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Review - Finite Horizon Deterministic Problem
Control uy
Gy =) @ @ O—-—)
Cost gr(zk, uk)

Stage k

@ System
Xk+1:fk(Xk,Uk)7 k:0,1,...7N71

where xi: State, ux: Control chosen from some set Ux(xx)
@ Arbitrary state and control spaces (e.g., vectors, chess positions, word strings)
@ Cost function:

N—1
an(xn) + Z Gk (X, Uk)
k=0

@ For given initial state xo, minimize over control sequences {uo, . .., Un—_1}
N—1
J(Xo; Up, - -, Un—1) = GN(XN) + D Gr(Xk, Uk)
k=0
@ Optimal cost function J*(xo) = min Ui, J(Xo; Uoy - - -, UN—1)
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Review - DP Algorithm for Deterministic Problems

Go backward to compute the optimal costs J; (xx) of the xx-tail subproblems
(off-line training - involves lots of computation)

Start with
Iv(xn) = gn(xn),  forall xu,

andfork=0,...,N—1, let

J:(Xk) = min [gk(Xk,Uk)+J;+1 (fk(Xk,Uk)):|, for all xk.

Uk € Uy (xk)

Then optimal cost J*(xo) is obtained at the last step: J; (xo) = J*(X0).

v

Go forward to construct optimal control sequence {u;, . .

Start with

Uy € arg min [go(xo,uo) + Ji (fo(xo, uo))}, X{ = fo(Xo0, Ug)-
Up € Up(xo)

Sequentially, going forward, for k = 1,2,..., N — 1, set

v € arg min [g(xi, u) + Ker (RO w) ]y xia = O ).
Uy €Uk (x7)

., Uf_4} (on-line play)
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Q-Factors for Deterministic Problems

An alternative (and equivalent) form of the DP algorithm
@ Generates the optimal Q-factors, defined for all (xk, ux) and k by

Qi (Xk, Uk) = Gk(Xk, U) + Jer1 (fi( Xk, Uk))

@ The optimal cost function J; can be recovered from the optimal Q-factor Qg

J* _ - ¢
ik (Xk) D Qi (Xk, Uk)

@ The DP algorithm can be written in terms of Q-factors

Qk (X, i) = Gie(Xk, Uk) + min Qi1 (fi(Xk, U), Uk 1)
Uk+1 € U1 (B (X, Uk )

@ Exact and approximate forms of this and other related algorithms, form an
important class of RL methods known as Q-learning.
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Approximation in Value Space

We replace J; with an approximation Jx during on-line play

@ Start with )
[Jo € arg min [QO(XO«, Uo) 4+ Ji (fo(Xo, Uo))]

up € Up(xo)
@ Set ;(1 = fo(X()7 [10)
@ Sequentially, going forward, for k = 1,2,..., N — 1, set

U € arg  min_ [gk()?k7 uk) + Jier (Fe(X, Uk))} Xic1 = fie(Xi, Ux)
Uk € Uk (Xi)

How do we compute Jk+1 (Xk+1)? This is one of the principal issues in RL
@ Off-line problem approximation: Use as Jx.1 the optimal cost function of a simpler
problem, computed off-line by exact DP

@ Parametric cost approximation: Obtain Jx.1(x«+1) from a parametric class of
functions J(xx+1, r), where r is a parameter, e.g., training using data and a NN.

@ Rollout with a heuristic: We will focus on this for the moment.
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Rollout for Finite-State Deterministic Problems

gk (T, ur) + Hiqr (Thgr) |

Heuristic

Heuristic

Current State uj,

Heuristic
Next States

Optimal cost approximation by running a heuristic from states of interest )

@ Upon reaching xx, we compute for all ux € Uk(xk), the corresponding next states
Xic41 = fi( X, Uk)

@ From each of the next states xx.1 we run the heuristic and compute the heuristic
cost Hi1(Xk+1)

@ We apply ik that minimizes over ux € Uk(x«), the (heuristic) Q-factor

Ik (X, Uk) + Hici1 (Xi1)

@ We generate the next state xx+1 = fi(Xk, Ux) and repeat
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Example of Rollout: Traveling Salesman w/ Nearest Neighbor Heuristic

Initial State xg

1
\ Ny it
Base Heuristic Matrix of Intercity

Travel Costs

Complete Tours

Current ‘

u Nearest Neighbor
Partial Tour &

Initial City Heuristic

Nearest Neighbor
Heuristic

Nearest Neighbor
Heuristic
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Stochastic DP Problems - Perfect State Observation (We Know x)

Random Transition
Jr(or, ur, wr)

Th+1 =
O O DO D
Random Cost

Gk (T, Uk, W)

@ System xx1 = fi(Xk, Uk, wi) with random “disturbance" wx (e.g., physical noise,
market uncertainties, demand for inventory, unpredictable breakdowns, etc)
@ Cost function: £ {gN(xN) + N Gk (Xiy Uk Wk)}

@ Policies m = {po, ..., un—1}, where py is a “closed-loop control law" or “feedback
policy"/a function of xx. A “lookup table" for the control ux = u«(xx) to apply at xk.

@ An important point: Using feedback (i.e., choosing controls with knowledge of the
state) is beneficial in view of the stochastic nature of the problem.

@ For given initial state xo, minimize over all * = {uo, ..., un—1} the cost

N—1
Jr(x0) = E {gN(XN) + Z Ik (xk,uk(xk) Wk)}
k=0

@ Optimal cost function: J*(xo) = min, J:(Xp). Optimal policy: J-«(x0) = J*(X0)
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The Stochastic DP Algorithm

Produces the optimal costs J{(xx) of the tail subproblems that start at x
Start with Jy(xn) = gnv(xn), and fork =0,...,N —1, let
Ji () = qu?JLTXK) Ewk{gk(m Uk, W) + Jir (Fe (X, Uk, Wk))}7 for all Xx.

@ The optimal cost J*(xo) is obtained at the last step: Jy(x0) = J*(x0).

@ The optimal policy component ux can be constructed (off-line) simultaneously with
Ji, and consists of the minimizing u; = uk(xx) above.

v

Alternative (on-line) implementation of the optimal policy, given J;', ..., Jg_4

Sequentially, going forward, for k = 0,1,..., N — 1, observe xx and apply

U; € arg min Ewk{gk(xk,uk,Wk)+JZ+1 (fk(Xk,Uk.,Wk))}.
Uy € U (Xic)

Issues: Need to know Ji, , compute Ey, {-} for each ux, minimize over all ux
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A Very Favorable Case: Linear-Quadratic Problems

One-dimensional linear-quadratic problem
@ System is X1 = axx + bux + wi (a and b are given scalars, E{w,} = 0)

@ Cost over N stages: gx3 + Zk 0 '(gx¢ + ru?), where g > 0 and r > 0 are given
scalars

@ The DP algorithm starts with J;;(xn) = gx2, and generates J; according to
Ji(xk) = n;in Ew {qxg + rug + Jii(axc + buc +wi)}, k=0,...,N—1
@ Main result: DP algorithm can be carried out in closed form to yield
Ji (%) = KixE +const,  pi(xk) = Lxk

where Ky and L, can be explicitly computed

@ ux(xx) does not depend on the distribution of wi as long as it has 0 mean:
Certainty Equivalence (a common approximation idea for other problems)

This result generalizes to multidimensional linear-quadratic problems

Xk € R", ux € R™; the scalars a, b, g, r are replaced by matrices A, B, Q, R.
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Derivation - DP Algorithm starting from Terminal Cost J;(xn) = gX&

J,*V,1(XN_1) = Lr’nin E{qx,%,,1 + ru,z\,,1 + J,T,(axN_1 + buy—_1 + WN_1)}
IN—1
= min E{qxR_1 + ruy_+ + q(axn—1 + bun—1 + wn_1)*}
N—1

= min [qxN_1 + rUx_1 + q(@xn—1 + bun—1)® +2q E{wn_1}(aXn—1 + bun_1) + q E{wj.
Un—1 —
=0 =d

=gk 1+ min [rur_1 + g(axn—1 + bun—1)?] + qo°
IN—1

Minimize by setting to zero the derivative: 0 = 2ruy_1 + 2gb(axy—1 + bun—1), to obtain |
~_abg
r+ b2q

pn—1(Xn—1) = Ln—1xn—1  with Ly_1 =

and by substitution, Ji_;(xv 1) = Kn_1xf_; + o, where Ky = Z/2 + g

Similarly, going backwards (starting with Ky = q), we obtain for all k:

N—-1
J*(Xk)_KkXZ'f'UZZK 1 (%) = Lexk Kk—%—kq Lk——M
k k o m+1, k ) r—+ b2Kk+1 ) r—+ b2Kk+1
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Linear-Quadratic Problems in General

Observations and generalizations

@ The solution does not depend on the distribution of wi, only on the mean (which is
0), i.e., we have certainty equivalence (the stochastic problem can be replaced by
a deterministic problem)

@ Generalization to multidimensional problems, nonzero mean w, etc
@ Generalization to infinite horizon

@ Generalization to problems where the state is observed partially through linear
measurements: Optimal policy involves an extended form of certainty equivalence

Lk E{xx | measurements}

where E{xx | measurements} is provided by an estimator (e.g., Kalman filter)
@ Linear-quadratic problems are often used as a starting point for other lines of
investigations and approximations:
Problems with safety/state constraints [Model Predictive Control (MPC)]
Problems with control constraints (MPC)
Unknown or changing system parameters (adaptive control)
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Approximation in Value Space - The Three Approximations

Simplified minimization

First Step “Future”

+——p >
min F {gk (.YJk, Uk, U/'k) + jk-‘rl (xk+1 )} “On-Line Play”

Expected value approximation Cost-to-go approximation

Important variants: Use multistep lookahead, use multiagent rollout (for
multicomponent control problems)
v
Multistep lookahead (performance - computational overhead tradeoff)
At State z
DP minimization
First ¢ Steps “Future”
l k+£—-1 5
min E{gk:(Ik:7 ue, i)+ Y G (T o (Tm), Wi ) + Jk+£(37k+i,)}
Uk Hpe4-15--sMk4-0—1 S
L Cost-to-go
Lookahead Minimization Approximation
v
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Constructing Approximations

Approximate Min
Discretization . S « "
Selective Minimization First Step Future

min E{gk(ﬂﬁk, uk7wk)+jk+1(-77k+1)}
ug

Approximate Cost-to-Go Jy41
Approximate E{-} Certainty equiva}encg
Adaptive simulation Problem appr0x1mat.1 on
Monte Carlo tree search Rollout, Model Predictive Control
Parametric approximation
Neural nets
Aggregation

An example: Truncated rollout with base policy and terminal cost
approximation (however obtained, e.g., off-line training)

Possible States Possible States
Tk+1 B @il
Rollout with
Base Policy
1m-Step Termingl C9st
Truncated Horizon Approximation
. »@ for Stages
Beyond
Truncation
A ’.
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Approximation Architectures/Neural Networks as Cost Function or

Q-Factor Approximators

Target Cost | Training Data| Approximation | APproximating
Function »  Architecture
s S ~
J(x) (w 71J<'7’ ) Parameter r J(x,r)
s=1,....q

Training can be done with specialized optimization software such as

gradient-like or other least-squares methods
Alternatives include Temporal Difference (TD) methods

o1(z, v
(=) N Cost
p Yy pproximation
State x y(x) P
——
State . ) -
Encoding Ifjnef“ N(Elhncar Llriear
ayer ayer ‘Weightin,
(May Include Parameter Ly et Emete%

“Problem-Specific” , _ (A,b)

Features) FEATURES ¢

A Single Layer Neural Network [Parameter Vector: r = (A, b, ¢)]
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A Fifteen-Minute Break

All our lectures will have a 15-minute break, somewhere in the middle
Catch our breath and think about issues relating to the first half of the lecture.
A short discussion/questions/answers period will follow each break.
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Approximation in Policy Space: The Major Alternative to Approximation

in Value Space

Control
up = [Ak(CCk,Tk) System State xj

» >
>

”| Environment

QOntroller P
P (i) [

A

Training Data

Idea: Select the policy by optimization over a suitably restricted class of policies

The restricted class is usually a parametric family of policies jix(X«, rx),
k=0,...,N—1, of some form, where rx is a parameter (e.g., a neural net)

Methods used for optimization/off-line training: Random search, policy gradient,
machine learning/classification (to be discussed later)

@ Important advantage once the parameters rx are computed: The on-line
computation of controls is often much faster ... at state xx apply ux = fix(X«, k)

Important disadvantage: It does not allow for on-line replanning ... no Newton step
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An Important Conceptual Difference Between Approximation in Value

and in Policy Space

First Step “Future”
liiill E{gk(xk, g, Wi )+ Tp1 (Thoy )}
A.

Approximation in value space is primarily an “on-line play" method

with off-line training used optionally to construct cost function approximations for
one-step or multistep lookahead

Lookahead Tree @ - ~----------------- .o
Stages Beyond
Truncation
R (~®
Rollout
with 7
Truncated Horizon

Terminal Cost
Approximation
I »@for Stages
Beyond
Truncation

L e

L e

Possible
States w41

Approximation in policy space is primarily an “off-line training" method
which may be used optionally to provide a policy for on-line rollout
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From Approximation in Value Space to Approximation in Policy Space

The approximate cost-to-go functions Jx.1 define a suboptimal policy jix
through one-step or multistep lookahead minimization

@ Given functions Jk. 1, how do we simplify the computation of jix?

@ |dea: Use (off-line) approximation in policy space to “learn" fix: Approximate fix
using a training set of a large number of sample pairs (x{, ug), s=1,...,q, where
Ug = fik(x¢):

Ug € arg  min )E{gk(x,f, U, Wi) + Jkst (f(xi, u, Wk))} (off-line)

ue U (X

@ Example: Introduce a parametric family of randomized policies pux(Xk, k),
k=0,...,N—1, of some form (e.g., a neural net), where ry is a parameter. Then
estimate the parameters r, by least squares fit:

q
€ argmin > ||uf — k(X NI (offline)

s=1
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Infinite Horizon Problems

Random Transition
The1 = f(Tr, u, wi) Infinite Horizon

Random Cost

Infinite number of stages, and stationary system and cost
@ System xx.1 = f(Xk, Uk, wk) with state, control, and random disturbance.
@ Policies m = {0, p1, . . .} with ux(x) € U(x) for all x and k.
@ Cost of stage k: g (X, sk (Xk), Wk)-
@ 0 < a < 1 isthe discount factor. If & < 1 the problem is called discounted.
@ Cost of a policy m = {0, i1, - . .}: The limit as N — oo of the N-stage costs

N—1

JW(XO) = I\I|L>moo EWk {Z O(kg(xk', /u'k(xk)v Wk)}
k=0

@ Optimal cost function J*(xp) = min, J=(xo).

@ Problems with a = 1 typically include a special cost-free termination state f. The
objective is to reach (or approach) t at minimum expected cost.
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Infinite Horizon Problems - The Three Theorems

k-stages opt. cost — Infinite horizon opt. cost as k — o

@ We have J*(x) = limk_, o Jk(X), for all x, where for any k, Jk(x) = k-stages
optimal cost starting from x, and is generated by

Je(x) = min Ew{g X, U, w) + a1 (F(x, U, w))} h(x)=0  (VI)

@ Derivation using DP: Let Viy_x(x) be the optimal cost-to-go starting at x with k
stages to go,

Wnok(x) = min Ew{a"*g(x, 0. w) + Vi (F(x. 0 w)) | Va(x) =0

@ Define Ji(x) = Vi_«(x)/a" ¥ to obtain Eq. (VI)

J* satisfies Bellman’s equation: Take the limit in Eq. (VI)

J*(x) = min E.,.,{g(x, u,w) + aJ*(f(x, u, w))}, for all x

ueU(x)

Optimality condition: Let p*(x) attain the min in the Bellman equation for all x

The policy {u*, u*, ...} is optimal. (This type of policy is called stationary.)
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Infinite Horizon Problems - The Two Algorithms

Value iteration (VI): Generates finite horizon opt. cost function sequence {Jx}

Je(X) = min Ew{g(x u, w) + a1 (F(x, u, w))} Jo is “arbitrary” (?)

ueU(x

Policy Iteration (P1): Generates sequences of policies {14} and their cost

functions {J,«}; u° is “arbitrary”

The typical iteration starts with a policy . and generates a new policy /i in two steps:
@ Policy evaluation step, which computes J,, the cost function of the (base) policy p

@ Policy improvement step, which computes the improved (rollout) policy fi using the
one-step lookahead minimization

flx) € arg min Eu{g(x,u,w) + adu(f(x.u,w)) }

There are several options for policy evaluation to compute J,

@ Solve Bellman’s equation for u [J,.(x) = E{g(x, u(x), w) + ad.(f(x, u(x), w))}] by
using VI or other method (it is linear in J,,)

@ Use simulation (on-line Monte-Carlo, Temporal Difference (TD) methods)
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Exact and Approximate Policy lteration

] Policy
Base | Policy Improvement
» Policy >  Evaluation > . -
7 J Bellman Eq. with
H J, instead of J*

Rollout Policy f

<
<%

Important facts (to be discussed later):
@ Pl yields in the limit an optimal policy (?)
@ Pl is faster than VI; can be viewed as Newton’s method for solving Bellman’s Eq.
@ Pl can be implemented approximately, with a value and (perhaps) a policy network

Base Approximation Approximation
»| Policy »| in Value Space »{in Policy Space >
(& Value Network Policy Network
Value Data Policy Data
Rollout Policy fi
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Deterministic Linear Quadratic Problem - Infinite Horizon, Undiscounted

Linear system xx,1 = axx + buy; quadratic cost per stage g(x, u) = gx® + ru?
Bellman equation: J(x) = min, {gx® + ru® + J(ax + bu)}

Take the limit as N — oo in the N-step horizon results
@ Jk(x) = Kix? so J*(x) = K*x?, where K* = limj — coKj
@ The optimal policy is p*(x) = L*x, where L™ is obtained from the Bellman Eq.
@ To characterize K* and L*, we plug J(x) = Kx? into the Bellman equation

Kx? = min {g® + r/ + K(ax + bu)?} = - - = F(K)x?

where F(K) = £1% 1 q with the minimizing u being equal to — 22K x

@ Thus the Bellman equation is solved by J*(x) = K*x2, with K* being a solution of
the Riccati equation
arK*

K =FKD) = ek

+q
and the optimal policy is linear:

abK*
r+ b2K*
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Graphical Solution of the Riccati Equation

Riccati Equation: K = F(K)
from
Bellman Equation on
Space of Quadratic Functions

N
45°Line J(@ — K2

E

K
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Visualization of VI

Value Iteration: K = F(Ky)
from
Jit1(x) = K122 = F(Ky)2?
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About the Next Two Lectures

Newton step interpretations (for linear quadratic problems)

@ Generally: Approximation in value space is a Newton step for solving the Riccati
equation, starting from the cost approximation

@ Special case: Rollout is a Newton step starting from the base policy cost
@ Policy lteration consists of repeated Newton steps

Problem formulations and reformulations

@ How do we formulate DP models for practical problems?

@ Problems with a terminal state (stochastic shortest path problems)
Reformulation by state augmentation (delays, correlations, forecasts, etc)
Problems with imperfect state observation (POMDP)

Problems with multiple agents
Model predictive control (MPC)
Systems with unknown or changing parameters - Adaptive control

PLEASE READ AS MUCH OF THE TEXTBOOK AS YOU CAN
2ND HOMEWORK (DUE IN ONE WEEK): Exercise 1.1(b),(c) of the textbook
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