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LEMPEL-ZIV SLIDING WINDOW UNIVERSAL
COMPRESSION

6.441 Supplementary Notes 2b, Revised 3/14/94

INTRODUCTION: Inthe 70', there were a number of attempts to develop data
compression theories and techniques that could deal with sources with unknown siatistics,
The most successful of these (both from the standpoint of practice and theory) were two
classes of algorithms developed by Jacob Ziv and Abraham Lempel [ZL77, ZL78]. The
first scheme, often called LZ77. was a string matching sliding window scheme; the second,
called LZ78. was an adaptive dictionary scheme.

The second scheme was implemented many years ago in the UNIX compress algorithm and
many other places. Implementations of the first scheme are more recent (Stacker and
Microsolt MS-DOS-6); they are viewed as compressing more efficiently, but are more
computationally intensive. A new paper, [WZ53], about LZ77 not only analyzes the string
matching algorithm but also provides great imsight into why universal algorithms work.
This note follows [WZ593] closely 1o explain these issues.

A universal data compression algorithm is an algorithm that runs without any knowledge of
the source other than the alphabet. Thus, lor a source with known statistics, a universal
algorthm cannot compress data any better than an al gorithm optimized to those source
statistics, We already know that, for any ergodic source with entropy He and any £ 0, itis
possible Lo construet fixed to variable length codes (using complete knowledge of the
source statistics) that use at most Heet & binary digits per source letter; we also know that no
codes of any type exist that use fewer than He binary digits per source letter.

What will be shown here is that LZ77, when applied to any ergodic source, uses at most
Hest £ binary digits per source letter if the window w is sufliciently large. That is, these
universal codes can reach the same limit of compressibility as codes using knowledge of the
statistics. This is not too surprising, since the statistics can be measured and then used.
What is somewhat surprising is that such a simple code is capable of achieving these
asymptotic results. Unfortunately, the required window size depends on the statistics of the
source, 5o that in practice, one chooses a fixed window size and hopes for the best.

THE LZ77 ALGORITHM: Given a sequence of letters ftom a source of alphabet size I,
and given a "window size" w which is a power of two:
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1) Encode the first w letters without compression, using rlng K| binary digits per letter.

(this gets amortized over a very long string; all logs here are base 2)

2) Set pointer P = w (as the algorithm runs, P increases, always dividing the source

sequence into its already encoded prefix xf = X1, X2,....Xp and the yet to be

encoded sequence Xp, | = Xp41, XP4+2, «.o)

3) Find the largest L such that xp* = x5 ™ for some m, 1m<w: set L=1 if no such

maich exists.

P-w w = window PI
. -.P‘”
m
ac bldabaced a bja b a be d
L=4 —_—
m=2

Note that the largest match starts two letters inside the window (at m=2) and
extends for two letters beyond the window (vielding a match of L=4). Having
matches extend beyond the pointer sometimes allows longer matches (as in the
present case), and also, as we see later, simplifies the analysis, Note also that there
is another match, of length 3, starting one letter from the left end of the window at
m=w-1. This is not used, since the longest match is selected, If there are two
longest matches, either can be selected,

Figure 1

4} Encode L into a unary-binary code, i.e..[lﬂgLJ zeros followed by the binary expansion
of L:

1 — 1 6 — 00110
2 = 010 7 — 00111
3 = 011 5 — 0001000
4 00100 9 s 0001001
5 —= 00101 10— 0001010

{The length of the unary-binary code, fora given L is 2 LIGgLJH: nole that the
unary-binary code is a fixed to variable length prefix condition coding of the
positive integers; see [E175] for a treatment of such integer encodings).

5) [frlng [{']L = log w, encode m into log w binary digits; otherwise encode ‘ll;:lf without
compression using [ log K1 bits per letter (i.e., [ log KL bits overall). (One can use the
ordinary binary encoding, 1—00....001, 2—00...010, ..., m-1—=11...111, and then map
m into 00...000),
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6) P:=P+L; gotostep3 (go on to encode the next match).

COMMENTS ON ALGORITHM: The algorithm is a variable length to variable length
encoding. One can regard the dictionary (at any given time) as the set of substrings of the

window, plus the single letters of the alphabet. Because of the single letters, the dictionary
is valid. On the other hand, the prefix condition is not typically satisfied. The code words

are of variable length both because of the unary-binary encoding of L and also because
short matches (those with rlng KIL < log w) are encoded without compression. In

particular, the length n of a code word is a function of the length L of the match, and is
given by

n(L)= 2 LlogL+1 + min[logw, [Tog KIL] (1)

We shall frequently want simple upper bounds to n{L.). The first comes from upper
bounding 2 LlogL J+1 by 3L/2 and upper bounding the min term by [log K IL.. This yields

n(L) £¥L where y=23/2 +[log K| (2)
The second bound comes from upper bounding the min term by log w, yielding
n{L) = 2 logl + 1 + logw (3)

Both bounds are valid for all L, but the first is useful for L small, and the second for L
large.

We next explain how a receiver of the encoded sequence can retrieve the source sequence.
First the initial window is retrieved from the initial rlng K lw encoded binary digits. The

next string of binary digits is the unary-binary encoding of the first match length. This is

decoded, using the prefix condition of the encoding, and the receiver then determines if

rlog K—|L::-Icrgw. If so, the position m of the match is decoded, and 1,'::1"[' is retrieved by

extracting x ¥ ™+l from the stored window; if not \,:‘::ﬂ

allows the window to be updated at the receiver, and further decoding proceeds in the same
way.

In the case of encoding a finite length string, say ‘xiq. step 3 of the algorithm must be

slightly modified to stop after the entire string is encoded. That is, step 3 must be modified
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to find the largest L < N-P such that xJ*Y = xJ-™ for some m, 1<msw. Also, step 6

must be modified to stop when P is incremented to N,

This code is clearly universal since the algorithm uses no knowledge of source statistics.
What we now show is that the code can approach the entropy bound for any ergodic source
as w becomes large. Given any window size w, the lengths of successive matches are
random variables. We start by looking at the first match length L; intuitively we expect all
match lengths to be statistically similar, but unfortunately, the fact that a parse occurs at a
particular point effects the distribution of the next match length.

It turns out that when the window w is very large, L is close to (logw)/H.. with high
probability. For such values of L, (3) is not only a bound to n{L.} but also a good
approximation, so n(L)YL = [2 logL + 1 + logw]/L. As w — == (with L = (logw)/H..),
n(L)L approaches (logw)/L. = He.. In the next section, we show that the first match length
L is close to (log w)/H.. with high probability, and then in the following section, we show
that the effect of the parsing process is negligible.

ANALYSIS OF THE FIRST MATCH LENGTH: Instead of looking directly at
the length L of the longest match, we look at a fixed length string x{*) starting at the

pointer and find the expected distance back into the past until that string occurs again, We

start with an even simpler problem: let {U”.} be an ergodic source, let b be a letter in that

source, and let My, be a positive integer valued random variable defined as the negative of
the latest time before time 0 at which the letter b occurs. Thus My, takes on the value m=|
if, first,

U.m= b and, second, U_j#b for 1<j<m. Thus

Pr{Mp=m | Up=b) = Pr{U.y=b, Uj#b,-m<j<0 | Up=b} ; mzI (4)

4+— My=7
abecacdacbh..
Ll_lu.[}
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Theorem 1: If Pr{Ugp=b)=0, then E[My, | Up=b] = 1/Pr(Up=h)

Proof: Define the event Ajk = {U_j=b, Ujzb for -j<i<k, Uy=b} for each integer j=1,
k=0. A is the event that the most recent occurrence of letter b before time 0 is at -j, and
that the first occurrence of letter b at time 0 or later is at k. Thus the events { Aj k| are
disjoint. Also, since Pr(Ug=b)=>0 and the source is ergodic, the letter b must appear
somewhere both in the past and future with probability 1. Thus the prababilities of the
events {Aj ] sumto I, yvielding

L= 25 Do Pr(Aj ) = Zj’i. i Pr{Aj o) (5)

where we have used stationarity to see that Pr(A; ) = Pr{Ajx,0). For each i»0 the above
sum has i distinct but equal terms with j+k=i, and thus (5) can be rewrilten as

L= iPr(Ajg) = 2.0, i Pr(My=i, Uy=b)
= Pr(Uy=b) 352, i Pr(My=ilUg=b) = Pr(Ug=b)E[MyUg=b]
which is the statement of the theorem.

From the Markov inequality, the probability that b does not occur in the window from -w
to -1, conditional on Up=b, satisfies the inequality

E[Mp I Up=b] _ |

;i ' =h} < =
Pr{Mp=w | Uy=b) = W w Pr{Ug=b) ™

Now for the ergodic source Ix_:} of interest here, let A be a fixed positive integer, and let
= KE*‘”"i, Thus U; is a A-tuple of letters from the X alphabet, and successive letters of
{ U_‘:} are overlapping A-tuples from X. Now let z be some given A-tuple from the X

alphabet satisfying Pl{K‘;‘ = z) > ), and let My be a positive integer valued random variable
defined as the negative of the latest starting time before 0 at which the A-tuple z occurs.
Thus, as in (4),

Pr{My=m | X‘;‘ =z)= Pr{Kiﬂ'i'nT=z, Xt}j;tz, -me<j<0 | X‘h‘=z} cmzl )
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Since {X_:} is ergodic, IU_:} is ergodic also, and thus it follows from theorem | that

E[M, | Xt=z]=—L
o Pr(X{=2) (8)

Applving the Markov inequality as before,

PriMow | XP=g)s—1
wPr(X ‘;‘zz} (9

Note that, given X‘]ﬁ‘ =%, the event Mz>w is the event that no match to K"l"‘ exists within the

window of size w, Thus, letting Ly, be the length of the longest match to XT in the

window from -w+1 to 0,

J

Pr(L,<A | X{=z) = PiiM>w | X{=z] < =
wPr(X{'=z) (10

Averaging over K‘i"‘ then yields

Pr{Ly<Al = Ty PrVsw | X4 = 2) Pr(X 4 = 2). (11

ASYMPTOTIC BEHAVIOR: Our next objective is to find an upper bound to
Pr{Lw<A] that approaches 0 for large A and w. Specifically, we set A = | (logw)/[Ho+€]]
for some fixed e>0 and go the limit w—sea. We first review the asymptotic equipartition

property of information theory (see text, section 3.5).
For some given 60, define the typical set of A-tuples z as

Ta(d) =z

% lng[Pr{Xf‘:z] - H4 <d
A

{12}
Then the AEP asserts that

limg o PrX{ € To(8)) = I (13)
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That is, for any &>{), the aggregate probability of atypical A-tuples is negligible for
sufficiently large A. From (12), we also see that typical sequences must have typical

individual probabilities,

2-AMH D) Pr(xf‘:zj < 2-AML8) - for 4]l ze T5(A) (14)
and thus the size of the typical set satisfies

ITA(B) < 2AHL+9] (15)
Theorem 2: Let Ay = L{Iugwjf[Hmd—E]J. Then

limy—sea Pr{L <Ay} =0

Proof: Splitting the sum in (11} into two terms, one for ze T () and the other for
2¢ T, (8),

Pr{Ly<Aw] = Exe Tﬂw[ﬁ} Pr(X ‘;"w = 2)Pr(Lyw<AwlX ‘]""1.1-' =4
Ay i
+ Te Ty (8) PrX [ = 2)Pr(Ly<AwlX | = 7)

- "ﬁl"l.'n'—-
< 2 Fr[x‘;‘“’=?.} 1 3 Tz, : PI(KI =7)
#eTy (8) wPr(XTL""':z) 26 Ta, )

where we have bounded Fr{L.,,{Ale‘r“' = z) by (10} in the first sum and by | in the

second. Since each term in the first sum is now simply Lhw, the first sum is [T, (8 Ww,

80
Ty (8)l
Pr(Ly<hAy) € —— + Pr(X{veT, (5)
Ay [H +8
B ll[;‘ﬂ + Pr(X e TA(8) (16)

where we have used {15). Since Ay, = L(logw}f{l—lwﬂtﬂ < (logw)/[Ho+€], we have w =
2Aw(Het€) - Using this bound in (16) yields

2 A
Pr(Lw"‘:‘ﬁw} = 2"""“'[5 el i PI‘I:XI Ve T‘ﬁ"wf‘an “?]‘
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Choosing & = €/2, and noting that Ay, — o0 as w —eo, we have limy_yPriLy, <Ay ) =0,

completing the proof,

THE EFFECT OF PARSING: We can not use (17) directly in analyzing LZ77, since
the fact that a parse occurs at point P in the source sequence effects the size of the next
match. Instead, we will complete the analysis by comparing the operation of LZ77 on a
given string of source letters with the operation of a fixed to variable length algorithm. For

given wand Ay = L(Ingwjf [HW+E]J, let xT be a given sequence of source letters and

consider parsing xf into an initial segment of length w followed by subsequent fixed length

seaments, z(1), z(2),... of length A, (see Figure 2).

L{l} 7(2) (3)
X . Twa2Al FwdA|

Figure 2

Initially restrict attention to a finite string, say x?m‘ﬂ"“’ of source letters, After the initial
window, this string is partitioned into the fixed length segments (1), z(2),....z(N). This
same string (after the initial window) is also partitioned into the segments (1}, ¥(2)
v, ¥ (M) for some M, where y(k) is the kib sepment of x'l”'”rw"'-“ found by LZ77, modified

wHMA,

as in the comments on the algorithm to stop after encoding the entire string X, In

what follows, we refer to z(1), ..., (N} as fixed length (FL) segments, and rf.:l'cr o y(l1},
y(M) as LZ segments (see Figure 3).

I;-—z(n—ja- 2(2) #(3)
X W w2 i
| — v —>; ey pfe—y @

Figure 3

wNA J-m

For any segment xj of X, W, w<i<j, we say that xJi has a match if x{ =X:  for some

1=1T1

waMA

m, l€m=w. From theorem 2, it'x W is a sample sequence from the ergodic source

under consideration, and w is Iargﬂ then there is a high probability that z{(n) has a match
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for any given n, 1=n=N. The following simple lemma lets us relate {z{n); 1=n=N) to
{¥(k); 1Zk=EM ).

Lemma: If xJ; has a match, then each sub-segment of xJi' has a match.

Proof: If xJi' has a match, then x% = X{:m for some m, 1<m<w, which means that x;. =
Xk-m for i<ksj. Thus, for any sub-segment xJ., i, J'Sj, Xk = Xjm for I'Sk<j' and x) has

a match.

To use this lemma, suppose that the FL. segment z(n) = x-g has a match and that the LZ
segment y(k) = 13' starts within the segment z{n) (i.e., i=i'j). Then we claim that y(k}

extends at least to the end of z(n) (i.e., that "2j). To see this, note that \JI (i.e., the
segment starting at the beginning of y(k} and ending at the end of z(n)) must have a match
since it is a sub-segment of z(n). Since y(k) is the longest match starting at i, y(k)
extends at least to the end of z{n).

The above argument shows that each FL segment z(n) with a match has at most one LZ

segment y(k), 1=k=M, starting within it. Figure 4 illustrates this.

| |4— 2{1) —pla— 2(2) —pla— z(s]_>r

| |< y(1) — .;mﬂn—rld—ﬂﬂ

Figure 4
Each segment z(n) with a match (z(1) agnd #(3) in the example) has at most one
segment ¥(k) starting within it (¥(1) and y{4) respectively in the example); each
segment without a match (2(2) in the example, indicated by crosshatching) might have
several segments (¥(2) and ¥(3) above) starting within it.

Now define a LZ segment y(k) to be "bad" if it is contained within some FL segment z(n),
1£n=N. We saw above that segments z(n) with matches cannot contain bad LZ segments
y(k). The segment ¥({2) in figure 4 is bad, and is contained in z(2), which does not have a
match. Define B as the set of segment numbers of bad LZ segments y(k).

B = {k : ¥(k) is contained within z{(n) for some n, |=nsN| {18)

Let Ly, La,...,.Ly be the lengths of y(1),...,¥(M) and let ¢ be the fraction of the FL.
segments z({1),...,z(N) that do not have matches. Note that Y Ly is the total number of
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WA
1

are also contained in FL segments z(n) that do not have matches, Since there are pN FL

positions in x * that are contained in bad LZ segments, and thus all of these positions

segments z{n) without matches, we have

YkeB Lk < NoAy (19)
From (2}, we can upper bound the number of code digits for these segments by

Yire n{Lg) € YNOAy where y=3/2 +[log K| (20)

Also, for each FL segment z(n) with a match, at most one LZ segment y(k) can start in
z(n). Similarly, for z(n) without a match, there can be at most one LZ segment y(k) that
starts in #(n) and is not contained in z{n) (i.e., ¥(3) in figure 4). Thus the number of LZ
segments y(k) excluding bad segments is at most N, so IB¥I=N. We can now find an upper
bound on the sum of the code word lengths for the LZ segments y(K) that are not bad. For
ke BE, we use (3) to upper bound n{Ly) by l+logw + 2 log(Ly). Thus

SkeBe n{Ly) = (1+logwIN + T pe 2 log(Ly)

2 log(Ly)

= (1+logw)N + IB" <
(1+1ogw)N + B9} ¢ pe = =0

< (1+logw)N + EIBC[EDgzkE e E:;}_f]

where we have used Jensen's inequality. Since this quantity is increasing in [Bl, we can
further bound by replacing [B®l by N, We can also further bound by summing Ly over all
k. Thus

Tkepe n{Lg) < (I+logw)N + 2N log(Aw) (21)

Combining (20) and (21), and dividing by NA,, to obtain the number of binary digits per

source letter,

i n(Ly) < I+logw +2 log{A,,) 90
k=1 NA,, Loy Py (22)

Since Ay = L{logw)/[Horte]] 2 (logw)/[Hake] - 1, we can simplify this to
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& niLy) < 1+logw +Elng(hw) 4
k=1 NA,,  (ogw)(H.+g)-1 Ay

1

~ (H..+e)(1+1/logw) +2 log(Ay,) n
R (H.+e)logw A

™

We now take the expected value of this and then pass to the limit w—see, The first term
goes to the limit He.4+2. The second term goes to 0 in the limit, since Ay, —e=. In the third
term, E[¢] = Pr[Ly <Ay, and this goes to 0 as w—ea by theorem 2. Thus,

IilanE!: {:L M] < H_+€
NAy (23)

This yields the desired bound on the expected number of encoded binary digits per source
letter. We must also go the limit N—we= in order to amortize the effect of the initial window.

The analysis we have gone through provides us with some additional insights. First, if we
know H.. and know how large A must be for T () to act like a typical set, then we could
use the segments (1), z(2),... of the last section as a fixed length to variable length code.
We would simply choose Ay, to be sufficiently large, and then choose w = 2Aw(Hest€),
According to our analysis, the window would then contain the typical strings of length Ay,
with high probability, and the scheme would compress the source to close 1o He., binary
digits per source digit.

We could visualize this fixed to variable length scheme as having a dictionary consisting of
the typical sequences in the window. Note that for a fixed to variable length code, we
usually regard the dictionary size as KA where A is the block length of source. Here we
regard the dictionary size as 24H= and view the nontypical strings as strings that are
encoded letter by letter. Thus we see that the very large dictionaries required by fixed to
variable length codes are simply required by the huge number of atypical, improbable
strings; handling these improbable strings in the simpler way here is clearly preferable.
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