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0 AlphaZero - Off-Line Training and On-Line Play

@ History, General Concepts

e About the Course and its Connections to Various Fields

o Exact Dynamic Programming - Deterministic Problems

e Examples: Finite-State/Discrete/Combinatorial DP Problems
@ Examples: Next Word Prediction - ChatGPT

e Examples: Continuous Problems, Model Predictive Control
e Approximate DP

e Organizational Issues
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Chess and Backgammon - Off-Line Training and On-Line Play

Current Position and Dice Roll

L3
if
Average Score Average Score Average Score Average Score
Monte-Carlo Monte-Carlo Monte-Carlo Monte-Carlo
Simulation Simulation Simulation Simulation
*Best Score*

Both AlphaZero (2017) and TD-Gammon (1996) involve two algorithms:
@ Off-line training of value and/or policy neural network approximations
@ On-line play by multistep lookahead, rollout, and cost function approximation

Strong connections to DP, policy iteration, and RL-type methodology
@ We aim to understand this methodology, so it applies far more generally

@ For example, in control system design (model predictive and adaptive control),
large language models, and discrete optimization
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On-Line Play in AlphaZero

: Approximation in Value Space

Lookahead Tree
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All legal moves uy,
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@ Multistep lookahead with position evaluation at the end

@ On-line play uses the result of off-line training, which is the position evaluator

@ An example of a fundamental RL approach that we will use extensively in this
course: Approximation in value space
@ Strong similarities with Model Predictive Control (MPC) except that:
State is discrete in chess, but continuous in MPC (usually)
In chess the lookahead tree is usually “pruned", while in MPC the lookahead
optimization is usually exact (more on this later)
Another difference is that chess is a two-player game. More on this later, but think of
chess against a fixed opponent (this makes chess a one-player game)
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Off-Line Training in AlphaZero: Approximate Policy lteration (Pl) Using

Self-Generated Data

Current - “Improved”
Player/Policy|  Policy Policy Player/Policy
— Evaluation »| Improvement
Value Policy
Network Network

Self-Learning/Policy Iteration

@ The current player is used to train an improved player, and the process is repeated

@ The current player/policy is “evaluated” by playing many games

@ lts evaluation function is represented by a value neural net through training

@ The “improved player" is represented by a policy neural net through training

@ The “improvement” is done by using a form of approximate multistep lookahead
minimization, called Monte-Carlo Tree Search (MCTS)

@ The results of off-line training are the “final player" and its corresponding position
evaluator
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On-Line Play in TD-Gammon: Approximation in Value Space with

Rollout
L R el F-->@®
Lookahead Tree
e ————— ---»@
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@ On-line play uses the results of off-line training, which are: A position evaluator
and a (base) player
@ |t aims to improve the base player by:

Generating forward a lookahead tree involving several moves

Simulating the base player for some more moves at the tree leaves (rollout)
Approximating the effect of future moves by using the terminal position evaluation
Calculating the “values" of the available moves at the root and playing the best move

@ An important connection: Discrete optimization by rollout (using a base heuristic)
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Some Major Empirical Observations
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The AlphaZero on-line player plays much better than the off-line-trained player )

TD-Gammon plays much better with truncated rollout than without rollout )

We will aim for explanations, insights, and generalizations through abstract
Bellman operators, visualization, and a deep theoretical insight:

Approximation in value space is connected to Newton’s method
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Framework of the Course

We aim to unify several areas of large scale computation:

@ Reinforcement learning (RL) as practiced by the Al community

@ Approximate dynamic programming (DP) as practiced by parts of the
optimization/OR community

@ Model predictive and adaptive control as practiced by the control systems
community

@ Parts of discrete optimization as practiced by the algorithms/CS community

@ Parts of the emerging area of large language models as practiced by the LLM
community

We rely on:
@ The algorithmic theory of exact, approximate, and abstract DP
@ The paradigm of AlphaZero/TD-Gammon and similar design architectures
@ Intuitive visualization based on Bellman operators and Newton’s method

We aim, through unification, to:
@ Bridge the gap between cultures of different communities
@ Bring to bear the power of RL to a very broad range of applications
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Evolution of Approximate DP/RL: A Fruitful Synergy

Al/RL Decision/
: Control/DP
Learning through
Data/Experience Principle of Optimality
Complementary
Simulation, ldeas Markov Decision
Model-Free Methods |« > Problems
Late 80s-Early 90s
Feature-Based POMDP
Representations

Policy Iteration

Neural Nets
“ Value lteration

A*/Games/ MPC
Heuristics Optimal Control

Historical highlights
@ Exact DP, optimal control (Bellman, Shannon, and others 1950s ...)
@ AI/RL and Decision/Control/DP ideas meet (mid 80s-mid 90s)
@ First major successes: Backgammon programs (Tesauro, 1992, 1996)
@ Algorithmic progress, analysis, applications, first books (mid 90s ...)
@ Machine Learning, BIG Data, Robotics, Deep Neural Networks (mid 2000s ...)
@ AlphaGo and AlphaZero (DeepMind, 2016, 2017)
@ Large Language Models, ChatGPT (OpenAl, 2022)

Bertsekas Reinforcement Learning

11/46



Approximate DP/RL Methodology is now Ambitious and Universal

Exact DP applies (in principle) to a very broad range of optimization problems
@ Deterministic <—-> Stochastic
@ Combinatorial optimization <—-> Optimal control w/ infinite state/control spaces
@ One decision maker <—-> Two player games
@ ... BUT is plagued by the curse of dimensionality and need for a math model

Approximate DP/RL overcomes the difficulties of exact DP by:
@ Approximation (use neural nets and other architectures to reduce dimension)
@ Simulation (use a computer model in place of a math model)

State of the art:

@ Broadly applicable methodology: Can address a very broad range of challenging
problems. Deterministic-stochastic-dynamic, discrete-continuous, games, etc

@ There are no methods that are guaranteed to work for all or even most problems

@ There are enough methods to try with a reasonable chance of success for most
types of optimization problems

@ Obijective of our course: Structure mathematically the methodology, guide the art,
delineate the sound ideas (from the crazy and unhinged ideas)
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A Relevant Quotation from ~ 30 Years Ago

From preface of Neuro-Dynamic Programming, Bertsekas and Tsitsiklis, 1996 J

A few years ago our curiosity was aroused by reports on new methods in reinforcement
learning, a field that was developed primarily within the artificial intelligence community,
starting a few decades ago. These methods were aiming to provide effective
suboptimal solutions to complex problems of planning and sequential decision making
under uncertainty, that for a long time were thought to be intractable.

Our first impression was that the new methods were ambitious, overly optimistic, and
lacked firm foundation. Yet there were claims of impressive successes and indications
of a solid core to the modern developments in reinforcement learning, suggesting that
the correct approach to their understanding was through dynamic programming.

V.

Three years later, after a lot of study, analysis, and experimentation, we believe that our
initial impressions were largely correct. This is indeed an ambitious, often ad hoc,
methodology, but for reasons that we now understand much better, it does have the
potential of success with important and challenging problems.

V.

This assessment still holds true!




Aims and References

This course is research-oriented. It aims:
@ To explore the state of the art of approximate DP/RL at a graduate level
@ To explore in depth some special research topics (rollout, policy iteration, etc)
@ To provide the opportunity for you to explore research in the area

Main references:
@ Bertsekas, Reinforcement Learning and Optimal Control, 2019
@ Bertsekas, Rollout, Policy Iteration, and Distributed Reinforcement Learning, 2020

@ Bertsekas, Lessons from AlphaZero for Optimal, Model Predictive, and Adaptive
Control, 2022 (on-line; focus on Newton step view of approximation in value space)

@ Bertsekas: A Course in Reinforcement Learning, 2nd Ed., 2024 (text on-line)
@ Slides, papers, and videos from the 2019-2023 ASU courses; check my web site

Supplementary references
@ Exact DP: Bertsekas, DP and Optimal Control, Vols. I, I, 2017, Abstract DP 2022
@ Bertsekas and Tsitsiklis, Neuro-Dynamic Programming, 1996
@ Sutton and Barto, 1998, Reinforcement Learning (2nd edition 2018, on-line)

@ Machine Learning/Deep Learning books (e.g., Bishop and Bishop, 2024)
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Terminology in RL/Al and DP/Control

RL uses Max/Value, DP uses Min/Cost
@ Reward of a stage = (Opposite of) Cost of a stage.
@ State value = (Opposite of) State cost.
@ Value (or state-value) function = (Opposite of) Cost function.

Controlled system terminology
@ Agent = Decision maker or controller.
@ Action = Decision or control.
@ Environment = Dynamic system.

Methods terminology
@ Learning = Solving a DP-related problem using simulation.
@ Self-learning (or self-play in the context of games) = Solving a DP problem using
simulation-based policy iteration.
@ Planning vs Learning distinction = Solving a DP problem with model-based vs
model-free simulation.
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Notation in RL/Al and DP/Control

@ RL poses problems as stochastic and uses transition probability notation

p(s, a,s’)

(s, s’ are states, a is action); standard in stochastic finite-state problems (MDP)
@ Control theory uses discrete-time system equation

X1 = F(Xk, Uk, Wk)

which is standard in continuous spaces problems
@ Operations research uses both notations [typically p;(u) for transition probabilities]

These two notational systems are mathematically equivalent but:

@ Transition probabilities are cumbersome for deterministic problems and continuous
spaces problems

@ System equations are cumbersome for finite-state problems

We will use both notational systems, depending on the context J
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A Fifteen-Minute Break

All our lectures will have a 15-minute break, somewhere in the middle
Catch our breath and think about issues relating to the first half of the lecture.
A short discussion/questions/answers period will follow each break.
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Finite Horizon Deterministic Optimal Control Model
Control uy
—O—Ouiif 00

Stage k Future Stages

@ System
Xert = Fe(Xk, Uk), k=0,1,...,N—1

where xi: State (lives in some space), ux: Control chosen from some set Uk (x«)

@ Cost function: -
g 0w) + Y G(Xe, k)
k=0

@ For given initial state xp, minimize over control sequences {uo, ..., Uv—_1}
N—1
J(X0i Uo, - - Uun—1) = n(XN) + D Gk(X, Uk)
k=0
o Optlma' cost function J* (Xo) = min UkEUk(Xk) J(Xo, U oooq UN71)
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A Special Case: Finite Number of States and Controls

State Transition
Cost g1(x1,u1) _ o2 = fi(z1,u)
Terminal Arcs
Cost gn(zn)

‘Artificial Terminal
Node

Stage 0 Stage 1 Stage 2 .- Stage N —1 Stage N
xo 1 x2 TN-1 TN
@ Nodes correspond to states xx
@ Each arc corresponds to a state-control pair (X, ux) [start node is xx; end node is
Xie+1 = Fie( Xk, Ui)]
@ Arcs (xk, ux) have cost gk (xk, ux) - “terminal arcs" have cost gn(xn).

@ The cost to optimize is the sum of the arc costs from the initial node/state x, to a
terminal node t.

@ The problem is equivalent to finding @ minimum cost/shortest path from x to .
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Principle of Optimality: A Very Simple Idea

xy, Tail subproblem
® - - >
0 k N Time
{ud, .. uf_up, oo uy )

<

Optimal control sequence

Principle of Optimality
THE TAIL OF AN OPTIMAL SEQUENCE IS OPTIMAL FOR THE TAIL SUBPROBLEM )

Let {ug,...,un_1} be an optimal control sequence with corresponding state sequence
{x{,...,xn}. Consider the tail subproblem that starts at x; at time k and minimizes
over {U, . .., Uy—1} the “cost-to-go” from k to N,
N—1
(X, u) + D> Gm(Xm, Um) + gn(Xn).
m=k+1

Then the tail optimal control sequence {ug, ..., uy_4} is optimal for the tail subproblem.
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From Short Tail Subproblems to Longer Ones

Tail subproblem
x  Optimal Cost-to-Go J}(xy)

[y
>

0 k
Tail subproblem
zp+1 Opt. Cost-to-Go J, 1 (2r+1)
Tail subproblem
Tk ;C Lk+1 Opt. Cost-to-Go J}, | (2}, 1)
L >0 > NV
O "
L Tail subproblem

Zr11 Opt. Cost-to-Go Jk+1(L;+l)

By the principle of optimality: To solve the tail subproblem that starts at xj

@ Consider every possible ux and solve the tail subproblem that starts at next state
X1 = f(Xk, Uk). This gives the “cost evaluation of uy"

@ Optimize over all possible ux
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DP Algorithm: Solves All Tail Subproblems Efficiently by Using the

Principle of Optimality

Idea of the DP algorithm

Solve all the tail subproblems of a given time length using the solution of all the tail
subproblems of shorter time length

DP Algorithm: Produces the optimal costs J;(xx) of the xi-tail subproblems

Start with
In(xn) = gn(xn),  forall xy,

andfork=0,...,N—1, let

J:(Xk) = min ) [gk(Xk,Uk)+J:+1 (fk(Xk,Uk))], for all xk.

Uk € Uy (Xx

The optimal cost J*(xo) is obtained at the last step
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DP Algorithm for Generic Finite-State Problem.

Stage 0 Stage 1 Stage 2 ... Stage N —1 Stage N
xo X1 2 TN-1 TN

Jo (o) Ji(x)  Jo(w2) Jy_@n-1)  Jy(en) = gn(zn)

JZ (k) = min {gk(:l:k,fu,k) + JZ_H (fk(lk, 'u,k))}, for all zp,
up €Uk (1)
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2nd Phase:

Start with

Uy € arg  min [go(xo,uo) +J5 (fo(xo,uo))]
Uo € Up (%0)

This takes you to
xi = fo(Xo0, Ug)-

Sequentially, going forward, for k =1,2,...,N — 1, set

Ui €arg  min [gk(x,f,uk)+J,f+1(fk(x;‘,uk))], X = Fe(XE, Up).
Uk €Uk (x})
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Discrete-State Deterministic Scheduling Example

Empty schedule

Find optimal sequence of operations A, B, C, D (A must precede B and C must precede D)
DP Problem Formulation

@ States: Partial schedules; Controls: Stage 0, 1, and 2 decisions; Cost data shown
along the arcs

@ Recall the DP idea: Break down the problem into smaller pieces (tail subproblems)
@ Start from the last decision and go backwards
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Solve the stage 2 subproblems (using the terminal costs - in red)
At each state of stage 2, we record the optimal cost-to-go and the optimal decision J
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DP Algorithm: Stage 1 Tail Subproblems

Solve the stage 1 subproblems (using the optimal costs of stage 2
subproblems - in purple)
At each state of stage 1, we record the optimal cost-to-go and the optimal decision
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DP Algorithm: Stage 0 Tail Subproblems

Solve the stage 0 subproblem (using the optimal costs of stage 1 subproblems
- in orange)

@ The stage 0 subproblem is the entire problem

@ The optimal value of the stage 0 subproblem is the optimal cost J* (initial state)

@ Construct the optimal sequence going forward
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Discrete Optimization: Traveling Salesman Example; Cities A,B,C,D

Initial State o

1

12| AC 2

20 20 3 4 3
1s[aBc| 4[aBp| 19/acB| o9lacp| 21[apB]| 25{ADC|
3 3 4 1 20 20
15 ABCD| 1 15jacep| sfacpl  1fapd s ppcs]

Bertsekas
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1 5 1
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Matrix of Intercity
Travel Costs
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Large Language Models - Next Word Prediction (n-Gram - ChatGPT)

Tk Uk Tr41
Promp Next
— ... —p{ Current Text Window W d: Next Text Window —» - - -
or

@ Xx+1 and xi are n-word strings differing by the single word ux
@ System xx11 = f(Xk, Ux) (deterministic)
@ Cost function: gn(xn) (encodes the “quality” of the final text string)

@ A trained GPT/NN can generate trajectories of such a system, i.e., state-control
sequences {Xo, Uy, X1, U1, ..., UN—1, XN}

@ A GPT can be viewed as a heuristic/suboptimal control generation method (we will
call it a “policy” or “base heuristic" in the next lecture).

@ X includes the user-supplied prompt - Possibility of “prompt engineering"

Exact DP will find the optimal GPT, but this is totally intractable!
The conceptual DP principles apply and can form the basis for approximations
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Classical Control Problem I: Control Around a Reference Point

REGULATION PROBLEM
Keep the state near some given point
Traditionally 0 (the origin)
0=0,0=0

Control theory has many applications:
Space exploration, chemical process control, robotics, self-driving cars
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Classical Control Problem II: Path Planning
FOLLOW A 1 Q

GIVEN TRAJECTORY

Acceleration
Constraints

loving Obstacle

Fixed Obstacles ‘
0 0 State and Control Constraints

ps.

Example: Self-driving cars. Note the computational challenges:

Velocity
Constraints

A

@ Unpredictable and changing environment

@ Safety constraints

@ Need for on-line replanning

@ Tight on-line computational budget constraint
@ Approximations are essential
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Approximate DP Algorithm - Connection to Reinforcement Learning

Exact DP algorithm - Optimal control generation: Start with

Uy €arg min [go(xo,uo) + J5 (fo(xo,uo))]
o € Up(x0)

This takes you to
X7 = fo(Xo, Ug)-

Sequentially, going forward, for k =1,2,..., N — 1, set

U € arg min [gk(x,f,uk) + i (fk(x,f,uk))]., Xer1 = fe(Xg, Ug).
UKEUK(X )
Approximation in value space - Use some Ji in place of Ji (off-line training)
Start with
il € arg n?jm [go(Xm o) + Ji (fo(xo, Uo))]
This takes you to
)?1 = fo(Xo, ao)

Sequentially, going forward, for k = 1,2,..., N — 1, set (on-line play)

Uk € arg min [gk(;(l(; Uk) + Jk+1 (fk(;(ks Uk))] 9 ;(k+1 = fk(;(k, Elk)
Uk € Uy (%)

Bertsekas Reinforcement Learning
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Extensions

Stochastic finite horizon problems

The next state xx1 is also affected by a random parameter (in addition to xx and ux).
More difficult than deterministic (not equivalent to a shortest path problem).

Infinite horizon problems
The exact DP theory is mathematically more complex, but also more elegant.

Stochastic partial state information problems

We will convert them to problems of perfect state information, and then apply DP. Very
hard to solve even approximately ... but offer great promise for applications.

Minimax/game problems

The exact DP theory is substantially more complex ... but the most spectacular
successes of RL involve games. We will discuss RL methods and the context of
computer chess in particular.
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Course Aims and Requirements

Our principal aim: To help you to think about how RL applies to your research interests )

Requirements:
@ Homework (30%): A total of 3-4

@ Research-oriented term paper (70%). A choice of:
A mini-research project. You may work in teams of 1-3 persons. You are encouraged to
try. Selected class presentations at the end.
A read-and-report term paper based on 2-3 research publications (chosen by you in
consultation with the instructors)

@ Attendance in person is a requirement (assuming no hint of illness).

Notation: People in Al/RL, Control Theory, and Operations Research focus on
different problems and use different notations
@ Al/RL and OR focus on discrete/finite-state problems which are stochastic
[Markovian Decision Problems (MDP)]. Use transition probabilities p;(u) to
describe the uncertainty.

@ Control theorists use system equation notation xx+1 = fk(Xk, Uk, wk). This notation
is well-suited for continuous-state problems and deterministic problems.

@ You are strongly encouraged to use the notation and terminology of the course.
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Mathematical Requirements

Math requirements for this course are simple and modest

Calculus, elementary probability, minimal use of vector-matrix algebra. Our objective is
to use math to the extent needed to develop insight into the mechanism of various
methods, and to be able to start research.

However:

@ A math framework is essential for DP problem formulation, understanding, and
solution.

@ DP relies on substantial math theory, particularly for infinite horizon problems.
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Syllabus | (Approximate)

Algorithmic Topics
@ Introduction to exact and approximate dynamic programming
@ Approximation in value and policy space

Off-line training, on-line play, and Newton’s method

Rollout and approximate policy iteration

Model predictive and adaptive control

Multiagent reinforcement learning

Discrete optimization using rollout

Sequential estimation and Bayesian optimization

@ Training of feature-based approximation architectures and neural networks
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Syllabus Il (Approximate)

Application Topics
@ Robotics and autonomous systems in multiagent environments
Large language models
Inference and optimization of Hidden Markov Models
Data association
Two-person games and computer chess

Infrastructure networks and supply chains
@ Cybersecurity applications
@ Health care applications
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Homework - Future Lectures

Homework due by Tuesday, January 21, midnight
Solve Exercise 1.1(a) of the textbook, ONLY PART (a)

Lectures

The first four lectures will aim to provide an introduction and overview of the subject,
which will facilitate selecting and focusing on some research area. The remaining
lectures will develop the topics listed above in greater depth.

In the 2nd lecture we will cover:
@ DP algorithm for stochastic problems
@ Approximation in value space

PLEASE READ AS MUCH OF THE TEXTBOOK AS YOU CAN

Watch the video of Lecture 2 of the 2024 or 2023 offering of the class at
http://web.mit.edu/dimitrib/www/RLbook.html J
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