Corrections for
REINFORCEMENT LEARNING AND
OPTIMAL CONTROL
by Dimitri P. Bertsekas
Athena Scientific

Last Updated: 9/10/2020

ERRATA

p. 113 The stability argument given here should be slightly modified by adding over $k \in [1, K]$ (rather than over $k \in [0, K]$). Then in Eq. (2.40) $H_0(x_0)$ should be replaced by

$$g_0(x_0, u_0) + H_1(x_1).$$

This is the optimal cost of transfer from x_0 to $x_\ell = 0$ (i.e., the first ℓ-stage problem solved by MPC). Since this transfer is feasible by the constrained controllability condition, the above expression is finite and the stability condition is satisfied.

p. 186 (+6) Change “cost 0” to “cost $g(i, u, j)$”

p. 187-188 The conversion of the discounted problem to an equivalent SSP problem needs correction. The cost per stage of the equivalent SSP problem at state i when control u is applied should be

$$E\{g(i, u, j)\} = \sum_{j=1}^{n} p_{ij}(u)g(i, u, j)$$

(regardless of whether the next state is $j = 1, \ldots, n$ or the artificial termination state t) and not $g(i, u, j)$.

p. 203 (+9) Change “Prop. 4.3.2” to “Prop. 4.3.3”

p. 225 (+2) Change j_k to i_{k+1}
p. 232 (+14) Change “Here ϵ” to “Here δ”

p. 232 (+15) Change “Also δ” to “Also ϵ”

p. 232 (+18) Change “cases $\delta = 0$” to “cases $\epsilon = 0$”

p. 245 (+2) (1st printing of the book) Change “(i,u)” to “(i^*, u^*)”

p. 257 (+5 and +9) The summation should be over j not i

p. 260 (Eq. (5.42)) The limit should be as $q \rightarrow \infty$