
Maple SYREP

Version 2.1

For Maple V (Releases 4 and 5), Maple 6, and Maple 7.

A software package for the modeling and analysis of lumped-parameter linear systems.

User Reference Manual: Part I

Program Description

Derek Rowell
Department of Mechanical Engineering
Massachusetts Institute of Technology

October, 2002

Copyright c©2002 D. Rowell

2

Chapter 1

Introduction

1.1 Introduction

MAPLE-SYREP (SYstem REPresentation) is a package of Maple V procedures for the generation of the
dynamic equations, and analysis of the dynamics of linear lumped-parameter systems. It is a closed-form,
symbolic package that allows the specification of a system in several forms, including the linear graph
modeling method (Rowell and Wormley, System Dynamics, An Introduction, Prentice Hall, 1997), impedance
based methods, specification of the transfer function, and direct state-space matrix entry. An extensive set
of procedures is provided for the manipulation and analysis of systems in state-space and classical input-
output representations. These include system properties, time and frequency domain response analysis, and
closed-loop control system design.

MAPLE-SYREP is a symbolic processor. Unlike numerical analysis packages, such as MATLAB, it
performs all analyses in closed-form, and produces its results as functions of the supplied parameters. For
example, if a first-order electrical system is specified in terms of a resistance R and a capacitance C, the step
response will be computed in symbolic form and displayed as a function of R and C, such as (1− e−t/RC).
If numeric values are assigned to the parameters, the closed form solution may be plotted as a function of
time t.

It is a simple matter to perform parameter variation studies using SYREP. For example, the damping
ratio of a second-order system may be plotted as a function of one of the system parameters with a one line
command. Assume that a mechanical system has a transfer function

H(s) =
K

ms2 +Bs+K

The system may be entered into SYREP, and the effect ofB on the damping ratio studied with the commands:

sys := TF_to_system(K/(m*s^2 + B*s + K), s):
Damping_ratio(sys);
m:=10: K:=50:
plot(Damping_ratio(sys), B=0..100);

The SYREP procedure TF to system() takes the given transfer function and converts it to a SYREP system
structure. The second line computes and displays the damping ratio as 0.5B/

√
Km. After assignment of

numerical values to m and K, the SYREP function Damping ratio returns an expression for the system’s
damping ratio as a function of B; the Maple plot function plots the expression with B varying from 0 to
100.

A numerical value may be assigned to B and the step response computed:

B:=5:
y_step := Step_response(sys);

and Maple SYREP reports that the step response is

y step = 1.− 1.e−.250t cos(2.22t)− .113e−.250t sin(2.22t)

3

4 CHAPTER 1. INTRODUCTION

Numerical packages use approximate integration techniques to compute the response of a system at a set
of discrete times. They provide no insight into the components of a response waveform, or the influence of
parameters upon the system performance. The system must be specified in numerical form, with full prior
substitution for the system parameters.

The two approaches are complementary. Numerical methods allow for the handling of some classes of
nonlinear systems; the methods used in MAPLE-SYREP are based on linear algebra, and are therefore
limited to linear systems.

1.1.1 Caveat:

The current version of SYREP is experimental. Additions are being made and, as in any developmental
software package of this complexity, it cannot be guaranteed to be completely free of bugs. Maple SYREP is
offered without warranty of any kind, on the understanding that while it appears to be operating as designed,
there is a distinct possibility that bugs continue to lurk beneath the surface.

1.1.2 Running SYREP:

Because MAPLE-SYREP is written in the Maple language, it is machine independent and runs on any
computer under Maple V Release 4.00b or later (see below). It has been tested on PC’s under Windows 3.1,
Windows 95 and Windows NT, on Macintoshes, and on Unix workstations. It can be run on a graphical
(windowed) system or on a text based terminal session, for example by Telnet to a remote computer. The
output is much more attractive on a graphics system, and the Maple “worksheet” concept only applies to
that mode.

A word of caution: the initial releases of Maple V Release 4 on PC’s and Macintoshes had some significant
bugs that prevented SYREP from running. You must be running at least Version 4.00b for SYREP to work.
Earlier versions may be upgraded using an upgrade “patch” form Waterloo Maple Inc. The patch may be
downloaded directly from their ftp site ftp.maplesoft.com, or their web site www.maplesoft.com.

1.1.3 Obtaining Your Own Copy of SYREP

SYREP exists as a single machine-independent file. To obtain your own copy you must download it from
the web site http://web.mit.edu/drowell/www/syrep/.

1.1.4 Loading SYREP

SYREP is distributed as a Maple “.m” file which must be loaded into Maple with a “read” command. The
procedure for loading SYREP is therefore to start Maple, and then to issue the command:

read ‘directory_path/syrep.m‘;

or alternatively in Maple V Release 5 as

read "directory_path/syrep.m";

where directory path is the specification of where you have stored the file syrep.m. For example, on a PC
the line might read

read ‘c:/work/maple/syrep.m‘;

(Note the use of back-quotes (‘) to enclose the path string, the semi-colon (;) at the end of the line to
force execution of the command, and that Maple requires the use of forward slashes (/) in the directory
specification on a DOS system.)

1.1. INTRODUCTION 5

1.1.5 Notes on Using Maple V

1. Maple commands are generally executed as they are entered, whenever the Enter (Return) key is hit.
As you enter commands they are entered into an “execution block”. To enter multiple commands into
a block, use the Shift-Enter combination between lines. The entire block may be executed by placing
the text cursor anywhere in the block and hitting Enter. The pull-down menus (Edit and Insert) have
options for manipulating execution blocks.

2. Spaces are ignored in input lines. Commands lines are ended with a semicolon or colon. Long lines
may be continued on a new line (use the Shift-Enter combination to continue a line).

3. A line starting with # is ignored (is treated as a comment), similarly any text appearing after a # on
a line is ignored.

4. A Maple command is not recognized until a terminating character, either a semi-colon (;) or colon (:).
If the terminator is a semi-colon, the results of the command are displayed; if the command ends with
a colon (:) the operation is “silent” and no output is displayed.

5. The Maple assignment is done through the := combination, for example

Z := 3*x - 2*y;

assigns the result of the expression 3x− 2y to the variable Z.

6. Maple has a number of reserved words that may impact the use of certain names. For example the
name D is reserved, and unavailable for use as a matrix name in this software.

7. Maple text input is case-sensitive. Thus the names vm and Vm represent different quantities to Maple.

8. Greek letters will be displayed as a Greek symbol if they are complete and independent. Thus the
name “omega” will appear on the screen as ω but “omega n” will appear untranslated.

9. Plotting functions can only work if all system parameters except the independent variable have been
assigned numerical values. For example, it is not possible to plot a step response, or invoke the SYREP
function Pole zero plot() until the system parameters have been given numerical values.

1.1.6 Floating Point Precision

Maple performs floating point computations to arbitrary precision, as determined by the value of its global
variable Digits. The default value is Digits := 10 but this can be changed by including a statement such
as

Digits := 15:

in the Maple SYREP session.
Maple results are also displayed in the chosen precision. This can make the output difficult to read;

for this reason SYREP provides a procedure that will control the displayed precision of results from its
procedures. The command

Display digits(4):

will allow floating point calculations to be done internally at the precision specified by the value of Digits
but will display only four digits in the values returned by SYREP functions.

6 CHAPTER 1. INTRODUCTION

1.1.7 Starting A Maple SYREP Session

The following shows a typical initialization of a SYREP session:

restart:
read ‘c:/mysyrepdirectory/syrep.m‘:
Display digits(3):

The restart command initializes Maple and resets all variables. It is often useful to issues a restart
command during a session to reset Maple. Note the use of the forward slashes (/) as separators in the read
command.

Chapter 2

Specifying the System to SYREP

2.1 Introduction

The first step in using SYREP is to specify the structure of the system to be studied. There are currently
five primary methods of specifying the system structure to SYREP; each generates a SYREP system object,
containing a mathematical representation of the system as a set of symbolic state equations

ẋ = Ax+Bx+ (Eu̇)
y = Cx+Du+ (Fu̇)

where x is the state vector, y is a vector of user specified outputs, and A,B,C,D,E,F are constant matrices
containing system parameters. (The matrices E and F are non-zero only when a system contains dependent
energy storage elements, or has an improper transfer function.) In addition the system object contains
descriptive information such as variable names, input and output variables and system order. All SYREP
analysis functions extract system information from this common object structure.

The five methods for system definition are:

• Direct specification of the system to SYREP from a set of A,B,C,D,E,F matrices.

• Specification of the transfer function of a SISO system as a rational function in the Laplace variable.

• Specification of the structure and elements from a linear graph representation of a system. The system
object is created automatically from the graph topology.

• Specification of the structure and relationships from an impedance graph of a system. The system
object is created automatically from the graph topology.

• Specification of the system elements by their elemental equations, together with a set of independent
constraint equations. (This method is obsolete, and is retained for tutorial reasons.)

and are implemented through the procedures defined in Table 2.1.

2.2 System Specification Directly from System Matrices

The first method of defining a system is to specify the dynamic model directly in terms of a set of state-space
system matrices:

ẋ = Ax+Bx+ (Eu̇)
y = Cx+Du+ (Fu̇)

by the SYREP procedure:

system name := Matrices to system(A, B, {C{, D{, E{, F}}}}):

7

8 CHAPTER 2. SPECIFYING THE SYSTEM TO SYREP

Procedure Function

Matrices to system(A,B{,C{,D{,E{,F}}}}) Generate a system description directly
from supplied state-space matrices.

TF to system(transfer function{,var}{,inp,out}) Generate a system description directly
from a transfer function.

LGraph to system([lgraph],[outputs]{,verbose}) Generate a system description from a lin-
ear graph

ZGraph to system([zgraph],[outputs]{,verbose}) Generate a system description from an
impedance graph.

Elements to system([elements],[constraints],
[outputs]{,verbose})

Generate a system description from a set
of elemental and constraint equations.

Table 2.1: SYREP functions for system specification.

where A,B,C,D,E,F are Maple matrices. The matrices C,D,E,F are optional. The system matrix A
must be square, and will define the system order n. The input matrix B must have n rows and r columns,
where r is the number of inputs. If the matrices C and D are omitted, it is assumed that the output vector
will be equal to the vector of state variables, that is a diagonal (identity) C matrix is created internally and
D = 0. The matrices E and F are assumed to be zero unless specified. The elements of the matrices may be
symbolic or numeric in nature. Notice that the matrix arguments are expected in order, that is to include a
specification of an E matrix both C and D must be specified.

There are several ways to specify a matrix to Maple, all using variations of the matrix() procedure:

matrix(L)
matrix(m,n, f)
matrix(m,n, lv)

where L is a list of lists (or vectors) [[. . .],. . . , [. . .]] of elements defining the rows, m,n are positive integers
(row and column dimensions), f is a function (possibly a constant), used to create the entries f(i, j), and lv
is a list (or vector of the elements). For example:

matrix([[1, 2],[3, 4]]); →
[
1 2
3 4

]

matrix(2,2, [a, b, c, d]); →
[
a b
c d

]

matrix(2,2,0); →
[
0 0
0 0

]

matrix(2, 3, [1, 2, 3, 4, 5, 6]); →
[
1 2 3
4 5 6

]

The following shows how these methods might be used to specify a system to SYREP:

A := matrix([[0, 1],[-2, -3]]); B := matrix(2,1,[0, 1]);
C := matrix(1,2,[0, 1]); D := matrix(1,1,0);
Matrices to system(A, B, C, D);

or

A := matrix([[-B/J, 1/(Ka*J)],[-1(Ka*L), -R/L]]); B := matrix(2,1,[0, 1/L]);
C := matrix(3,2,[-B,1/Ka,0,1,B, 0]); D := matrix(3,1,[0,0,0]);
Matrices to system(A, B, C, D);

In this method the system variables are labeled internally; inputs are named u 1, u 2, . . . ur, outputs are
labeled y 1, y 2, . . . y m, and the state variables are named x 1, x 2, . . . x n.

2.3. SYSTEM SPECIFICATION BY TRANSFER FUNCTION: 9

2.3 System Specification by Transfer Function:

The second method for specifying a single-input single-output system to MAPLE-SYREP, is through its
transfer function using the procedure:

system name := TF to system(transfer function, var {, input, output }):

where the transfer function is written as the ratio of a pair of univariate polynomials in the variable var,
and input and output are optional names of the input and output variables. If no names are specified,
SYREP will assign the names u 1 and y 1 to the input and output respectively. Note that although the
variable names are optional, either both names or neither must be entered.

For example, a hydraulic system for which the transfer function relating pressure P1 to input flow Qin is:

H(s) =
P1(s)
Qin(s)

=
5s+ 7

3s3 + 2s2 + 4s+ 1

might be specified:

fluid_sys := TF_to_system((5*s + 7)/(3*s^3 + 2*s^2 + 4*s +1),s, Qin, P1);

where the input variable is Qin, and the output variable is P1, or

fluid_sys := TF_to_system((5*s + 7)/(3*s^3 + 2*s^2 + 4*s +1),s);

if the default names are to be used. It is not necessary for the numerator and denominator polynomials to
be fully expanded, for example the following specification in which the transfer function is factored into first-
and second-order terms is valid:

fluid sys := TF to system(((s+3)*(2*s+1))/(s*(s^2 + 2*s +10)*(s+5)),s);

The transfer function variable may be any variable, but must not have been assigned to any value (that is
it must be a Maple “indeterminate”). The numerator and denominator polynomials may be written with
the terms in any order, and the coefficients may be symbolic or numerical. The transfer function must be a
proper fraction, that is the order of the numerator must be less than or equal to the order of the denominator.
MAPLE-SYREP converts the transfer function description to a state-space formulation in a companion or
phase-variable form. Internally the state variables are given the set of names x 1, x 2, . . . , x n where n is the
order of the denominator polynomial.

2.4 Linear Graph Based System Specification:

The third form of system specification, using the procedure LGraph to system(), is based on the structure
of a physical system. In this method the user defines the elements and interconnections to be used in a linear
lumped-parameter physical model, and SYREP automatically generates a set of symbolic state-equations
describing the system dynamics from the system topology.

The linear graph method of system representation can be applied to a wide range of energy domains,
including mechanical translational and rotational, electrical, fluidic, and thermal systems, and energy trans-
duction between domains (Rowell and Wormley, System Dynamics, An Introduction, Prentice Hall, 1997).
In this representation a pair of variables, the across-variable, and the through-variable, is defined for each
energy domain. In general, a set of spatially distinct points are identified in the physical system and are
drawn as nodes on the graph. The lumped-parameter elements are then represented as branches joining the
nodes on the graph. Through-variables are defined as variables that sum to zero at nodes (for example forces
in mechanical systems (d’Alembert’s principle), and currents in electrical systems (Kirchoff’s current law).)
Across-variables are defined as variables that sum to zero around loops in the graph (for example velocities
in mechanical systems, and voltage drops in electrical systems. In this form the system is represented as
a line graph in which nodes represent points of distinct across-variables, and branches (edges) of the graph
represent elemental relationships between the across- and through-variable associated with each element.

10 CHAPTER 2. SPECIFYING THE SYSTEM TO SYREP

Figure 2.1: A series RLC circuit and its linear graph.

Perhaps the easiest way to understand the linear graph is to draw an analogy with the circuit diagram
for electrical circuits. Figure 2.1 shows a simple series RLC circuit and its linear graph. If the electrical
circuit assumes ideal components there will be a strong similarity in appearance between the linear graph
and the circuit diagram. The nodes on the graph will represent the points of interconnection of components
in the circuit.

In the electrical systems the across-variable is defined to be voltage, the through-variable is current.
Nodes on the linear graph represent points of distinct voltage in the circuit. The interconnection between
nodes is represented by the branches of the graph, and will generally correspond to the circuit elements of the
circuit diagram. The difference is that in the circuit diagram the symbols represent actual components; in the
linear graph the branches represent mathematical relationships between the across- and through variables.

In each energy domain a set of one or two idealized energy storage elements is defined; these are classified
as A-type if the stored energy is a function of the across-variable, and T-type if the stored energy is a
function of the through-variable. In the electrical domain the A-type storage element is the capacitance
C (E = 1/2Cv2) and the T-type element is the inductance L (E = 1/2Li2). In addition, each energy
domain has a dissipative element with an algebraic relationship between through- and across variables; the
resistance R in the electrical case (v = iR). Two idealized source elements an across-variable source (voltage)
and through-variable source (current) are also defined.

The arrow drawn on each branch indicates two assumptions related to power flow into the element:

(a) the direction of assumed across-variable drop (voltage drop in the electrical case), and simultaneously

(b) the direction of assumed through-variable flow (current direction in the electrical case.)

For sources the arrow direction indicates the assumed across-variable drop for across-variable sources, and
the flow direction for through-variable sources.

In addition to the one-port elements defined for each energy domain, energy transduction within and
between domains is described by transforming and gyrating two-port elements. A transformer has a direct
algebraic relationship between the across-variables (or through-variables) in the two domains and includes
elements such as levers, rack and pinion drives, dc electric motors, etc. A gyrator has an algebraic relationship
between an across-variable in one domain and the through-variable in the other domain, for example a
hydraulic piston/cylinder in which the force F (through-variable) is a function of the fluid pressure P
(across-variable) F = PA where A is the piston area.

The linear graph implicitly represents the system structure, the elemental relationships relating the
through- and across-variables associated with each branch, and a set of independent loop and node constraint
equations between the system variables. In the electrical case these correspond directly with a set of nodal
equations (Kirchoff’s Current Law), and loop equations (Kirchoff’s Voltage Law).

Refer to Rowell and Wormley, Chapters 1–6, for a detailed description of system modeling using the
linear graph method.

The steps required to define a system in Maple SYREP are:

1. Prepare a lumped-parameter linear graph representation of the system to be analyzed.

2.4. LINEAR GRAPH BASED SYSTEM SPECIFICATION: 11

2. Number the nodes on the graph.

3. Define a set of output variables of interest.

4. Prepare a set of Maple lists defining the system structure and output variables.

The system generation procedure LGraph to system() generates the necessary elemental relationships and
constraint equations automatically, and is invoked by a statement such as:

system := LGraph_to_system(graph, outputs, verbose);

where graph is the Maple list (enclosed in square brackets []) defining the structure of the linear graph,
outputs is a list of output expressions, and verbose is an optional argument that controls the printing of
intermediate results as the equation generation proceeds.

2.4.1 The Linear Graph Specification:

The structure of the linear graph is specified by elemental connections between the numbered nodes. The
data is entered as a list of sub-lists, one for each system element defining the element type and its nodal
connections. For example, the electrical RLC circuit of Fig. 2.1 is specified by the list:
[[1,4,voltage,Vs], [2,3,capacitance,C1,vC1,iC1],[3,4,inductance,vL,iL],[1,2,resistance,R,vR,iR]]
In this case the graph list contains 4 sub-lists, each of which specifies an elemental connection between a
pair of numbered nodes on the graph.

One-port elements

For one-port elements the sub-list specification is of the form:

[tail node, head node, element type, parameter value{,across-variable, through-variable}]
where tail node and head node are the numbers assigned to the tail and head nodes of the directed edge
(branch) of the graph representing the element. Element type is one of the element definition names known
to SYREP (discussed below), parameter value is the symbolic name or value assigned to the element,
and across-variable and through-variable are optional names to be given to the across- and through-
variables associated with the element.

In the case of sources, the specification is

[tail node, head node, source type, source name]

The first entry in the above example indicates that a voltage source, named Vs is connected with its arrow
(voltage drop) from node 2 to node 1. SYREP determines the source type (across- or through-variable)
through the name specified for source type; voltage in this case.

Consider the mechanical system and its linear graph with the nodes numbered as shown in Fig. 2.2. The
specification list for this system may be defined and assigned to the Maple variable mechanical as follows:

mechanical := [[4,3,force,Fs],
[3,4,mass,m2,vm2,Fm2],
[2,3,damper,B2],
[1,2,spring,K2,vK2,FK2],
[1,4,damper,B1],
[1,4,spring,K1,vK1,FK1],
[1,4,mass,m1,vm1,Fm1]]:

(Note that the statement may be spread over several lines because Maple does not recognize a statement
until it encounters a colon(:) or semi-colon (;) terminator.)

The elements (edges) may be specified in any order, but the arrow directions on each graph edge should
be specified by correctly ordering the nodes in each sub-list. In the above example some of the optional
variable names were specified, for example on the masses m1 and m2 and the springs K1 and K2, while on
the dampers no names were given. If no names are specified, SYREP assigns a pair of internal names for
each branch using the convention f n for the through-variable and v n for the across variable, where n is

12 CHAPTER 2. SPECIFYING THE SYSTEM TO SYREP

Figure 2.2: A mechanical system and its linear graph.

the element number as defined from its position in the graph list. Thus in the example the velocity and
force associated with dampers B1 and B2 will be named v 5 and f 5 for B1 and v 3 and f 3 for B2. Users
should avoid the use of names of this type to prevent possible conflicts. Notice also that either both names
or no names must be given; it is not permissible to specify just one name.

SYREP maintains a table of known element types and automatically produces the elemental equations for
these elements. The parameters associated with each named type is the commonly used physical parameter,
for example the parameter associated with the type spring is its stiffness K, leading to the elemental
relationship ḞK = KvK , whereas if the same element is specified as a compliance with parameter C, the
elemental equation would be ḞC = (1/C)vC .

SYREP names are case-insensitive, so that Resistance and resistance are equivalent. Furthermore,
only the first six letters are recognized, so that capacitor and capacitance are equivalent. Tables 2.2.1
and 2.3 summarize the names recognized by SYREP for sources and one-port passive elements. In many
cases the names are synonyms and are included for energy-domain clarity.

Two-port Elements

The two-port energy transducing elements (transformers and gyrators) are represented by a definition sub-
list with a slightly different form. Assume that the two graph branches in the two-port are specified as a
and b as shown in Fig. 2.3. The element is defined by the list

Figure 2.3: Linear graph representation of energy transducing two-port elements.

[[tail a, head a],[tail b,head b], name, ratio,
{[a var a,t var a],[a var b,t var b]}]

2.4. LINEAR GRAPH BASED SYSTEM SPECIFICATION: 13

Across-variable Source Through-variable source Primary domains

As Ts generalized sources
velocity force translational
angular velocity torque rotational
voltage current electrical
pressure flow, flow rate fluid
temperature heat, heat flow rate thermal

Table 2.2: SYREP name definitions for idealized sources.

Element type name Parameter Elemental relationship Primary domains

A generalized A-type (C) v̇ = (1/C)f generalized
C generalized capacitance (C) v̇ = (1/C)f generalized
mass mass (m) v̇ = (1/m)f translational
inertia rotary inertia (J) v̇ = (1/J)f rotational
capacitance capacitance (C) v̇ = (1/C)f electrical,fluid,thermal
T generalized T-type (L) ḟ = (1/L)v generalized
L generalized inductance (L) ḟ = (1/L)v generalized
spring stiffness (K) ḟ = Kv translational, rotational
stiffness stiffness (K) ḟ = Kv translational, rotational
compliance compliance (C) ḟ = (1/C)v translational, rotational
inductance inductance (L) ḟ = (1/L)v electrical
inertance inertance (I) ḟ = (1/I)v fluid
D generalized D-type (R) v = Rf generalized
R generalized resistance (R) v = Rf generalized
G generalized conductance (G) f = Gv generalized
damper viscous coefficient (B) f = Bv translational, rotational
dashpot viscous coefficient (B) f = Bv translational, rotational
resistance resistance (R) v = Rf electrical, fluid, thermal
conductance conductance (G) f = Gv electrical, fluid, thermal

Table 2.3: SYREP name definitions for one-port passive elements.

14 CHAPTER 2. SPECIFYING THE SYSTEM TO SYREP

Two-port type name Ratio Elemental relationships Domains

TF r vb = r.va all domains
transformer fb = −(1/r)fa
GY r vb = r.fa all domains
gyrator fb = −(1/r)va

Table 2.4: SYREP name definitions for two-port energy transducing elements.

where tail a, head a, tail b, head b are the tails and heads of the directed graph edges representing the
two sides of the two-port element, name is the SYREP name for the two-port (defined in Table 2.4), ratio is
the transduction constant that defines the across-variable on side b of the two-port element. The variables on
each branch may be optionally named by including the pair of lists [a var a,t var a],[a var b,t var b].
When explicit variable names are not given, the default naming convention for two-port branches is to
designate the two sides by a and b, and designate the variables as va n, fa n, vb n, fb n for the across and
through variables respectively, where n is the position of the two-port in the element list.

For example, an idealized dc motor might be specified as

[[4,5],[6,7],transformer,1/Km,[v back,i motor],[Omega,T]]

or

[[4,5],[6,7],TF,1/Km]

indicating that the electrical side is connected between nodes 4 and 5 (with the arrow pointing to node
5), the mechanical side is connected from node 6 to node 7, In the first case the motor back emf will be
designated as v back, the motor current as i motor, and the angular velocity and torque as Omega and torque
respectively; in the second case the default names will be assigned. The element definitions transformer
and TF are synonyms. As defined by the parameter 1/Km the power conserving elemental relationships for
this motor are

Ω = (1/Km)vback

T = −Kmimotor.

Similarly the specification for a hydraulic piston (gyrator) might be written

[[1,2],[3,4],GY,1/A,[Pressure,Flow rate],[Velocity,Force]]

where A is the surface area of the piston.

2.4.2 System Outputs:

The system outputs may be specified as a single item for a single-output system, or a list of items in a
multiple-output system. Individual output quantities may be

(a) a system variable, either named in the element definition list, or the default SYREP name if no name
was given, for example [vm, torque, v 3],

(b) an expression in the form of an equation that defines a new variable as a linear combination of scaled
system variables, for example

[x=(1/K)*FK, v motor=v back+vR1+vL1, y=v 3 + v 5]

(c) an expression that is the integral of a linear combination of system variables using the procedure
integral():

[position=integral(velocity), angle=integral(WJ)]

2.5. SYSTEM SPECIFICATION BY IMPEDANCE GRAPH 15

When an expression is used in the variable list, the output variable is named to the variable on the left-hand
side of the expression.

When the integral function integral() is used, the system state vector is augmented with an extra state
variable.

2.4.3 “Verbose” Output Display

The optional argument verbose controls the display of intermediate results as the reduction to the state
equations proceeds. If absent, the process is “silent” and no output is displayed, if the word verbose is
present SYREP displays the elemental equations, the normal tree, the number of dependent energy storage
elements found, the constraint (compatibility and continuity) equations, and the final state and output
equations in matrix form. Figure 2.4 shows the screen output that SYREP generates with the verbose
option while modeling a dc moving-coil voltmeter. In the definition of the edges in the normal tree the
naming convention is en for one-port elements, and ena and enb for two-port elements, where n is the
position of the element in the graph list. See Rowell and Wormley for definitions of the quantities displayed
with the verbose output.

2.4.4 Further Examples

Figure 2.5 shows three simple systems and their specification to SYREP through the linear graph method.

2.5 System Specification by Impedance Graph

The procedure ZGraph to system() allows a single-input/single-output (SISO) system to be specified from
an impedance based linear graph, as described in Chapter 13 of Rowell and Wormley. In this case the branch
relationships of the linear graph are specified as algebraic relationships in the Laplace variable s; in terms
of the impedance Z(s) or the admittance Y (s) = 1/Z(s) of the branch, as defined by the relationships

V (s) = Z(s)F (s) or F (s) = Y (s)V (s)

where V (s) and F (s) are the Laplace transforms of the across-variable and through-variable associated
with the branch. For example, a mass element’s behavior may be written as smvm(s) = Fm(s), or as
vm(s) = (1/sm)Fm(s), defining the branch impedance Zm(s) = 1/sm and the admittance Ym(s) = sm.

Preparation for the use of ZGraph to system() is similar to LGraph to system(). A lumped parameter
model is prepared and expressed as a linear graph. The nodes of the graph are numbered, and the elemental
relationships are specified in impedance form in a list similar to that of LGraph to system(), for example
The list correponding to the series RLC circircuit of Fig. 2.1 is

[[1,4,voltage,Vs],[1,2,Z,R],[2,3,Y,s*C,vC,iC],[3,4,Z,s*L,vL,iL]]

where the list contains a sequence of sub-lists, each specifying an impedance or admittance relationship for
a branch.

For passive one-port elements the sub-list has the form

[tail node, head node, type, expression{,across-variable, through-variable}]
where tail node and head node are the numbers assigned to the tail and head nodes of the directed edge
(branch) of the graph representing the element, type is either Z if the element is represented as an impedance
or Y if it is an admittance as specified in Table 2.5, expression is an expression of the impedance or
admittance of the element and across-variable and through-variable are optional names to be given to
the across- and through-variables associated with the element. As in the case of LGraph to system() if no
names are specified, SYREP assigns names of the form v n and f n to the across- and through-variables on
the nth element in the list.

The impedance relationships may be either

• Simple elemental impedance relationships for a lumped parameter element, such as 1/(s*m) or s*L.

16 CHAPTER 2. SPECIFYING THE SYSTEM TO SYREP

graph := [[1,5,Voltage,Vs], [1,2,resistor,Rs],

[2,3,resistor,Ra],[3,4,inductance,La],

[[4,5,[6,7,],TF,1/Km], [6,7,spring,K],

[6,7,inertia,J,WJ,TJ]]:

meter := LGraph_to_system(graph,[WJ,angle=integral(WJ)],verbose):

Figure 2.4: Example of SYREP output generated using the verbose argument.

2.5. SYSTEM SPECIFICATION BY IMPEDANCE GRAPH 17

Figure 2.5: Three systems and their SYREP specification using LGraph to system().

18 CHAPTER 2. SPECIFYING THE SYSTEM TO SYREP

Branch type name Impedance/Admittance Elemental relationship Domains

impedance impedance (Z) V (s) = ZF (s) all domains
Z impedance (Z) V (s) = ZF (s) all domains
addmittance admittance (Y) F (s) = Y V (s) all domains
Y admittance (Y) F (s) = Y V (s) all domains

Table 2.5: SYREP definitions impedance based graphs.

Procedure Function

Z series(Z1, Z2, ..., Zn) Returns the impedance of the series connection of an arbitrary
number of impedances.

Z parallel(Z1, Z2, ..., Zn) Returns the impedance of the parallel connection of an arbitrary
number of impedances.

Y series(Y1, Y2, ..., Yn) Returns the admittance of the series connection of an arbitrary
number of admittances.

Y parallel(Y1, Y2, ..., Yn) Returns the admittance of the parallel connection of an arbitrary
number of admittances.

Z to Y(Z) Returns an admittance Y = 1/Z
Y to Z(Y) Returns an impedance Z = 1/Y

Table 2.6: SYREP functions for impedance based graph simplification.

• A compound impedance formed by series and parallel combinations of lumped elements, for example a
series combination of resistance and inductance may be specified as a single branch in the linear graph
and specified in a single equation R+s*L. Similarly a parallel R-C combination may be specified as a
single branch with impedance R/(s*R*C+1).

To aid in the reduction of impedance based linear graphs, SYREP provides four procedures for manipulating
series and parallel combination of impedances and admittances, as summarized in Table 2.6. Each function
takes an arbitrary number of impedance expressions and returns a single expression for the equivalent
combined impedance (or admittance), for example

Z1 := Z series(R, s*L, 1/(s*C)):
Y := Y parallel(B, s*m, K/s):
Z3 := Z series(R, Z parallel(1/(s*C), s*L)):

Two-port energy transducers are specified in the same way as in LGraph to system(), that is

[[tail_a, head_a],[tail_b,head_b], name, ratio,
{[a_var_a,t_var_a],[a_var_b,t_var_b]}]

where tail a, head a, tail b, head b are the tails and heads of the directed graph edges representing
the two sides of the two-port element, name is the SYREP name for the two-port (defined in Table 2.4),
ratio is the transduction constant that defines the across-variable on side b of the two-port. The variables on
each branch may be optionally named by including the pair of lists [a var a,t var a],[a var b,t var b].
The default naming convention is similarly va n, fa n, vb n, fb n for the across-and through variables on
brances a and b of the two-port.

The system input is specified in the same manner as for LGraph to system(), using the naming conven-
tions specified in Table 2.2.1.

2.5. SYSTEM SPECIFICATION BY IMPEDANCE GRAPH 19

2.5.1 Output Specification

ZGraph to system() allows only a single output variable to be declared. The variable may be

(a) a system variable, either named in an element definition sub-list, or the default SYREP name if no name
was given.

(b) an expression that is a linear combination of scaled system variables, for example x = (1/K)*FK,
v motor = v back + vR1 + vL1, or y = v 3 + v 2 - v 5].

(c) an expression that is the integral of a linear combination of system variables using the procedure
integral(), for example position = integral(velocity), or angle=integral(WJ)

When an expression is used, the system output variable is named to the variable on the left-hand side of the
expression. The output specifcation may be optionally specified as a single item list, so that

sys := ZGraph to system(graph,[v 1]): or sys := ZGraph to system(graph,v 1):

are both valid.

2.5.2 “Verbose” Output Display

The optional third argument verbose controls the display of intermediate results as the reduction to the
state-space system description proceeds. If the argument is present, results will be displayed, if absent the
operation is silent.

2.5.3 Internal Representation

ZGraph to system() generates a set of independent linear equations in the Laplace variable, and solves
this set for the output variable. The resulting transfer function is converted to state-space description in
a companion or phase-variable form. Internally the state variables are given the set of names x 1, x 2,
...,x N where N is the order of the denominator polynomial.

2.5.4 An Example

The hydraulic system shown in Fig. 2.6 has a pump, characterized as a Thevenin source with a pressure
source Pin and a series resistance Rs, connected to a long pipe with lumped inertance Ip and resistance Rp

and a vertical walled tank with fluid capacitance Cf . A discharge valve is partially opened and is modeled
as a linear resistance Ro. The output variable of interest is the tank pressure.

Figure 2.6: A fluid system and its linear graph.

From the linear graph the system may be specified directly:

20 CHAPTER 2. SPECIFYING THE SYSTEM TO SYREP

zgraph := [[1,5,Pressure,Pin],
[1,2,Z,Rs],
[2,3,Z,s*Ip],
[3,4,Z,Rp],
[4,5,Y,s*Cf,PCf,QCf],
[4,5,Z,Ro]]:

Fluid_system := ZGraph_to_system(zgraph,PCf):

Alternatively, the three series elements Rs, Rp, and Ip may be combined into a single impedance

Z1 = Rs +Rp + sIp

and the two parallel elements, Cf and Ro, combined into an equivalent impedance

Z2 =
Ro

RoCs+ 1

the system may be represented by a reduced linear graph containing just two passive branches, as shown in
Fig. 2.7: The reduced system may be represented by just two linear equations. The system, in its reduced

Figure 2.7: A reduced linear graph for the fluid system and its tree

form may be specified to SYREP as:

Z1 := Rs + Rp + s*Ip:
Z2 := Z_parallel(Ro,1/(s*Cf)]:
zgraph := [[1,3,Pressure,Pin],

[1,2,Z,Z1],
[2,3,Z,Z2,PZ2,QZ2]]:

Fluid_System := Zgraph_to_system(zgraph, PZ2):

where the output variable PZ2 is equivalent to PCf
.

2.6 Specification by Elemental and Constraint Equations

The fifth form of linear graph based system specification Elements to system() requires the user to provide
a set of lists containing (i) the elemental equations describing the lumped parameter elements in the system,
(ii) a sufficient set of constraint (compatibility and continuity) equations, and a set of output variables. This
method has been largely superseded by Lgraph to system, and is retained primarily for compatibility with
earlier versions SYREP. The method is based on the normal tree linear graph reduction method described
in Chapters 5 and 6 of Rowell and Wormley, System Dynamics, An Introduction, Prentice Hall, 1997).

To specify a system to Elements to system() the following steps should be taken:

(a) Prepare a lumped parameter model of the system and express the model as a linear graph.

2.6. SPECIFICATION BY ELEMENTAL AND CONSTRAINT EQUATIONS 21

(b) Generate a normal tree and use it to define elemental causality, and a set of primary and secondary
variables.

(c) Write the set of elemental equations explicitly in terms of the primary variables in the form described
below.

(d) Generate the set of continuity and compatibility equations from the normal tree. Each equation should
express a single secondary variable in terms of the primary variables and inputs.

The call to Elements to system() is of the form

system := Elements to system(elemental,constraints,outputs{,verbose})
where elemental is a list of elemental equations, constraints is a list of constraint equations, and outputs
is a list of output quantities. For example, a second-order mechanical system might be specified as:

el eqns := [dot(vm) = (1/m)*Fm, dot(FK) = K*vK, FB = B*vB];
constraints := [Fm = Fin - FB - FK, vK = vm, vB - vm = 0];
out := [vm, FK, FB, x = integral(vm)];
Mechanical := Elements to system(el eqns, constraints, out, verbose)

2.6.1 Elemental Equation Specification

The elemental equations are entered in a list:

name := [eqn1, ... ,eqnN]:

where eqn1 to eqnN are the N elemental equations describing the passive elements in the system. Each of
the elemental equations must be entered in SYREP with the primary variable on the left hand side, in one
of three forms

dot(primary) = coefficient ∗ secondary
primary = coefficient ∗ dot(secondary)
primary = coefficient ∗ secondary

where the notation dot(variable) indicates the time derivative. The order of the items on the right-hand
side of the equation is important; SYREP recognizes the variable as the right-hand term.

The use of parentheses around coefficients is optional, but helps readability. Both

dot(vm) = 1/m ∗ Fm and dot(vm) = (1/m) ∗ Fm

are acceptable.

2.6.2 Constraint Equation Specification

The constraint equations are written in a form similar to the elemental equations:

name := [eqn1, ... ,eqnN]:

where each equation is a compatibility or continuity equation that contains only one of the secondary vari-
ables. The equations may be written in free form, and need not be entered in the same order as the elemental
equations. The following three examples are equivalent:

Fm = Fin - FB - FK, Fm - Fin + FB + FK = 0, Fm - Fin = -FB - FK.

SYREP recognizes input variables as those variables appearing in the constraint equations that do not appear
in the elemental equations.

22 CHAPTER 2. SPECIFYING THE SYSTEM TO SYREP

2.6.3 Output Variables

The output variables are specified as a list

name := [out1, out2, ... , outM]:

where the items out1 to outM are either variables or expressions. Each entry may be either

1. A variable associated with one of the passive elements in the system, specified by its name as it appears
in the elemental equations, or

2. A linear combination of system variables, written as an expression such as y = vR1 + 3*vR2 or
Angle = (1/K)* Torque, or

3. The integral of a variable or a linear combination of variables through the integral() function.

An example of an electrical system output specification with three defined outputs might be

Elect out := [v motor=v back+vL+vR, vC1, I in=IR1+IR2, angle=integral(WJ)]:

2.6.4 An Example

A sketch of a fixed field D.C. motor drive system, with its system graph model is shown in Fig. 2.8. The
motor is represented as a four terminal element, generating two distinct connected graph sections in the
system graph (Nd = 2), so that there is BT = N −Nd = 4 branches in the normal tree, and two branches
in the links. The system normal tree is shown in Fig. 2.8c.

Figure 2.8: An electric motor drive, system graph, and normal tree.

From the normal tree in Fig. 2.8c:

2.7. SYSTEM GENERATION PROCEDURES FOR ELEMENTARY SYSTEMS 23

Primary variables: Vs(t), ΩJ , vR, iL, TB , v1, T2

Secondary variables: Is(t), TJ , iR, vL, ΩB , i1, Ω2

System order: 2
State variables: ΩJ , iL

The elemental equations written in terms of primary variables are:

dΩJ

dt
=

1
J
TJ

diL
dt

=
1
L
vL

vR = RiR

TB = BΩB

v1 =
1
Ka

Ω2

T2 = − 1
Ka
i1

The continuity equations are:

TJ = −T2 − TB

iR = iL

i1 = iL.

The compatibility equations are:

vL = Vs − vR − v1
ΩB = ΩJ

Ω2 = ΩJ

The system may be specified to SYREP as follows:

elem eqns := [dot(WJ)=(1/J)*TJ, dot(iL)=(1/L)*vL, vR=R*iR,
TB=B*WB, v1=(1/Ka)*W2, T2=-(1/Ka)*i1]:

Constraints := [TJ=-T2-TB, iR=iL, i1=iL, vL=Vs-vR-v1,
WB=Wj, W2=WJ]:

Outputs := [torque=TB+TJ, WJ]:
motor := Elements to system(elem eqns, Constraints, Outputs)

2.6.5 “Verbose” Output Display

If the optional argument verbose is included, the system state and output equations will be displayed in
matrix form.

2.7 System Generation Procedures for Elementary Systems

In addition to the five methods for specifying complex system structures, SYREP contains a set of procedures
for specifying primitive systems that will typically be used in combination with other system objects. The
set includes gain Gain(K), differentiator Differentiator(K), integrator Integrator(K), and PID control
PID(Kp,Ki,Kd) elements. Each procedure takes one or more arguments that defines the gain(s). Table 2.7
defines the blocks and their transfer functions. They are invoked by statements such as:

Proportional controller := gain(10):
PID control := PID(K,0.1*K,0):

24 CHAPTER 2. SPECIFYING THE SYSTEM TO SYREP

Procedure Transfer Function
Gain(K) K

Differentiator(K) Ks

Integrator(K)
K

s

PID(Kp,Ki,Kd) Kp +
Ki

s
+Kds

Parallel systems(sys1,sys2{,inp,out}) H1(s) +H2(s)
Cascade systems(sys1,sys2{,inp,out}) H2(s)H1(s)
Open loop system(Plant,Control{,Feedback}) Gp(s)Gc(s)H(s)

Closed loop system(Plant,Control{,Feedback}) Gp(s)Gc(s)
1 +Gp(s)Gc(s)H(s)

SISO(system,inp,out)

Rename inputs(sys),[new names])

Rename outputs(sys),[new names])

Rename states(sys),[new names])

Table 2.7: Elementary system generation, combination, and modification procedures

2.8 System Combination Procedures

SISO system objects, defined by the system creation commands, may be combined to form new systems.
Parallel systems(sys1,sys2) combines two systems in parallel, that is they share the same input, and
the outputs are summed to form the output variable. If the input and output variable names are not given,
they are taken from sys1. Cascade systems(sys1,sys2) combines two systems in series; the output of
sys1 drives the input of sys2. In this case if the input and output names are not given, the input name
is taken from sys1, and the output name is taken from sys2. (For this reason alone, care should be taken
to preserve the order of the systems.) It is assumed that the systems are non-loading and that connected
inputs and outputs have compatible units. For example:

sys:= Parallel systems(TF to system(1/(3*s+1),s),Integrator(1),in,out):
open loop := Cascade systems(PID(10,1,2), Plant):

The procedures Open loop system() and Closed loop system() are intended for use with the control sys-
tem design procedures described in Chapter 4. They allow the the generation of new system objects from
the interconnection of SISO systems in classical open-loop and closed-loop structures. For example, a PID
controller with a second-order plant and first-order sensor dynamics may be specified:

Plant := TF to system(5/(s*(s+5)),s):
Sensor := TF to system(1/(0.1*s+1),s):
Cloop := Closed loop system(Plant,PID(10,.1,3),Sensor):

See Chapter 4 for more details.
The procedure SISO(system,inp,out) is provided to create a single-input/single-output system from an

existing MIMO system object.

2.9 Renaming System Variables

The names of system variables may be changed through the procedures Rename inputs(sys,[new names]),
Rename outputs(sys,[new names]), and Rename states(sys,[new names]). These commands create a
new system object which can be assigned to a new name (leaving the original object intact), or reassigned
to the same name. The argument [new names] must be a Maple list (enclosed in square brackets) and and
of the same length as the list being replaced. In other words these procedures replace the whole name list.

2.9. RENAMING SYSTEM VARIABLES 25

In the following example, the TF to system() procedure will create the name u 1 for the input variable,
y 1 for the output, and x 1, x 2 for the state variables. The rename procedures are used to assign new
names:

sys := TF to system(5/((s+3)*(s+5)),s):
sys := Rename inputs(sys,[Vin]);
sys := Rename outputs(sys,[Vout]);
sys := Rename states(sys,[x1,x2]);

In each case the system sys has been updated because the newly created system has been assigned the same
name.

26 CHAPTER 2. SPECIFYING THE SYSTEM TO SYREP

Chapter 3

System Property and Response
Functions

3.1 Changing the Values of System Parameters

System parameters may be specified in either symbolic or numeric form. SYREP presents all results in
closed-form expressions in terms of the symbolic names and numeric values. Numerical values may be
assigned to parameters with the Maple assignment (name := value), such as:

m := 5; or B := 27;

All subsequent references to the parameters m or B will return the numerical values, and all subsequent
analyses will have the numerical values substituted into the formulations. A potential problem occurs when
it is desired to return to a symbolic representation for the parameter. The only way to do this in Maple is
to assign the value of the parameter to its “unevaluated” value (which is its name):

m := ’m’; or B:= ’B’;

where the use of single quotes (’) (not back-quotes (‘)) is essential.
A system is said to be fully evaluated when numerical values have been assigned to all parameters. The

Maple term for an unassigned symbolic parameter is an indeterminate. Most SYREP procedures will return
results when a system is not fully evaluated, but there are exception:

• It is not possible to plot functions (responses, pole-zeros, etc) when a system is not fully evaluated.

• Procedures that require solution of polynomials will not function properly with a system that is not
full evaluated.

A set of ten functions is provided for extracting the system matrices and descriptions from the internal
representation, as summarized in Table 3.1. In each case the argument sys is the name assigned to the
system. In order to display the A matrix and state vector of a system named mechanical, the following
commands would be entered at the Maple prompt:

A matrix(mechanical);
State vector(mechanical);

where the semi-colon line terminators instruct Maple to display the results.

3.2 System Property Functions

Table 3.1 defines the SYREP functions that return basic descriptions and properties of linear systems. In
each case the argument sys is the name of the system being analyzed. Optional arguments are shown

27

28 CHAPTER 3. SYSTEM PROPERTY AND RESPONSE FUNCTIONS

Procedure Function

A matrix(sys) Returns the system A matrix
B matrix(sys) Returns the system B matrix
C matrix(sys) Returns the system C matrix
D matrix(sys) Returns the system D matrix
E matrix(sys) Returns the system E matrix
F matrix(sys) Returns the system F matrix
System order(sys) Returns the system order
State variables(sys) Returns the vector of state-variable names
System Inputs(sys) Returns a vector of the system input variable names.
System Outputs(sys) Returns a vector of the system output variable names.
State equations(sys) Displays the system state and output equations in matrix form.
Differential equation(sys{,inp,out}) Displays the differential equation (in differential (S) operator

notation) relating a single output to a single input.
Transfer function(sys{,inp,out}{,var}) Returns the transfer function relating a single output to a sin-

gle input.
Transfer function matrix(sys{,var}) Returns the transfer function matrix relating all outputs to all

inputs.
System char poly(sys{,var}) Returns the system characteristic polynomial.
System eigenvalues(sys) Returns the system eigenvalues.
System poles(sys) Returns the system poles (same as the system eigenvalues).
System zeros(sys{,inp,out}) Returns the zeros of the transfer function between a given input

and output.
Pole zero plot(sys{,inp,out}) Displays the pole-zero plot for the transfer function between a

given input and output.
System type(sys) Returns the system “type”, that is the number of free integra-

tors (poles at the origin of the s-plane).
Root locus(sys,param,prange,nsteps

{,xrange}{,yrange})
Displays a generalized root-locus for the variation of any sys-
tem parameter.

Controllability matrix(sys) Returns the system controllability matrix.
Controllability(sys) Returns the rank of the system controllability matrix.
Controllable(sys) Returns true if system is controllable, false otherwise.
Observability matrix(sys) Returns the system observability matrix.
Observability(sys) Returns the rank of the system observability matrix.
Observable(sys) Returns true if system is observable, false otherwise.
Position error constant(sys) Returns the position error constant, lim (s→ 0) {G(s)}.
Velocity error constant(sys) Returns the velocity error constant, lim (s→ 0) {sG(s)}.
Accel error constant(sys) Returns the acceleration error constant, lim (s→ 0)

{
s2G(s)

}
.

Time constant(sys) Returns the time constantτ (s) of a first order system.
Natural frequency(sys) Returns the undamped natural frequency ωn (rad/s) of a sec-

ond order system.
Damping ratio(sys) Returns the damping ratio ζ of a second order system
System exponential(sys,t) Compute the matrix exponential eAt for the system.

Table 3.1: SYREP functions to determine system properties.

3.3. TIME DOMAIN RESPONSE FUNCTIONS 29

in braces { and }, with the restriction all arguments within the braces must be included if any are to be
specified. In the case of SISO systems it is not necessary to specify the input and output variables, and the
arguments inp and out may be omitted; for MIMO systems both must be specified.

The command

tf := Transfer function(mechanical,s, Fin, vm);

will compute and display the transfer function of the system mechanical output variable vm to an input Fin.
The transfer function is expressed as a rational function in the variable s. If mechanical is a SISO system
the statement

Transfer function(mechanical, s);

is sufficient.
The procedure Root locus() is a generalized root locus plotting procedure that plots the system poles

as a function of any system parameter. The system must be fully evaluated (numerical values assigned to
all parameters) with the exception of the parameter being studied. Root locus() requires the specification
of one or more “ranges” in its argument list in the form min..max. For example, to plot the variation of the
poles of the system mechanical as the parameter B is varied from 0 to 10 in 150 steps, and plotting the
results on the s-plane with a y scale from -10 to 10 and an x-scale from -20 to 0 the SYREP command is

Root locus(mechanical,B,0..100,150,-20..0,-10..10);

These commands may be integrated into standard Maple commands. For example, plots of the damping
ratio and undamped natural frequency of a second-order mechanical system as a function of the the damping
coefficient B, and the spring stiffness K may be made using the standard Maple plot command:

graph := [[2,1,Force,Fs],[1,2,mass,m,vm,Fm],[1,2,dashpot,B],[1,2,spring,K]]:
system := LGraph to system(graph,vm):
m := 10: K:=50:
plot(Damping ratio(system), B=0..100);
K := ’K’: B := 5:
plot(Natural frequency(system), K=0..100);

In each case the all system parameters, except the independent plotting variable, are assigned numeric values.
See Part II of the User Manual for more detailed descriptions of these functions.

3.3 Time Domain Response Functions

Table 3.2 summarizes the available functions to compute thetime domain response of a system. As before
sys is the system name, inp and out are the names of the selected input and output variables (optional for
a SISO system), function is a specified function of time, ic is a Maple list of the initial values of the state
variables or the output. To find and plot the response of the system to an input u(t) = sin(t),

y := System response(mechanical, Vin, vm, sin(t)): plot(y,t=0..10);

or as a single command:

plot(System response(mechanical, Vin, vm, sin(t)), t=0..10):

The specification of system initial conditions is in the form of a Maple list. For the procedure Output IC response()
the list contains the output y(0) at time t = 0 and the first n− 1 derivatives at t = 0, for example a second-
order system with y(0) = 2.0 and ′y(0) = 0 is specified

Output IC response(second order, [2.0, 0], out);

The procedure State IC response() list contains the values of the state variables at time t = 0, specified
in the same order as in the state vector. A third-order system with initial values x1(0) = 5.0, x2(0) = 0.0,
x3(0) = −3.0 would be analyzed

30 CHAPTER 3. SYSTEM PROPERTY AND RESPONSE FUNCTIONS

Procedure Function

Step response(sys{,inp,out}) Returns the system unit step response function between a
given input and output.

Impulse response(sys{,inp,out}) Returns the system impulse response function between a
given input and output.

Ramp response(sys{,inp,out}) Returns the system ramp response function between a
given input and output.

System response(sys,function{,inp,out}) Returns the response of a system to an arbitrary input
function.

Final value(sys,stepsize{,inp,out}) Returns the final value of the response to a step of size
stepsize.

Output IC response(sys,ic) Returns the response of a SISO system output to a given
set of initial conditions on the system output variable.

State IC response(sys,ic{,out}) Returns the response of a system output to a given set of
initial conditions on the system states.

Table 3.2: SYREP Time Domain Response Functions

State IC response(third order, [5.0, 0.0, -3.0], out);

or optionally

State IC response(third order, [5.0, 0.0, -3.0]);

if it is a SISO system.
See Part II of the User Manual for more detail on these functions.

3.4 Frequency-Domain Response Functions

The functions in Table 3.3 are available to examine the frequency domain response of a system. See Part II
of the User Manual for more detail on these functions.

3.4. FREQUENCY-DOMAIN RESPONSE FUNCTIONS 31

Procedure Function

Frequency response matrix(sys{,var}) Returns the frequency response matrix relating
all outputs to all inputs.

Frequency response(sys{,inp,out}{,var}) Returns an ndividual frequency response func-
tion relating a single output to a single input.

Frequency response magnitude(sys{,inp,out}{,var}) Returns the magnitude function relating a sin-
gle output to a single input. The value of the
magnitude function at a particular frequency
can be found by substituting a numerical value
for ’var’.

Frequency response phase(sys{,inp,out}{,var}) Returns the phase function relating a single out-
put to a single input. The phase response at a
particular frequency may be found by substitut-
ing a numerical value for ’var’.

Find magnitude(sys, mag{,inp,out}{,frange}) Returns the frequencies (rad/s) at which the
frequency response has the given magnitude
’mag’.

Find phase(sys, phase{,inp,out}{,frange}) Returns the frequencies (rad/s) at which the
frequency response has the given phase ’phase’.

Bode magnitude(sys, frange{,inp,out}) Displays a Bode magnitude plot (in decibels) of
the transfer function between a given input and
output.

Bode phase(sys, frange{,inp,out}) Displays a Bode phase plot (in degrees) of the
transfer function between a given input and out-
put.

Polar plot(sys, frange{,inp,out}{,npoints}) Displays the polar form of the frequency re-
sponse function

LogMag phase(sys, frange{,inp,out}{,npoints}) Displays the log-magnitude (dB) versus phase
(deg) form of the frequency response function.

Table 3.3: SYREP Frequency Domain Response Functions

32 CHAPTER 3. SYSTEM PROPERTY AND RESPONSE FUNCTIONS

Chapter 4

Control System Design Functions

Table 4.1 describes functions that are useful in the design of feedback control systems. In addition many of the
system property and response functions described in Chapter 3 have direct application in control system de-
sign. In particular the Gain(), Integrator(), Differentiator(), PID() system generation procedures,
the observability and controllability procedures, and the static error constants (Position error constant(),
etc) have direct application in control system design. Consider the closed-loop system shown in Fig. 4.1,

Procedure Function

Closed loop system(plant,ctrl{,feedback}
{,inp,out})

Returns a system representing the closed-loop SISO system
with output feedback, and the given controller and sensor
dynamics.

Open loop system(plant,ctrl{,feedback}
{,inp,out})

Returns a system representing an open-loop SISO system
with output feedback, and controller and sensor dynamics.

Phase margin(sys) Returns the phase margin (deg) of an open-loop SISO sys-
tem.

Gain margin(sys) Returns the gain margin (dB) of an open-loop SISO sys-
tem.

State feedback(plant,gain matrix) Generates a description for the system formed with full
state feedback as specified by the gain matrix.

Ackerman(plant,char poly) Uses Ackerman’s formula to return the state feedback gain
matrix to achieve the closed-loop pole placement specified
by the polynomial char poly.

Table 4.1: SYREP Closed-loop control design functions

with controller dynamics specified by the transfer function Gc(s), and sensor/feedback dynamics by H(s).
The function Closed loop system(plant, ctrl, feedback) generates a SYREP system object defined by
the closed-loop transfer function

Gcl(s) =
Gp(s)Gc(s)

1 +Gp(s)Gc(s)H(s)

where Gp(s) is the transfer function of the plant plant, Gc(s) is the transfer function of the controller ctrl,
and H(s) is the transfer function of the sensor and feedback path feedback. As an example, consider a
plant with transfer function

Gp(s) =
10
s+ 1

33

34 CHAPTER 4. CONTROL SYSTEM DESIGN FUNCTIONS

Figure 4.1: A closed-loop system.

which is to be compensated with a PID controller Gc(s) = 1 + 0.1/s+ 0.2s. The sensor has a first-order lag
characteristic

H(s) =
1

5s+ 1
Suitable SYREP code to determine the transfer function and plot the closed-loop step response is:

Plant := TF to system(10/(s+1,s)):
Sensor:=TF to system(1/(5*s+1),s):
cl := Closed loop system(Plant, PID(1,0.1,0.2), Sensor, ref, response):
plot(Step response(cl), t=0..15);

The function Open loop system() will return a SYREP system described by the open-loop transfer
function

Gol(s) = Gp(s)Gc(s)H(s)

For example to find the gain and phase margins of the above closed-loop system

Plant := TF to system(10/(s+1)):
ol := Open loop system(Plant,PID(1,0.1,0.2), Sensor):
GM := Gain margin(ol):
PM := Phase margin(ol);

The functions State feedback() and Ackerman()may be used to place closed-loop eigenvalues. Ackerman()
returns a state-feedback gain matrix to place the poles at values prescribed by the given characteristic
polynomial; State feedback() can use this matrix to create the closed-loop system:

Enter a two-mass system connected by a spring
Graph := [[1,3,mass,m1],[2,3,mass,m2,vm2,Fm2],[1,2,spring,K],[3,1,Force,Fin]]:
out:= [vm2]:
system:=LGraph to system(Graph,out):
Assign values and check controllability and observability
m1:=10: m2:=20: K:=50:
Observable(system);
Controllable(system);
Find feedback gains to set closed-loop poles at (-1, -2, -5).
Gains:=Ackerman(system,(s+1)*(s+2)*(s+5)):
CL := State feedback(system,Gains):
Check pole placement and plot step response.
System eigenvalues(CL);
plot(Step response(CL, t=0..10));

The Maple SYREP root locus procedure Root locus() is a more general tool than the classic root locus
technique used in control system design. SYREP’s root locus plots the loci of system poles for variation of

35

any parameter in the transfer function, whereas the classical root locus assumes a characteristic equation of
the form

1 +KGol(s) = 0

In order to use the Root locus() procedure to study closed-loop behavior with a variable controller gain,
the controller should be formulated with an overall gain constant, the closed-loop system formulated, and
used in Root locus(). For example, the following uses a compensator with an overall gain K

Plant := TF to system(10/(s*(s^2+2*s+10),s):
Control := TF to system(K*(s+1)/(s+10),s)):
cl := Closed loop system(Plant,Control,Gain(1.5)):
Root locus(cl, K, 0..20,50);

In the following a PID controller is written with an overall gain constant:

Plant := TF to system(10/(s*(s^2+2*s+10),s):
cl := Closed loop system(Plant,PID(K,0.1*K,0.5*K),Gain(1.5)):
Root locus(cl, K, 0..20,50);

so that the controller transfer function is

Gc(s) = K(1 +
0.1
s

+ 0.5s)

Notice however that SYREP’s Root locus() allows much more general root locus studies. For example, the
effect of derivative gain control on the closed-loop poles can be plotted

Plant := TF to system(10/(s*(s^2+2*s+10),s):
cl := Closed loop system(Plant,PID(20,2,Kd),Gain(1.5)):
Root locus(cl, Kd, 0..20,50);

See Part II of the User Manual for more detail on the control systems procedures.

