Node Subset S1 SN Aggr. States Stage 1 Stage 2 Stage 3 Stage N −1
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(
F (i)

)

Aggregate States Scoring Function V (i) J∗(i) 0 n n − 1 State i Cost

function Jµ(i)I1 ... Iq I2 g(i, u, j)
...

TD(1) Approximation TD(0) Approximation V̂1(i) and V̂0(i)

Aggregate Problem Approximation TD(0) Approximation V̂1(i) and
V̂0(i)

1

Permanent trajectory P k Tentative trajectory T k

Stage k Future Stges

Control uk Cost gk(xk, uk) xk xk+1 xN xN x′
N
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Cost G(u) Heuristic N -Solutions u = (u1, . . . , uN−1)

Candidate (m + 1)-Solutions (ũ1, . . . , ũm, um+1)
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System
xk+1 = fk (xk , uk ), k = 0, 1, . . . ,N − 1

where xk : State (lives in some space), uk : Control chosen from some set Uk (xk )

Cost function:

gN(xN) +
N−1∑
k=0

gk (xk , uk )

For given initial state x0, minimize over control sequences {u0, . . . , uN−1}

J(x0; u0, . . . , uN−1) = gN(xN) +
N−1∑
k=0

gk (xk , uk )

Optimal cost function J∗(x0) = min uk ∈Uk (xk )
k=0,...,N−1

J(x0; u0, . . . , uN−1)
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A Special Case: Finite Number of States and Controls
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Alphazero has discovered a new way to play! Base Policy Evaluation
One-Step Lookahead Policy Improvement µ̃
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u = µ(x, r) Current State x µ Rollout Policy µ̃ Randomized µ(·, r)

Jµ instead of J* Bellman Eq. TRUNCATED ROLLOUT with BASE
POLICY µ

Approximate Policy Evaluation Approximate Policy Improvement

(Assigns x to u)

Value Network Policy Network Value Data

J̃ State-Control Pairs Data-Trained Classifier with µ

Initial State Current State Approximation Truncated Rollout Using
a Local Policy Network
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Each Set Has a Local Value Network and a Local Policy Network
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Same algorithm learned multiple games (Go, Shogi)
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1

Nodes correspond to states xk

Each arc corresponds to a state-control pair (xk , uk ) [start node is xk ; end node is
xk+1 = fk (xk , uk )]

Arcs (xk , uk ) have cost gk (xk , uk ) - “terminal arcs" have cost gN(xN).

The cost to optimize is the sum of the arc costs from the initial node/state x0 to a
terminal node t .

The problem is equivalent to finding a minimum cost/shortest path from x0 to t .
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Principle of Optimality: A Very Simple Idea
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Set of States (u1) Set of States (u1, u2) Set of States (u1, u2, u3)

Run the Heuristics From Each Candidate (m+2)-Solution (ũ1, . . . , ũm, um+1)
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Set of States u = (u1, . . . , uN ) Current m-Solution (ũ1, . . . , ũm)
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Set of States (u1) Set of States (u1, u2) Set of States (u1, u2, u3)

Run the Heuristics From Each Candidate (m+2)-Solution (ũ1, . . . , ũm, um+1)
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Principle of Optimality
THE TAIL OF AN OPTIMAL SEQUENCE IS OPTIMAL FOR THE TAIL SUBPROBLEM

Let {u∗
0 , . . . , u

∗
N−1} be an optimal control sequence with corresponding state sequence

{x∗
1 , . . . , x

∗
N}. Consider the tail subproblem that starts at x∗

k at time k and minimizes
over {uk , . . . , uN−1} the “cost-to-go” from k to N,

gk (x∗
k , uk ) +

N−1∑
m=k+1

gm(xm, um) + gN(xN).

Then the tail optimal control sequence {u∗
k , . . . , u

∗
N−1} is optimal for the tail subproblem.
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�
F (i)

�

R1 R2 R3 R` Rq�1 Rq r⇤q�1 r⇤3 Cost Ĵµ
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Set of States u = (u1, . . . , uN ) Current m-Solution (ũ1, . . . , ũm)
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1

By the principle of optimality: To solve the tail subproblem that starts at xk

Consider every possible uk and solve the tail subproblem that starts at next state
xk+1 = fk (xk , uk ). This gives the “cost evaluation of uk "

Optimize over all possible uk
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DP Algorithm: Solves All Tail Subproblems Efficiently by Using the
Principle of Optimality

Idea of the DP algorithm
Solve all the tail subproblems of a given time length using the solution of all the tail
subproblems of shorter time length

DP Algorithm: Produces the optimal costs J∗
k (xk ) of the xk -tail subproblems

Start with
J∗

N(xN) = gN(xN), for all xN ,

and for k = 0, . . . ,N − 1, let

J∗
k (xk ) = min

uk∈Uk (xk )

[
gk (xk , uk ) + J∗

k+1
(
fk (xk , uk )

)]
, for all xk .

The optimal cost J∗(x0) is obtained at the last step
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DP Algorithm for Generic Finite-State Problem. 1st Phase: Compute
J∗

k (xk ), the Optimal Costs-to-Go
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One-Step Lookahead Policy Improvement µ̃
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Value Network Policy Network Value Data
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Wp0 : Functions J � Ĵp0 with J(xk) ! 0 for all p0-stable ⇡

W+ =
�
J | J � J+, J(t) = 0

 

VI converges to J+ from within W+

1

x0 x1 x2 xN�1 xN x2 = f1(x1, u1)
Current Position

6 1 3 2 9 5 8 7 10

Player Corrected J̃ J̃ J* Cost J̃µ

�
F (i), r

�
of i ⇡ Jµ(i) Jµ(i) Feature

Map

J̃µ

�
F (i), r

�
: Feature-based parametric architecture State

r: Vector of weights Original States Aggregate States

Position “value” Move “probabilities” Simplify E{·}
Choose the Aggregation and Disaggregation Probabilities

Use a Neural Network or Other Scheme Form the Aggregate States
I1 Iq

Use a Neural Scheme or Other Scheme

Possibly Include “Handcrafted” Features

Generate Features F (i) of Formulate Aggregate Problem

Generate “Impoved” Policy µ̂ by “Solving” the Aggregate Problem

Same algorithm learned multiple games (Go, Shogi)

Aggregate costs r⇤` Cost function J̃0(i) Cost function J̃1(j)

Approximation in a space of basis functions Plays much better than
all chess programs

Cost ↵kg(i, u, j) Transition probabilities pij(u) Wp

Controlled Markov Chain Evaluate Approximate Cost J̃µ of

Evaluate Approximate Cost J̃µ

�
F (i)

�
of

F (i) =
�
F1(i), . . . , Fs(i)

�
: Vector of Features of i

J̃µ

�
F (i)

�
: Feature-based architecture Final Features

If J̃µ

�
F (i), r

�
=
Ps

`=1 F`(i)r` it is a linear feature-based architecture

(r1, . . . , rs: Scalar weights)
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2nd Phase: Construct the Optimal Control Sequence {u∗
0, . . . ,u

∗
N−1}
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Wp: Functions J ≥ Ĵp with J(xk) → 0 for all p-stable π
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Tail problem approximation u1
k u2

k u3
k u4

k u5
k Constraint Relaxation U U1 U2

At State xk

Empty schedule

min
uk ,µk+1,...,µk+ℓ−1

E
{
gk(xk, uk, wk) +

k+ℓ−1∑

m=k+1

gk

(
xm, µm(xm), wm

)
+ J̃k+ℓ(xk+ℓ)

}

Subspace S = {Φr | r ∈ ℜs} x∗ x̃

Rollout: Simulation with fixed policy Parametric approximation at the end Monte Carlo tree search

T (λ)(x) = T (x) x = P (c)(x)

x − T (x) y − T (y) ∇f(x) x − P (c)(x) xk xk+1 xk+2 Slope = −1

c

T (λ)(x) = T (x) x = P (c)(x)

Extrapolation by a Factor of 2 T (λ) = P (c) · T = T · P (c)

Extrapolation Formula T (λ) = P (c) · T = T · P (c)

Multistep Extrapolation T (λ) = P (c) · T = T · P (c)

1

Find optimal sequence of operations A, B, C, D (A must precede B and C must precede D)

DP Problem Formulation
States: Partial schedules; Controls: Stage 0, 1, and 2 decisions; Cost data shown
along the arcs

Recall the DP idea: Break down the problem into smaller pieces (tail subproblems)

Start from the last decision and go backwards
Bertsekas Reinforcement Learning 28 / 46



DP Algorithm: Stage 2 Tail Subproblems
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A Stage 2
Subproblem

Solve the stage 2 subproblems (using the terminal costs - in red)
At each state of stage 2, we record the optimal cost-to-go and the optimal decision
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DP Algorithm: Stage 1 Tail Subproblems
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A Stage 1
Subproblem

Solve the stage 1 subproblems (using the optimal costs of stage 2
subproblems - in purple)
At each state of stage 1, we record the optimal cost-to-go and the optimal decision
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Stage 0 
Subproblem

Solve the stage 0 subproblem (using the optimal costs of stage 1 subproblems
- in orange)

The stage 0 subproblem is the entire problem

The optimal value of the stage 0 subproblem is the optimal cost J∗(initial state)

Construct the optimal sequence going forward
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Discrete Optimization: Traveling Salesman Example; Cities A,B,C,D
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ŵ1, ŵ2, . . . xN t m xk xk+1 5.5

Origin Node s Artificial Terminal Destination Node t Encoder Noisy
Channel Received Sequence

Decoder Decoded Sequence

s x0 x1 x2 xN�1 xN t m xk xk+1 5.5

w1, w2, . . . y1, y2, . . . x1, x2, . . . z1, z2, . . . ŵ1, ŵ2, . . . xN t m xk
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Starting Position ŵ1, ŵ2, . . . xN t m xk xk+1 5.5 i j

YES Set dj = di + aij Is di + aij < dj? Is di + aij < UPPER?

Open List INSERT REMOVE
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Starting Position ŵ1, ŵ2, . . . xN t m xk xk+1 5.5 i j

YES Set dj = di + aij Is di + aij < dj? Is di + aij < UPPER?

Open List INSERT REMOVE
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ŵ1, ŵ2, . . . xN t m xk xk+1 5.5

Origin Node s Artificial Terminal Destination Node t Encoder Noisy
Channel Received Sequence

Decoder Decoded Sequence

s x0 x1 x2 xN�1 xN t m xk xk+1 5.5

w1, w2, . . . y1, y2, . . . x1, x2, . . . z1, z2, . . . ŵ1, ŵ2, . . . xN t m xk
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ŵ1, ŵ2, . . . xN t m xk xk+1 5.5

Origin Node s Artificial Terminal Destination Node t Encoder Noisy
Channel Received Sequence

Decoder Decoded Sequence

s x0 x1 x2 xN�1 xN t m xk xk+1 5.5

w1, w2, . . . y1, y2, . . . x1, x2, . . . z1, z2, . . . ŵ1, ŵ2, . . . xN t m xk
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Starting Position ŵ1, ŵ2, . . . xN t m xk xk+1 5.5 i j

YES Set dj = di + aij Is di + aij < dj? Is di + aij < UPPER?

Open List INSERT REMOVE
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xk+1 5.5

Old State xk�1 New State xk Encoder Noisy Channel Received
Sequence

Decoder Decoded Sequence

1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 20

A AB AC AD ABC ABD ACB ACD ADB ADC

ABCD ABDC ACBD ACDB ADBC ADCB

Origin Node s Artificial Terminal Node t

(Is the path s ! i ! j

have a chance to be part of a shorter s ! j path?)

(Does the path s ! i ! j shorter than the current s ! j path?)

Length = 0 Dead-End Position Solution
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ŵ1, ŵ2, . . . xN t m xk xk+1 5.5

Origin Node s Artificial Terminal Destination Node t Encoder Noisy
Channel Received Sequence

Decoder Decoded Sequence

s x0 x1 x2 xN�1 xN t m xk xk+1 5.5

w1, w2, . . . y1, y2, . . . x1, x2, . . . z1, z2, . . . ŵ1, ŵ2, . . . xN t m xk
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xk+1 5.5

Old State xk�1 New State xk Encoder Noisy Channel Received
Sequence

Decoder Decoded Sequence

1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 20

A AB AC AD ABC ABD ACB ACD ADB ADC

ABCD ABDC ACBD ACDB ADBC ADCB

Origin Node s Artificial Terminal Node t

(Is the path s ! i ! j

have a chance to be part of a shorter s ! j path?)

(Does the path s ! i ! j shorter than the current s ! j path?)

Length = 0 Dead-End Position Solution
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ŵ1, ŵ2, . . . xN t m xk xk+1 5.5

Origin Node s Artificial Terminal Destination Node t Encoder Noisy
Channel Received Sequence

Decoder Decoded Sequence

s x0 x1 x2 xN�1 xN t m xk xk+1 5.5

w1, w2, . . . y1, y2, . . . x1, x2, . . . z1, z2, . . . ŵ1, ŵ2, . . . xN t m xk
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Starting Position ŵ1, ŵ2, . . . xN t m xk xk+1 5.5 i j

YES Set dj = di + aij Is di + aij < dj? Is di + aij < UPPER?

Open List INSERT REMOVE
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1

xk+1 and xk are n-word strings differing by the single word uk

System xk+1 = f (xk , uk ) (deterministic)

Cost function: gN(xN) (encodes the “quality" of the final text string)

A trained GPT/NN can generate trajectories of such a system, i.e., state-control
sequences {x0, u0, x1, u1, . . . , uN−1, xN}.

A GPT can be viewed as a heuristic/suboptimal control generation method (we will
call it a “policy" or “base heuristic" in the next lecture).

x0 includes the user-supplied prompt - Possibility of “prompt engineering"

Exact DP will find the optimal GPT, but this is totally intractable!
The conceptual DP principles apply and can form the basis for approximations
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Classical Control Problem I: Control Around a Reference Point
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k+1
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PATH PLANNING FOLLOW A GIVEN TRAJECTORY REGULATION PROBLEM

States at the End of the Lookahead Final States

xk+1 = f(xk, uk)

and the cost per stage

g(xk, uk) ≥ 0, for all (xk, uk)

f(0, uk) = 0, g(0, uk) = 0 for some control uk ∈ Uk(0)

(! − 1)-Stages Minimization Control of Belief State

Keep the state near some given point

Must Deal with State and Control Constraints Linear-Quadratic Formulation is Often Inadequate

Current Partial Solution x x̄ x̄ = f(x, u, w) g(x, u, w) u1 (x, u1) u2 (x, u1, u2)

xk+1 = fk(xk, xk−1, uk, uk−1, wk)

u3 um−1 (x, u1, . . . , um−1) Control um Stage m-Component Control u = (u1, . . . , um)

J1 J2 J∗ = TJ∗ xk+1 = max(0, xk + uk − wk)

TETRIS An Infinite Horizon Stochastic Shortest Path Problem Optimal
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Belief Estimator TJ = minµ TµJ Cost 0 Cost g(x, u, y) System State Data Control Parameter Estima-

tion

Optimal cost Cost of rollout policy µ̃ Cost of base policy µ θ = 0, θ̇ = 0

Objective is to Catch the flies in minimum time

Min Q-factor choice

Cost E
{
g(x, u, y)

}
Cost E

{
g(i, u, j)

}
“On-Line Play”

Value Network Current Policy Network Approximate Policy

Approximate Policy Evaluation Approximately Improved Policy Evaluation

TµJ Approximate Policy Evaluation for µ Approximate Policy Improvement

Optimal Trajectory Chosen by Base Heuristic at x0 Initial Tentative Best Trajectory

0 1 2 3 4 5 6 15
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Section 2.3 Section 2.4 Sections 2.5, 3.1 3.3 3.4 3.2, 3.3, 3.3.3 2.4.3 2.4.2 3.3, 3.4

High Cost Transition Chosen by Heuristic at x∗
1 Violates Sequential Improvement 2.4.3, 2.4.4 2.4.2 3.3,

3.4

Monte Carlo Tree Search ‘
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gk(xk, uk, wk) +

k+!−1∑

i=k+1

gi

(
xi, µi(xi), wi

)
+ J̃k+!(xk+!)

}

Optimal Cost Terminal States Cost Approximation Cost g(i, u, j) Policy µ State Space First Stage
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Control theory has many applications:
Space exploration, chemical process control, robotics, self-driving cars

Bertsekas Reinforcement Learning 36 / 46



Classical Control Problem II: Path Planning

Uncertainty System Environment Cost Control Current State i

Controller Production Center Delay Retail Storage Demand

Possible Moves Average Score by Monte-Carlo Simulation

Current Position and Dice Roll Best Score A B

φβ1,β2,γ(x) = φβ1,γ(x) − φβ2,γ(x) β3 β4 (a) (b) φβ1,β2,β3,β4,γ(x)

x γ(x − β3) γ(x − β4) + − max{0, ξ} Linear Unit Rectifier φβ,γ(x)
Slope γ β

High Cost Suboptimal u′ “Deceptive” Low Cost u Optimal trajectory
% + 1 Stages Optimal trajectory

(ciy − bi)2 R mini y∗
i maxi y∗

i

J̃k+1(xk+1) = min
uk+1∈Uk+1(xk+1)

E
{

gk+1(xk+1, uk+1, wk+1)

+J̃k+2

(
fk+1(xk+1, uk+1, wk+1)

)}
,

2-Step Lookahead (onestep lookahead plus one step approx-
imation)

Certainty equivalence Monte Carlo tree search Lookahead tree %-Step
Shortest path problem xk xk States xk+1 States xk+2 u u′

Truncated Rollout Terminal Cost Approximation J̃

Parametric approximation Neural nets Discretization

Parametric approximation Neural nets Discretization

Cost Function Approximation J̃k+#

Rollout, Model Predictive Control

b+
k b−

k Permanent trajectory P k Tentative trajectory T k

min
uk

E
{
gk(xk, uk, wk)+J̃k+1(xk+1)

}

Approximate Min Approximate E{·} Approximate Cost-to-Go J̃k+1

Optimal control sequence {u∗
0, . . . , u∗

k, . . . , u∗
N−1} Simplify E{·}

Tail subproblem Time x∗
k Future Stages Terminal Cost k N

Stage k Future Stages Terminal Cost gN(xN )

Control uk Cost gk(xk, uk) x0 xk xk+1 xN xN x′
N

ũk uk x̃k+1 xk+1 x̃N xN x′
N

Φr = Π
(
T

(λ)
µ (Φr)

)
Π(Jµ) µ(i) ∈ arg minu∈U(i) Q̃µ(i, u, r)

1
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Current Partial Folding

Current Partial Folding Moving Obstacle

Complete Folding Corresponding to Open

Expert
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min
u∈U(x)

n∑
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pxy(u)
(
g(x, u, y) + αJ̃(y)

)

x1
k, u1

k u2
k x2

k dk τ

Q-factor approximation

u1 û1 10 11 12 R(yk+1) Tk(ỹk, uk) =
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ỹk, uk, R(yk+1)
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sen by Base Heuristic at x0 Initial

Base Policy Rollout Policy Approximation in Value Space n n − 1
n − 2
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for Stages Beyond Truncation yk Feature States yk+1 Cost gk(xk, uk)
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min
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E
w
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g(x, u, w) + αJ̃

(
f(x, u, w)

)}

Truncated Rollout Policy µ m Steps

Approximate Q-Factor Q̃(x, u) At x

Cost Data Policy Data System: xk+1 = 2xk + uk Control constraint:
|uk| ≤ 1

Cost per stage: x2
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Example: Self-driving cars. Note the computational challenges:
Unpredictable and changing environment

Safety constraints

Need for on-line replanning

Tight on-line computational budget constraint

Approximations are essential
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Approximate DP Algorithm - Connection to Reinforcement Learning

Exact DP algorithm - Optimal control generation: Start with

u∗
0 ∈ arg min

u0∈U0(x0)

[
g0(x0, u0) + J∗

1
(
f0(x0, u0)

)]
This takes you to

x∗
1 = f0(x0, u∗

0 ).

Sequentially, going forward, for k = 1, 2, . . . ,N − 1, set

u∗
k ∈ arg min

uk∈Uk (x∗
k )

[
gk (x∗

k , uk ) + J∗
k+1

(
fk (x∗

k , uk )
)]
, x∗

k+1 = fk (x∗
k , u

∗
k ).

Approximation in value space - Use some J̃k in place of J∗
k (off-line training)

Start with
ũ0 ∈ arg min

u0∈U0(x0)

[
g0(x0, u0) + J̃1

(
f0(x0, u0)

)]
This takes you to

x̃1 = f0(x0, ũ0).

Sequentially, going forward, for k = 1, 2, . . . ,N − 1, set (on-line play)

ũk ∈ arg min
uk∈Uk (x̃k )

[
gk (x̃k , uk ) + J̃k+1

(
fk (x̃k , uk )

)]
, x̃k+1 = fk (x̃k , ũk ).
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Extensions

Stochastic finite horizon problems
The next state xk+1 is also affected by a random parameter (in addition to xk and uk ).
More difficult than deterministic (not equivalent to a shortest path problem).

Infinite horizon problems
The exact DP theory is mathematically more complex, but also more elegant.

Stochastic partial state information problems
We will convert them to problems of perfect state information, and then apply DP. Very
hard to solve even approximately ... but offer great promise for applications.

Minimax/game problems
The exact DP theory is substantially more complex ... but the most spectacular
successes of RL involve games. We will discuss RL methods and the context of
computer chess in particular.
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Course Aims and Requirements

Our principal aim: To help you to think about how RL applies to your research interests

Requirements:
Homework (30%): A total of 3-4

Research-oriented term paper (70%). A choice of:
▶ A mini-research project. You may work in teams of 1-3 persons. You are encouraged to

try. Selected class presentations at the end.
▶ A read-and-report term paper based on 2-3 research publications (chosen by you in

consultation with the instructors)

Attendance in person is a requirement (assuming no hint of illness).

Notation: People in AI/RL, Control Theory, and Operations Research focus on
different problems and use different notations

AI/RL and OR focus on discrete/finite-state problems which are stochastic
[Markovian Decision Problems (MDP)]. Use transition probabilities pij(u) to
describe the uncertainty.

Control theorists use system equation notation xk+1 = fk (xk , uk ,wk ). This notation
is well-suited for continuous-state problems and deterministic problems.

You are strongly encouraged to use the notation and terminology of the course.
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Mathematical Requirements

Math requirements for this course are simple and modest
Calculus, elementary probability, minimal use of vector-matrix algebra. Our objective is
to use math to the extent needed to develop insight into the mechanism of various
methods, and to be able to start research.

However:
A math framework is essential for DP problem formulation, understanding, and
solution.

DP relies on substantial math theory, particularly for infinite horizon problems.
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Syllabus I (Approximate)

Algorithmic Topics
Introduction to exact and approximate dynamic programming

Approximation in value and policy space

Off-line training, on-line play, and Newton’s method

Rollout and approximate policy iteration

Model predictive and adaptive control

Multiagent reinforcement learning

Discrete optimization using rollout

Sequential estimation and Bayesian optimization

Training of feature-based approximation architectures and neural networks
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Syllabus II (Approximate)

Application Topics
Robotics and autonomous systems in multiagent environments

Large language models

Inference and optimization of Hidden Markov Models

Data association

Two-person games and computer chess

Infrastructure networks and supply chains

Cybersecurity applications

Health care applications
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Homework - Future Lectures

Homework due by Tuesday, January 21, midnight
Solve Exercise 1.1(a) of the textbook, ONLY PART (a)

Lectures
The first four lectures will aim to provide an introduction and overview of the subject,
which will facilitate selecting and focusing on some research area. The remaining
lectures will develop the topics listed above in greater depth.

In the 2nd lecture we will cover:
DP algorithm for stochastic problems

Approximation in value space

PLEASE READ AS MUCH OF THE TEXTBOOK AS YOU CAN

Watch the video of Lecture 2 of the 2024 or 2023 offering of the class at
http://web.mit.edu/dimitrib/www/RLbook.html
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