Maple SYREP
 Version 2.1

Quick Reference

1. Loading SYREP:

At the Maple prompt:

```
restart: (not strictly required, but a good idea)
read '/syrepdir/syrep.m': (/syrepdir/ is path to SYREP's directory;
    note the use of back-quotes (') and forward slashes (/).)
Display_digits(5): (Set display precision to desired level.)
```


2. Argument conventions:

In all following SYREP function descriptions the arguments follow the guidelines:

$\}$	Indicates an optional argument. In some cases the argument is optional for SISO systems,and must be supplied for MIMO systems. When multiple arguments are specified within the brackets, all or none must be supplied.
[arg]	Indicates that arg is a Maple list in the format [item1, item2, \ldots, itemN]. The items themselves may be lists.
sys	The name assigned to the system at its creation, for example sys := LGraph_to_system(graph, outputs):
\{inp, out $\}$	Input and output variable names. Optional for SISO systems but mandatory for MIMO systems.
var	A variable name for use in the output display, for example the Laplace variable in a transfer function. Usually a default name is available.
xrange	A Maple range specification of the form min. max, for example Root_locus(mysys,B,0..150,200,-10..0,-20..20)

3. Principal System Generation Procedures:

3.1 Source specification sub-list: (LGraph_to_system(), ZGraph_to_system())

List Structure: [tail_node, head_node, source_type, source_variable]
Examples: [1,2,velocity,Vsource], [2,4, current, I], [2,3,As,Vin]
$\left.\left.\begin{array}{|l|l|l|}\hline \text { Across-variable Source } & \text { Through-variable source } & \text { Primary domains } \\ \hline \text { As } & \text { Ts } \\ \text { velocity } \\ \text { angular_velocity } & \begin{array}{l}\text { force } \\ \text { torque } \\ \text { current } \\ \text { poltage }\end{array} & \begin{array}{l}\text { flow, flow_rate } \\ \text { pressure } \\ \text { temperature }\end{array}\end{array} \begin{array}{l}\text { translational } \\ \text { rotational } \\ \text { electrical }\end{array}\right\} \begin{array}{l}\text { fluid } \\ \text { theat_flow_rate }\end{array}\right]$

3.2 One-port element specification sub-list: (LGraph_to_system())

List Structure: [tail_node, head_node, 1port_type, parameter \{,across_variable, through_variable\}] Examples: [3,5,inertia, J,WJ,TJ], [2,4,D,3000], [8,4, A, m3, vm3, Fm3]

Element type name	Parameter	Elemental relationship	Primary domains
A	generalized A-type (C)	$\dot{v}=(1 / C) f$	generalized
C	generalized capacitance (C)	$\dot{v}=(1 / C) f$	generalized
mass	mass (m)	$\dot{v}=(1 / m) f$	translational
inertia	rotary inertia (J)	$\dot{v}=(1 / J) f$	rotational
capacitance	capacitance (C)	$\dot{v}=(1 / C) f$	electrical,fluid,thermal
T	generalized T-type (L)	$\dot{f}=(1 / L) v$	generalized
L	generalized inductance (L)	$\dot{f}=(1 / L) v$	generalized
spring	stiffness (K)	$\dot{f}=K v$	translational, rotational
stiffness	stiffness (K)	$\dot{f}=K v$	translational, rotational
compliance	compliance (C)	$\dot{f}=(1 / C) v$	translational, rotational
inductance	inductance (L)	$\dot{f}=(1 / L) v$	electrical
inertance	inertance (I)	$\dot{f}=(1 / I) v$	fluid
D	generalized D-type (R)	$v=R f$	generalized
R	generalized resistance (R)	$v=R f$	generalized
G	generalized conductance (G)	$f=G v$	generalized
damper	viscous coefficient (B)	$f=B v$	translational, rotational
dashpot	viscous coefficient (B)	$f=B v$	translational, rotational
resistance	resistance (R)	$v=R f$	electrical, fluid, thermal
conductance	conductance (G)	$f=G v$	elaical, fluid, thermal

3.3 Impedance element sub-list: (ZGraph_to_system())

List Structure: [tail_node, head_node, branch_type, impedance \{,across_variable, through_variable\}]
Examples: $\quad[2,3, Z, R+s * L, v L, i L]$ [4,3 , admittance, $s * m+B]$ [11,7, $\mathrm{Y}, 13.33+s * 15.1]$

Branch type name	Impedance/Admittance	Elemental relationship	Domains
impedance	impedance (Z)	$V(s)=Z F(s)$	all domains
Z	impedance (Z)	$V(s)=Z F(s)$	all domains
addmittance	admittance (Y)	$F(s)=Y V(s)$	all domains
Y	admittance (Y)	$F(s)=Y V(s)$	all domains

3.4 Two-port element sub-list: (LGraph_to_system(), ZGraph_to_system())

Structure: [[tail_a,head_a],[tail_b,head_b] 2port_type,ratio \{,[across_a through_a], [across_b,through_b]\}]
Examples: [[2,3],[7,8],transformer,1/Km,[vback,imotor],[Wm,Tm]] [[1,2],[5,3],GY,r]

Two-port type name	Ratio	Elemental relationships	Domains
TF transformer	r	$v b=r . v a$ $f b=-(1 / r) f a$	all domains
GY gyrator	r	$v b=r . f a$ $f b=-(1 / r) v a$	all domains

4. Additional System Generation Procedures:

Procedure	Function
Gain(K)	Generate a system description for a gain block with gain K. Generate a system description for an integrator with gain K. Generate a system description for a differentiator Differentiator(K) PID(Kp,Ki,Kd) with gain K. Generate a system description for a PID con- troller. Cascade_systems(sys1,sys2\{,input,output $\})$ Combine two (non-loading) systems in series: $H(s)=H_{1}(s) H_{2}(s)$). Parallel_systems(sys1,sys2\{,input,output $\})$ Combine two (non-loading) systems in parallel: $H(s)=H_{1}(s)+H_{2}(s)$. SISO(sys,inp,out)

5. Impedance manipulation Procedures:

Procedure	Function
Z_series(Z1, Z2, $\ldots, \mathrm{Zn})$	Returns the impedance of the series connection of an arbitrary number of impedances. Returns the impedance of the parallel connection of an arbitrary number of impedances. Returns the admittance of the series connection of an arbitrary number of admittances. Returns the admittance of the parallel connection of an arbitrary number of admittances. Reseries(Y1, Y2, $\ldots, \mathrm{Yn})$ Returns an admittance $Y=1 / Z$ Returns an impedance $Z=1 / Y$
Z_to_Y(Z) Y_to_Z(Y)	Y1, Y2, $\ldots, \mathrm{Yn)}$

6. System Description and Property Procedures:

Procedure	Function
A matrix(sys)	Returns the system A matrix
B_matrix(sys)	Returns the system B matrix
C_matrix(sys)	Returns the system C matrix
D_matrix(sys)	Returns the system D matrix
Ematrix(sys)	Returns the system E matrix
F_matrix(sys)	Returns the system F matrix
System_order (sys)	Returns the system order
State_variables(sys)	Returns the vector of state-variable names
System_Inputs (sys)	Returns a vector of the system input variable names.
System_Outputs (sys)	Returns a vector of the system output variable names.
State_equations(sys)	Displays the system state and output equations in matrix form.
Differential_equation(sys $\{$,inp,out\})	Displays the differential equation (in differential (S) operator notation) relating a single output to a single input.
Transfer_function(sys\{,inp,out $\{$, var\})	Returns the transfer function relating a single output to a single input.
Transfer_function_matrix (sys $\{$, var $\}$)	Returns the transfer function matrix relating all outputs to all inputs.
System_char_poly (sys\{,var\})	Returns the system characteristic polynomial.
System_eigenvalues (sys)	Returns the system eigenvalues.
System_poles(sys)	Returns the system poles (same as the system eigenvalues).
System_zeros(sys\{, inp,out ${ }^{\text {(}}$)	Returns the zeros of the transfer function between a given input and output.
Pole_zero_plot (sys $\{$, inp,out $\}$)	Displays the pole-zero plot for the transfer function between a given input and output.
System_type(sys)	Returns the system "type", that is the number of free integrators (poles at the origin of the s-plane).
Root_locus(sys, param, prange, nsteps \{, xrange\}\{,yrange\})	Displays a generalized root-locus for the variation of any system parameter.
Controllability matrix(sys)	Returns the system controllability matrix.
Controllability (sys)	Returns the rank of the system controllability matrix.
Controllable(sys)	Returns true if system is controllable, false otherwise.
Observability_matrix(sys)	Returns the system observability matrix.
Observability(sys)	Returns the rank of the system observability matrix.
Observable(sys)	Returns true if system is observable, false otherwise.
Position_error_constant (sys)	Returns the position error constant, $\lim (s \rightarrow 0)\{G(s)\}$.
Velocity_error_constant (sys)	Returns the velocity error constant, $\lim (s \rightarrow 0)\{s G(s)\}$.
Accel_error_constant (sys)	Returns the acceleration error constant, $\lim (s \rightarrow 0)\left\{s^{2} G(s)\right\}$.
Time_constant(sys)	Returns the time constant τ (s) of a first order system.
Natural_frequency (sys)	Returns the undamped natural frequency $\omega_{n}(\mathrm{rad} / \mathrm{s})$ of a second order system.
Damping_ratio(sys)	Returns the damping ratio ζ of a second order system
System_exponential(sys,t)	Compute the matrix exponential $e^{\mathbf{A} t}$ for the system.

7. Time Domain Response Procedures:

Procedure	Function
Step_response(sys\{,inp,out\})	Returns the system unit step response function between a given input and output.
Impulse_response (sys $\{$, inp,out $\}$)	Returns the system impulse response function between a given input and output.
Ramp_response(sys\{,inp,out\})	Returns the system ramp response function between a given input and output.
System_response(sys, function $\{$, inp,out $\}$)	Returns the response of a system to an arbitrary input function.
Final_value(sys,stepsize\{,inp,out ${ }^{\text {a }}$)	Returns the final value of the response to a step of size stepsize.
Output_IC_response(sys,ic)	Returns the response of a SISO system output to a given set of initial conditions on the system output variable.
State_IC_response(sys,ic\{,out $\}$)	Returns the response of a system output to a given set of initial conditions on the system states.

8. Control Systems Procedures::

Procedure	Function
$\begin{aligned} & \text { Closed_loop_system(plant, ctrl\{,feedback }\} \\ & \{\text {,inp,out }\}) \end{aligned}$	Returns a system representing the closed-loop SISO system with output feedback, and the given controller and sensor dynamics.
```Open_loop_system(plant,ctrl{,feedback} {,inp,out}) Phase_margin(sys)```	Returns a system representing an open-loop SISO system with output feedback, and controller and sensor dynamics. Returns the phase margin (deg) of an open-loop SISO system.
Gain_margin(sys)	Returns the gain margin (dB) of an open-loop SISO system.
State_feedback(plant, gain_matrix)	Generates a description for the system formed with full state feedback as specified by the gain matrix.
Ackerman(plant, char_poly)	Uses Ackerman's formula to return the state feedback gain matrix to achieve the closed-loop pole placement specified by the polynomial char_poly.

## 9. Frequency Domain Response Procedures:

Procedure	Function
Frequency_response_matrix(sys\{,var\})	Returns the frequency response matrix relating all outputs to all inputs.
Frequency_response(sys $\{$, inp,out $\}\{, \operatorname{var}\})$	Returns an ndividual frequency response function relating a single output to a single input.
Frequency_response_magnitude(sys\{,inp,out $\{$, var\})	Returns the magnitude function relating a single output to a single input. The value of the magnitude function at a particular frequency can be found by substituting a numerical value for 'var'.
Frequency_response_phase(sys \{,inp,out $\{$, var\})	Returns the phase function relating a single output to a single input. The phase response at a particular frequency may be found by substituting a numerical value for 'var'.
Find_magnitude(sys, mag\{,inp,out $\}$, frange $\}$ )	Returns the frequencies ( $\mathrm{rad} / \mathrm{s}$ ) at which the frequency response has the given magnitude 'mag'.
Find_phase(sys, phase\{,inp,out $\}$, frange $\}$ )	Returns the frequencies ( $\mathrm{rad} / \mathrm{s}$ ) at which the frequency response has the given phase 'phase'.
Bode_magnitude(sys, frange\{,inp,out $\}$ )	Displays a Bode magnitude plot (in decibels) of the transfer function between a given input and output.
Bode_phase(sys, frange\{,inp,out\})	Displays a Bode phase plot (in degrees) of the transfer function between a given input and output.
Polar_plot(sys, frange\{,inp,out\}\{,npoints\})	Displays the polar form of the frequency response function
LogMag_phase(sys, frange\{,inp,out $\{$, npoints $\}$ )	Displays the log-magnitude ( dB ) versus phase (deg) form of the frequency response function.

## 10. Utility Procedures:

Procedure	Function
Version()   Display_digits(n)	Displays the version of SYREP   Sets the display precision returned by SYREP   procedures.

