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Summary

This work traces the development of complexity theory as a field of study. Complexity theory studies and analyzes complex systems and aims at understanding their structure and behavior. A complex system is characterized by emergent behavior resulting from the interaction among its parts and, for that reason it cannot be fragmented without losing its identity and purposefulness. Therefore, complexity theory is at the heart of what systems are today, and is concerned with the idea that a system is more than just assembling a set of machines together. To deal with this kind of systems, researchers use abstraction and rely heavily on computer simulation to derive steady-state information about the system, in form of invariants, limiting cycles and attractors. Complexity theory has a large scope of application in today’s life mainly because real world systems are all complex. 

This document presents ideas, definitions and properties of complex systems and introduces some of the tools and methods used in complexity theory. It also analyzes the origins of this field of study and includes an assessment about its success and relevance.

1 Ideas about Complex Systems

Complexity theory encompasses a body of knowledge aimed at analyzing complex systems. Some views put up by researchers dealing with complex systems, compiled by Joseph Sussman
 in 2000, include the following ideas:

· Joel Moses
 suggests that a complex system is composed of many parts that interconnect in intricate ways. In other words, the complexity of a system is related to the number of interconnections and to their nature. In addition, he argues that the amount of information in a system can be used as a proxy for the its degree of intricateness

· Peter Senge
 refers to the concept of dynamic complexity. Dynamic Complexity occurs when obvious interventions produce non-obvious consequences. Examples of dynamic complexity are dramatically different short-run and long-run effects and dramatically different local and global effects

· Joseph Sussman suggests that a system is complex when it is composed of a group of related units for which the degree and nature of the relationships is imperfectly known. In this case, emergent behavior is difficult to predict, even when the behavior of every subsystem is readily predictable

· Rechtin and Maier
 suggest that a complex system is a set of elements connected in order to perform a unique function that cannot be achieved by any of the parts alone. In their view, a complex system may be approached at different levels of abstraction, each with its own techniques for problem-solving

· David Levy
 argues that complexity and chaos theory attempt to reconcile the unpredictability of non-linear dynamic systems with a sense of order and structure. He argues that, with this kind of systems, short-term predictability is possible but long-term planning is impossible to achieve

These characteristics of complex systems are illustrated in Figure 1. A complex system is composed of many parts and exhibits emergent behavior. This emergent behavior cannot be inferred directly from the behavior of the components. 

Complex systems may also exhibit hierarchy and self-organization resulting from the dynamic interaction of the parts. This suggests that a number of different scales may characterize a complex system and one can study complex systems by positioning himself at one of these levels. Adding up to the concept of complexity, complex systems evolve over time and small changes in the parameters of the system may easily result in chaotic behavior.
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Figure 1- Overview of the characteristics of complex systems.

Other common-sense ideas related to complexity include size, ignorance, variety and disorder. Size is an indication of the difficulty one might have in order to deal with a system. The larger the system, the more complex it looks like. Ignorance tells us about the lack of knowledge that one has about the system. A system is complex when one does not know about it. Variety is related to the different nature of the parts of a system. However, variety, just like size, is not enough for complexity. A system may be large and plenty of variety, but it can be very simple.

Disorder is a very interesting concept associated with complex systems. For a visual example, refer to Figure 2. A very simple system is not out-of-order. It is simple and one can easily find an explanation for its operation. A random system is completely out-of-order and one cannot infer any information from of it. Complexity theory considers systems in between, which are not simple but neither completely random, and therefore encode some, potentially useful, information.
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Figure 2- Relationship between complexity and disorder.

Note that this has a very interesting relation to Shannon’s measure of entropy
. Shannon’s measure of entropy of a system can be though of as a proxy for the information encoded in the system. It reaches its maximum value when all the events that can happen in the world have the same probability. Therefore, Shannon’s entropy increases with the randomness in the system and its size and it might not be a good measure for complexity, as complexity is primarily focused in mid-disordered systems.

2 Defining Complexity Theory

A more rigorous definition for complexity is proposed by Bob Rosen and Don Mikulecky, professors of Physiology at the Medical College of Virginia Commonwealth University. In order to build up to this definition they evoke the Newtonian paradigm and its relationship to Cartesian Reductionism. Following Descartes and the machine metaphor, the body is a biological machine and the mind is something apart from the body. The machine is built up of distinct parts and can be reduced to those parts without loosing its machine-like behavior. This amounts to the so-called Cartesian Reductionism perspective. The Newtonian paradigm is based on the three general laws of motion, provided by Newton, which are the foundation of dynamics and lead to the notion of trajectory.

According to this view, complexity results from the failure of the Newtonian paradigm to be generic. This paradigm involves experiments that reduce systems into their parts and studying those parts in the framework provided by the laws of motion. Note that is exactly the way people do science. People use their senses to observe the world and use some mental activity to give meaning to what they sense. In other words, they encode the natural system into a formal system, which is a model for the former. The formal system is then manipulated to derive implications that correspond to the causal events observed in the real world. Finally, the formal system is decoded and its success checked, in the sense that its predictions can be confirmed (or not) in the real world.

Rosen and Mikulecky define complexity as “the property of a real world system that is manifest in the inability of any one formalism being adequate to capture all its properties”. That is, researchers single out a small part of the natural system and convert it to a formal system. However, the world is complex and any formal system they choose to try to capture what happens in the real world can only be partially successful. They argue that complexity theory was born out of the need to come up with explanations for aspects of real world systems that the Newtonian paradigm is thus unable to encompass, given its reliance on Cartesian Reductionism.

This definition of complexity implies several interesting properties. First, and more important, a complex system is non-fragmentable, in the sense that reducing it to its parts destroys important characteristics of the system irreversibly. A complex system comprises components that are distinct from its parts. The definition of some of these components depend on the system itself and its context. Outside of the system they have no meaning and if removed from the system, it loses its original identity. Also, for complex systems, there is no “largest-model”, from which, by particularization, one can derive other models. If there were a “largest-model” fragmentability would result.

Another definition to complexity theory is put forward by Bruce Edmonds, Senior Research Fellow in the Center for Policy Modeling at Manchester Metropolitan University, UK. He argues that complexity “is that property of a language expression which makes it difficult to formulate its overall behavior, even when given almost complete information about its atomic components and their inter-relations”. It becomes clear that different people, with different backgrounds and different research perspectives and goals, share a common bottom-line idea regarding complexity. Complexity turns up when “the whole is more than the sum of the parts” and the language that we use to talk about parts of a complex system is unable to describe the behavior of the system as a whole.

These definitions of complexity theory branch out to more specific definitions in applied fields. A few examples are:

· Computational complexity: refers to the amount of computational resources needed to solve a class of problems. This measure of complexity is easy to deal with, but it does not factor in the difficulty of providing the program itself needed to solve the problem

· Kolmogorov Complexity: the minimum possible length of a description of the system, in some language (usually that of a Turing machine). When combined with the concept of computational complexity results in the so-called Bennett’s Logical Depth, which is the amount of resources needed to calculate the results of a program of minimal length

· Kauffman’s number of conflicting constraints: complexity is related to the number of conflicting constraints in the system. Note that the difficulty in successfully specifying the evolutionary walk of a system increases with contradictory information or, in other words, with the number of conflicting constraints

The next section turns into the approach used by researchers to study complex systems and the tools and perspectives that drive complexity theory.

3 Research Approach

Among the main research tools behind complexity theory, we find abstraction, modularity and the idea of scales. Consider the study of matter, for the sake of being concrete. Today, researchers are able to describe the wave equation for the particles in an atom, using the following equation:

{-(i((2(2i)/(2me)-(i((2(2j)/(2mn)+e2/(4((0)(i1,i21/|ri1-ri2|+

+z2e2 /(4((0) (j1,j21/|Rj1-Rj2|-ze2 /(4((0) (i,j1/|ri-Rj|}(=E(
In the summations above, i (and j) vary between 1 and 1020, the number of particles in a human body. It is therefore complicated to solve this equation for (, the wave function for the particles. Actually, it is already impossible to solve this equation analytically, for the atom of Helium (i=2 and j=1).

So, how do physicists proceed? Although unable to solve this equation, physicists are very successful in explaining the dynamics of larger particles. For that they use abstraction. They position themselves at a different level, for example, at the molecular level, and develop models from there, taking into account the characteristics of molecules that they are able observe, as mass, charge, poles, etc. Abstraction is key for the success of Physics and is closely tied with the notion of scales, which many argue to be the idea that allows people to do physics.

Figure 3 shows several scales in the realm of physics, from quarks and leptons (with a size of 10-18 km) up to the starts, galaxies and the universe itself (with a size of 108 km). Physicists study all of these systems although analytically they often cannot bridge from one to the other. They place themselves at some level in this scale and, using abstraction, they model the world at that level and define the problems they want to address with a language suitable for the level.
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Figure 3- Scales in Physics (picture continues from left to right).

Equations and models in physics are often solved by approximation using large amounts of computer resources and power. However, this introduces a new problem for complexity theory, which is the limited expressive power of today’s computers. For example, a computer with words of 32-bits uses a step of 2.328-10 when performing computations. This might seem an insignificant approximation error. However, taking that assumption for granted is a serious mistake. The main characteristics of many systems have this order of magnitude and a small change like this in some parameters of some systems may result in completely different outcomes.

For example, consider a model of population growth governed by the following equation:

Populationt = GrowthRate*Populationt-1*(1-Populationt-1)

The steady state of this equation was studied by Feighenbaum in (?). For a growth rate less than 200% the population level converges to a single level in the steady state. For higher growth rates, the system converges to a limiting cycle with two levels. As the growth rate keeps increasing, the number of levels in the limiting cycle increases to 4, 8 and so on, up to a chaotic situation. This is illustrated in Figure 4, where the growth rate increases in the horizontal axis from right to left.
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Figure 4- Bifurcations in the number of levels in the limiting cycle for the population model. The growth rate increases in the horizontal axis from right to left.

However, as described in the previous section complexity and chaos theory seek structure in this kind of systems. Feighenbaum discovered that the ratio between two consecutive points of bifurcation is constant. This is called the Feighenbaum constant, and it is approximately equal to 4.66. Later, he found that other models, similar in nature but with other kinds of functions (exponential, trigonometric and so on) exhibit the same behavior, exactly with the same constant.

Another well know example is the Mandelbrot set, generated by the equation Z(n+1)=Z2(n)+C, where C is a complex number. The mapping of colors in Figure 5 represents the number of iterations needed to obtain |Z(n)|>2. The first picture repeats itself at smaller scales along the negative part of the horizontal axis. The reader can see its appearance again in the last picture shown. The ratio between the values in that axis at which two consecutive repetitions occurs is, with no surprise, the Feighenbaum constant.
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Figure 5- Magnifications of the Mandelbrot set.

The most important aspect about the Feighenbaum constant is that it is an invariant. It appears in many complex systems as a point of order that allows people to partially predict the behavior of the system. For example, in the Mandelbrot set, if one keeps magnifying the picture to the left, one can say for sure where the first picture will repeat itself along the negative part of the horizontal axis.

This illustrates an important method that researchers use when faced with complex systems. Researchers seek order and structure in the system. They look for invariants, aspects of the system that are robust and remain unchanged for different situations and conditions of the system. In other words, researchers dissipate the initial conditions and look for steady-state properties. A good example of this rationale is the Sierpinski Triangle, shown in Figure 6. In this game, three vertices of a triangle have different colors and a point is located in the interior of the triangle at random. Randomly one of the colors of the vertices is chosen and the point moves half the distance in the direction of the vertex with that color. After many iterations the picture obtained is shown in the figure below at the right.
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Figure 6-The Sierpinski Triangle.

This example shows that it is possible to get rid of random initial conditions by analyzing what happens to the system in the long-run and finding the what actually characterizes and identifies the system. The Sierpinski Triangle is identified by a set of triangles inside each other with a pattern that repeats itself up to infinity. That is, the point located at random in the interior of the triangle will be attracted to a certain region in the space within the triangle. This leads us to the idea of attractor, which is often used in the field of complexity theory.

The most well-known attractor is the Lorentz attractor. It is obtained from iterating the following system of differential equations:

dx/dt=-a*x+a*y; dy/dt=b*x-y-z*x; dz/dt=-c*z+x*y

Figure 7 shows the space where the point (x,y,z) will end-up after many iterations. That is, the Lorentz attractor is the limiting cycle for the system of equations above.
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Figure 7- The Lorentz attractor (for dt=0.02, a=5, b=15, c=1).

Similarly to the previous examples, the importance of the Lorentz attractor resides in the fact that it allows for reducing the space of states in which one can find the system after some iterations. This is yet another common tool people use today in the field of complexity theory to deal with complex systems. Researchers look for reducing the phase space, in order to perform analysis over smaller sets.

Finally, another tool commonly used in this field is cellular automata. Cellular automata provide a very clean and simple way to derive the limiting cycles of a system. A cellular automata is a lattice of finite state machines. Each machine can take one of k values and updates its state asynchronously according to some local rule that takes as inputs the states of the neighboring machines in the lattice. Figure 8 shows the initial state (at the left) and the steady-state (at the right) for a two-dimensional cellular automata.  
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Figure 8-Example of a cellular automata.

The most interesting aspect about cellular automata is that they mimic the intrinsic complexity of a system and display the emergent behavior one finds when assembling many inter-dependent machines together. The steady-state obtained for a cellular automata is exactly the result of the complex interactions among the machines placed in the lattice of the system.

4 Current Applications and Research Topics

Complexity theory exhibits a large scope of application. In fact, most systems in the real world are complex and the characteristics of complex systems appear in many fields from physics, to biology, to computer science. These three fields are the most prominent ones related to complexity theory, given the nature of the problems they address, which is more related to basic research. 

However, other interesting examples are easy to find. Table 1 depicts two very different examples of the application of complexity theory, thus accounting for the huge variety of situations in which the concepts and ideas presented in the previous sections may apply. The first example is brought up by an academician at MIT, Joseph Sussman, and refers to the transportation system. The second example is suggested by Chris Meyers, the Director of Business Innovation for E&Y, and is about market dynamics.

	Field
	Where is the complexity?
	How is it managed?

	Transportation

System
	Transport systems are complex networks. The system is stochastic in nature and policy makers introduce “non-linear” strategies that affect the overall behavior of the system
	The system is modeled at different scales (e.g. city level, state level and country level) and policies are devised for each level. 

	Dynamic

Markets
	The markets are ever changing and are defined by the continuous and asynchronous interactions among firms
	Consider the idea of macro equilibrium (the trends in key variables such as price and quantities) but also understand the specific flux of commodities in the market that may yield profit


Table 1- Two examples of applied fields in which complexity theory is taken into account.

For the first case, it is interesting to notice that the organizational structure of the transportation system reflects exactly a “complexity-theory paradigm”, with agencies responsible for local transportation and other agencies responsible for country-wide transportation. This results, to a certain extent, from the consideration of different scales to approach the transportation system. 

For the second case, the important aspect to consider is that markets are defined by the interactions among firms. At a macro level, or at a higher level of abstraction, one can fit a model of supply and demand to the overall behavior of the market and capture the main trends in the key variables in the market. However, and in order to be successful, firms need to go beyond this general view of the market and understand the details of the fluxes of commodities and profit in the margin. That is, profit is more likely to come from being different and away from equilibrium (e.g. product differentiation and price discrimination) rather than from behaving according to major trends.
In part fueled by the broad scope of application of complexity theory, research in this field continues at a significant pace and relevant advances are no longer produced only in physics and maths but also in surrounding fields like biological systems, evolutionary and networked dynamics and economic and social systems. These are the main areas of research at the Santa Fe Institute, NM, USA. Also recently at this Institute, researchers started wondering about the existence of a unified theory of complex systems. This is actually one of the most interesting open questions in complexity theory research.

Some researchers argue that it might be possible to have a new unified way of thinking about nature, human social behavior, life and the universe itself, that would steam from complexity theory. Other researchers argue that it would be difficult to conceive such a thing and give it a clear and crystal meaning. Some researchers believe that one day computers will have enough power to predict, control and understand nature. But other researches counter-argue saying that even if that were the case, the models developed would be so intricate that they would elude human understanding. This is definitely an interesting open research question calling for more concrete and convincing answers in the near future.

5 Early History of Complexity, People and Institutions

The early history of complexity theory associates complexity with the NP-completeness of some problems, that is, the combinatorial explosion of the number of states in which one can find the system. The first know problem of this sort is the following:

“Given n points and the distance between every pair of them, find the shortest route which visits each every point at least once and then returns to the starting point”

It seems that there was a German book published in 1832 about this problem, but evidence is contradictory in this regard. In any case, it is well-known that the problem entered the mathematical world only one century later by Merrill Flood, who urged the RAND computer company to offer a prize for its solution. Merrill Flood, together with Melvin Dresler
, were the first to work out formally the Prisoner’s Dilemma in 1950. They were involved in researching strategies for nuclear war at that time.

Later in 1954, Dantzig, Fulkerson and Johnson (Computer Science Department at Stanford University) published a paper
 showing that a solution for that problem is optimal by looking at a few inequalities. They have used a 49-city map of the 48-state United States and argued that with 25 inequalities, one could check the optimality of a solution. This paper was published in an Operations Research (OR) journal and was among the most popular applications of the simplex methods and linear programming ideas that are today on the basis of OR.

Some time later, researchers understood that problems fall into categories.  There are “good” and “bad” problems. Once one can solve one problem, one can actually solve a class of similar problems. An example of a class of problems is NP-complete problems.

Due to the large scope of application of complexity theory, one can say than many people are related to this field. Still, the most prominent people come primarily from mathematics, physics, computer science and biology. Among them we find:

Stuart Kauffman - Pioneer in complexity theory; MD from University of California (1968), Professor in Biophysics, Theoretical Biology and Biochemistry (1969-1995), University of Chicago and University of Pennsylvania; Currently, consultant for Los Alamos National Laboratory and External Professor, Santa Fe Institute; Publication: “At Home In The Universe”, Oxford University Press, 1995.   

Murray Gell-Mann – Theoretical physicist; PhD (Physics) in 1951 from MIT; Professor Emeritus of Theoretical Physics, California Institute of Technology; Professor and Co-Chairman of the Science Board of the Santa Fe Institute; received a Nobel Prize in 1969 for work on the theory of elementary particles (co-discoverer of Quarks); Currently in the President's Committee of Advisors on Science and Technology; Author of the book: “The Quark and the Jaguar”, W. H. Freeman and Company, New York, 1994.

Philip Anderson – Condensed matter theorist; PhD from Harvard in 1949); Professor of Physics at Oxford University and Princeton University (1975-present); received a Nobel Prize in 1975 for investigations on the electronic structure of magnetic and disordered systems; Also at the Bell Labs (from 1949 to 1984) and Santa Fe Institute (1970-present).

John Holland – “first” PhD in Computer Science (University of Michigan); pioneer of evolutionary computation, particularly genetic algorithms; Professor of Cognition and Perception at the University of Michigan and Santa Fe Institute.

Other people closely related to the field of complexity theory include Selt Llyod (Physics), Joseph Sussman (Civil), Christopher Langton (Computer Science), Brian Arthur (economics), Jack Cowan (maths), Herbert Simon (economics), John Smith (biology) and Per Bak (physics).

Most of the people related to this field are associated with the Santa Fe Institute (SFI), which plays a central role in the development of complexity theory. This is a private, non-profit, multidisciplinary research and education center, founded in 1984, largely supported by the National Science Foundation and the MacArthur Foundation. The SFI operates as a small visiting institution gathering about 100 members, 35 in residence at one time. The SFI aims at catalyzing new collaborative, multidisciplinary projects and is primarily devoted to basic research. 

7 Assessment

This section is devoted to understand the success and relevance of complexity theory as a field. In my opinion, complexity theory is paramount for the development of science from physics to economics, for business and entreperneurship and even art. Moreover, complexity theory targets at the heart of systems. It aims at understanding the relationship between emergent behavior and the intricateness among the parts of a system, using the non-fragmentability property.

At a different level of analysis, complexity theory provides a new paradigm to think about systems and the idea of scales formalizes the use of abstraction as a tool to approach science and complexity. In my view, the field is very successful in defining and understanding the concept of identity of a system, to which is key the assertion that a system is not simple an assembly of machines put together but rather what results from their interaction and inter-dependence.

Almost by definition, complexity theory spreads to many areas. This clearly shows the extent to which complex systems capture real world dynamics and supports the argument that complexity theory will keep growing as a field of study, both in the basic and applied research angles, and may become a major pillar of modern science.

Still, I would like to emphasize a major challenge that complexity theory stars facing nowadays and that, I believe, should be placed at a top position in any research agenda for the near future. This could go under the name of “Complex Systems Engineering”. 

My key observation is that, so far, researchers in complexity theory have been very successful in arming themselves with tools to characterize complex systems. Examples include invariants and attractors. However, they have not yet developed tools and methodologies to design purposeful complex systems. An example would be the development of a complex system to perform pattern recognition. Such a system should have the pattern one wants to recognize as its attractor. But so far, there are not good enough tools to project such a system.

Finally, I would like to launch the question: “But why bother with complex systems and complexity theory? Why don’t we just use abstraction and model whatever we feel like studying?”. Well, but is there any other way around it? Can we escape complexity, once the real world is complex? Can we express it and talk about it with “modeling it”?

8 References

As any other research field, complexity theory has also been paving its path by publishing influential journals on complex systems. The two major references are (refer to Figure 9 for an image of the covers of these journals):

· Complex Systems: founded by Stephen Wolfram
 in 1987, includes contributions from the academia, industry and government. It has a general public in more than 40 countries around the world. The main topics in the journal include mathematics, physics, computer science and biology 

· Advances in Complex Systems: founded in 1998; Editors-in-Chief: Peter F. Stadler
 and Eric Bonabeau. The major fields included are biology, physics, engineering, economics, cognitive science and social sciences
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Figure 9-Covers of the most important journals in complex systems.
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