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Abstract

Split-panel jackknife estimators are proposed for reducing the bias of the max-
imum likelihood estimator (MLE) of dynamic panel data models with fixed
effects. The bias is reduced from O(T−1) to O(T−2) or smaller, where T is the
number of periods observed. The split-panel jackknife combines the MLE com-
puted from the full panel, bθ, with the MLEs computed from shorter subpanels.
For example, the half-panel jackknife (defined in eq. (1) below) uses bθ and the
MLEs corresponding to two non-overlapping half-panels, each using T/2 obser-
vations and all N cross-sections units. The half-panel jackknife estimator has
bias O(T−2). The bias is further reduced to O(T−3) (or smaller) if two (or
more) partitions of the panel are used, for example two half-panels and three
1/3-panels, and the MLEs corresponding to the subpanels. The asymptotic dis-
tribution of the jackknife estimators is normal, correctly centered at the true
value, has variance equal to that of the MLE, and allows T to grow only slowly
with N . The split-panel jackknife can also be employed to correct the profile
likelihood function to any order. Maximising the jackknife-corrected likelihood
yields estimators with essentially the same properties as the jackknife-corrected
MLE. The large N , fixed T asymptotic variance of the split-panel jackknife es-
timators can be estimated consistently by the bootstrap or by the delete-one
jackknife in the cross-section dimension. Simulation results for the probit and
logit binary AR(1) models and for the linear AR(1) model show that even in
small, short panels such as N = 25 and T = 9, the split-panel jackknife is very
effective in reducing the bias of the MLE, has smaller mean squared error, and
yields confidence intervals with much better coverage.
Let the data be zit = (yit, xit), where i = 1, ...,N and t = 1, ..., T . Assume

the conditional density of yit, given xit (which may contain lagged values of yit),
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is fit(θ0, αi0) ≡ f(yit|xit; θ0, αi0). The MLE of θ0 is

bθ = argmax
θ

l(θ), l(θ) ≡ 1

NT

NX
i=1

TX
t=1

log fit(θ, bαi(θ)),
where bαi(θ) ≡ argmaxαi

1
T

PT
t=1 log fit(θ, αi). In general, p limN→∞ bθ 6= θ0,

but under suitable regularity conditions,

p lim
N→∞

bθ = θ0 +
B1
T
+

B2
T 2

+ ...+
Bk

T k
+ o

¡
T−k

¢
where B1, ..., Bk are constants. Let bθ(1) and bθ(2) be the MLEs corresponding to
the half-panels {1, ..., T/2} and {T/2 + 1, ..., T} (assuming T is even). Define
the half-panel jackknife estimator as

bθ1/2 ≡ 2bθ − θ1/2, where θ1/2 ≡
1

2
(bθ(1) + bθ(2)). (1)

Clearly, p limN→∞ bθ1/2 = θ0+O(T−2), so bθ1/2 corrects the first-order bias of bθ.
More generally, define the split-panel estimator

bθ1/g ≡ g

g − 1
bθ − 1

g − 1θ1/g,

where θ1/g is the average of g MLEs corresponding to g non-overlapping subpan-

els, each using T/g observations (assuming g divides T ). Then, p limN→∞ bθ1/g =
θ0 +O(T−2) and, as N,T →∞ and N/T 3 → 0,

√
NT (bθ1/g − θ0)

d→ N(0,Ω), Ω ≡ AvarN,T→∞(
√
NT bθ).

Higher-order corrections of bθ are obtained as follows. Let G = (g1, ..., gk) ≥ 2
be k distinct integers dividing T , and define the multiple split-panel jackknife
estimator

bθ1/G ≡
Ã
1 +

kX
i=1

ai

! bθ − kX
i=1

aiθ1/gi , ai ≡
1

gi − 1
Y
j 6=i

gj
gj − gi

.

Then p limN→∞ bθ1/G = θ0 +O(T−k−1) and, as N,T →∞ and N/T 2k+1 → 0,

√
NT (bθ1/G − θ0)

d→ N(0,Ω).

The definition of bθ1/G can be slightly generalised to accomodate the case where
T is not divisible by one or more gi, without affecting the properties of bθ1/G.
The plit-panel jackknife can be employed to correct the profile likelihood.

Assume, around θ0,

p lim
N→∞

l(θ) = E log fit(θ, αi(θ)) +
D1

T
+

D2

T 2
+ ...+

Dk

T k
+ o

¡
T−k

¢
,
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for constants D1, ...,Dk, where E(·) ≡ limN→∞
1
N

PN
i=1E(·) and where αi(θ) ≡

argmaxαi E log f(zit; θ, αi). Note that θ0 = argmaxθ E log fit(θ, αi(θ)). Let
l1/2(θ) be the average of the two half-panel (profile) log-likelihood functions,
and define the jackknife-corrected log-likelihood as

l̇1/2(θ) ≡ 2l(θ)− l1/2(θ).

Clearly, p limN→∞ l̇1/2(θ) = E log fit(θ, αi(θ)) +O(T−2). Define the maximum
jackknife-corrected likelihood estimator as

θ̇1/2 ≡ argmax
θ

l̇1/2(θ)

and define θ̇1/g and θ̇1/G by analogy to bθ1/g and bθ1/G. Then p limN→∞ θ̇1/G =

θ0 +O(T−k−1) and, as N,T →∞ and N/T 2k+1 → 0,

√
NT (θ̇1/G − θ0)

d→ N(0,Ω)

and √
NT (θ̇1/G − bθ1/G) p→ 0.

Thus, θ̇1/G and bθ1/G are asymptotically equivalent under the asymptotics con-
sidered. For fixed T , θ̇1/G and bθ1/G are not asymptotically equivalent. Remark
that θ̇1/G is equivariant under one-to-one parameter transformations, whereasbθ1/G is not.
For any of the estimators proposed, the bootstrap (where the i’s are resam-

pled) and the standard jackknife (where each i is deleted, one at a time) yield
consistent estimates of its large N , fixed T variance.
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