Generalized Stochastic Frank-Wolfe Algorithm with Stochastic “Substitute” Gradient for Structured Convex Optimization

Haihao (Sean) Lu, Robert M. Freund

MIT

INFORMS Phoenix, November 2018
Paper on arXiv (and in review):

“Generalized Stochastic Frank-Wolfe Algorithm with Stochastic “Substitute” Gradient for Structured Convex Optimization”
Overview/Results

Introduction
- Problem of Interest
- Examples in Statistical and Machine Learning
- Literature Review
- Primal-Dual Structure

Stochastic Generalized Frank-Wolfe and Randomized Dual Coordinate Mirror Descent
- Substitute Gradient
- Stochastic Generalized Frank-Wolfe (SGFW)
- Randomized Dual Coordinate Mirror Descent (RDCMD)
- Equivalence of SGFW and RDCMD

Computational Guarantees of SGFW and RDCMD
- $O(1/\varepsilon)$ Sublinear Convergence Rate
 - First-Order Methods Naturally Minimize a Primal-Dual Gap
 - Randomized Coordinate Descent for Nonsmooth Functions
- Linear Convergence when the regularizer is Strongly Convex

Contributions/Summary
The problem of interest is

\[
P: \min_{\beta} P(\beta) := \frac{1}{n} \sum_{j=1}^{n} l_j(x_j^T \beta) + R(\beta),
\]

- \(l_j(\cdot)\) is a univariate loss function
- \(R(\cdot)\) is a regularizer and/or an indicator function of a feasible region \(Q\) and/or a penalty term, coupling constraints, etc.
- In standard Frank-Wolfe setting, \(R(\cdot)\) is an indicator function
Assumptions

1. For $j = 1, \ldots, n$, the univariate function $l_j(\cdot)$ is strictly convex and γ-smooth, namely for all a and b,

$$|l_j(a) - l_j(b)| \leq \gamma |a - b|$$

2. $\text{dom}R(\cdot)$ is bounded, and the subproblem

$$\min_{\beta} c^T \beta + R(\beta)$$

attains its optimum and can be easily solved for any c

3. $0 \in \text{dom}R(\cdot)$
Examples in Statistical and Machine Learning

- **LASSO**
 \[
 \min_{\beta} \frac{1}{2n} \sum_{j=1}^{n} (y_j - x_j^T \beta)^2 \\
 \text{s.t. } \|\beta\|_1 \leq \delta ,
 \]
 where \(l_j(\cdot) = \frac{1}{2}(y_j - \cdot)^2 \) and \(R(\beta) := \mathbf{1}_{\{\|\beta\|_1 \leq \delta\}}(\beta) \)
 (Here \(\mathbf{1}_Q(\cdot) \) is the indicator function on the set \(Q \).)

- **Sparse Logistic Regression**
 \[
 \min_{\beta} \frac{1}{n} \sum_{j=1}^{n} \ln(1 + \exp(-y_jx_j^T \beta)) + \lambda \|\beta\|_1 ,
 \]
 where \(l_j(\cdot) = \ln(1 + \exp(-y_j \cdot)) \), \(R(\beta) = \lambda \|\beta\|_1 + \mathbf{1}_{\{\|\beta\|_1 \leq \ln(2)/\lambda\}}(\beta) \)

- **Matrix Completion**
 \[
 \min_{\beta \in \mathbb{R}^{n \times p}} \frac{1}{2|\Omega|} \sum_{(i,j) \in \Omega} (M_{i,j} - \beta_{i,j})^2 \\
 \text{s.t. } \|\beta\|_* \leq \delta ,
 \]
 where \(l_{(i,j)}(\cdot) = \frac{1}{2}(\cdot - M_{i,j})^2 \) and \(R(\beta) = \mathbf{1}_{\{\|\beta\|_* \leq \delta\}}(\beta) \)

- More examples can be found in [Jaggi 2013].
In the traditional Frank-Wolfe setting $R(\cdot)$ is an indicator function of a bounded set Q, and the Frank-Wolfe update is:

Traditional Frank-Wolfe Method

$$\tilde{\beta}^i \in \arg \min_{\beta \in Q} \{ \nabla f(\beta^i)^T \beta \} \quad \text{and} \quad \beta^{i+1} = (1 - \alpha_i)\beta^i + \alpha_i\tilde{\beta}^i$$

In the generalized Frank-Wolfe setting where $R(\cdot)$ can be any convex function, the Generalized Frank-Wolfe update is:

Generalized Frank-Wolfe Method

$$\tilde{\beta}^i \in \arg \min \{ \nabla f(\beta^i)^T \beta + R(\beta) \} \quad \text{and} \quad \beta^{i+1} = (1 - \alpha_i)\beta^i + \alpha_i\tilde{\beta}^i$$
In the stochastic setting, we can only compute an unbiased estimator \tilde{g}^i of the gradient $\nabla f(\beta^i)$, and the update is

$$\tilde{\beta}_i \in \arg\min_{\beta \in Q} \{(\tilde{g}^i)^T \beta\} \quad \text{and} \quad \beta^{i+1} = (1 - \alpha_i) \beta^i + \alpha_i \tilde{\beta}_i$$
Stochastic Frank-Wolfe Method

<table>
<thead>
<tr>
<th>Algorithm and Reference</th>
<th>Number of Exact Gradient Calls</th>
<th>Number of Stochastic Gradient Calls</th>
<th>Number of Linear Optimization Oracle Calls</th>
</tr>
</thead>
<tbody>
<tr>
<td>FW*</td>
<td>$O\left(\frac{1}{\varepsilon}\right)$</td>
<td>0</td>
<td>$O\left(\frac{1}{\varepsilon}\right)$</td>
</tr>
<tr>
<td>SFW**</td>
<td>0</td>
<td>$O\left(\frac{1}{\varepsilon^3}\right)$</td>
<td>$O\left(\frac{1}{\varepsilon}\right)$</td>
</tr>
<tr>
<td>Online-FW***</td>
<td>0</td>
<td>$O\left(\frac{1}{\varepsilon^4}\right)$</td>
<td>$O\left(\frac{1}{\varepsilon}\right)$</td>
</tr>
<tr>
<td>SCGS****</td>
<td>0</td>
<td>$O\left(\frac{1}{\varepsilon^2}\right)$</td>
<td>$O\left(\frac{1}{\varepsilon}\right)$</td>
</tr>
<tr>
<td>SVRFW**</td>
<td>$O(\ln \frac{1}{\varepsilon})$</td>
<td>$O\left(\frac{1}{\varepsilon^2}\right)$</td>
<td>$O\left(\frac{1}{\varepsilon}\right)$</td>
</tr>
<tr>
<td>STORC**</td>
<td>$O(\ln \frac{1}{\varepsilon})$</td>
<td>$O\left(\frac{1}{\varepsilon^{1.5}}\right)$</td>
<td>$O\left(\frac{1}{\varepsilon}\right)$</td>
</tr>
<tr>
<td>This work</td>
<td>1</td>
<td>$O\left(\frac{1}{\varepsilon}\right)$</td>
<td>$O\left(\frac{1}{\varepsilon}\right)$</td>
</tr>
</tbody>
</table>

* [Frank, Wolfe 1956], ** [Hazan, Luo 2016], *** [Hazan, Kale 2012], **** [Lan, Zhou 2016]
Recall the definition of the conjugate of a function $f(\cdot)$:

$$f^*(y) := \sup_{x \in \text{dom} f(\cdot)} \{y^T x - f(x)\}.$$

Proposition: Conjugate Functions

If $f(\cdot)$ is a closed convex function, then $f^{**}(\cdot) = f(\cdot)$. Furthermore:

1. $f(\cdot)$ is γ-smooth with domain \mathbb{R}^p with respect to the norm $\| \cdot \|$ if and only if $f^*(\cdot)$ is $1/\gamma$-strongly convex with respect to the (dual) norm $\| \cdot \|^*$.

2. If $f(\cdot)$ is differentiable and strictly convex, then the following three conditions are equivalent:
 - $y = \nabla f(x)$
 - $x = \nabla f^*(y)$, and
 - $x^T y = f(x) + f^*(y)$.

Primal-Dual Structure

The original problem is

\[
P: \quad \min_{\beta} P(\beta) := \frac{1}{n} \sum_{j=1}^{n} l_j(x_j^T \beta) + R(\beta) .
\]

Denote \(X := [x_1^T; x_2^T; \ldots; x_n^T]\). Then the corresponding dual problem is

\[
D: \quad \max_w D(w) := -R^* \left(-\frac{1}{n} X^T w \right) - \frac{1}{n} \sum_{j=1}^{n} l_j^*(w_j) .
\]

Define the convex/concave saddle-function \(\phi(\cdot, \cdot)\):

\[
\phi(\beta, w) := \frac{1}{n} w^T X \beta - \frac{1}{n} \sum_{i=1}^{n} l_i^*(w_i) + R(\beta) .
\]

We can write \(P\) and \(D\) in saddlepoint minimax format as:

\[
P: \quad \min_{\beta} \max_w \phi(\beta, w) \quad \quad \quad \text{and} \quad \quad \quad D: \quad \max_w \min_{\beta} \phi(\beta, w) .
\]
Stochastic Generalized Frank-Wolfe

and

Randomized Dual Coordinate Mirror Descent
"Substitute" Gradient

The problem of interest is

$$\mathbf{P}: \min_{\beta} P(\beta) := \frac{1}{n} \sum_{j=1}^{n} l_j(x_j^T \beta) + R(\beta) .$$

The gradient of the first term is

$$\frac{1}{n} \sum_{j=1}^{n} \dot{l}_j(x_j^T \beta)x_j = \frac{1}{n} \sum_{j=1}^{n} \dot{l}_j(s_j)x_j \text{ where } s_j = x_j^T \beta$$

It is too expensive to update $x_j^T \beta$ for all $j = 1, \ldots, n$ in each iteration when n is large. "Substitute" gradient d is computed by

$$d = \frac{1}{n} \sum_{j=1}^{n} \dot{l}_j(s_j)x_j, \ j = 1, \ldots, n .$$

- We will only update one s_j in each iteration
- As a result d will not in general be an unbiased estimator of the gradient
Stochastic Generalized Frank-Wolfe Method with Substitute Gradient

Stochastic Generalized Frank-Wolfe with Substitute Gradient (SGFW)

Initialize with $\beta^{-1} = 0$, $s^0 = 0$, and substitute gradient $d^0 = \frac{1}{n} X^T \nabla L(s^0)$, with step-size sequences $\{\alpha_i\} \in (0, 1]$, $\{\eta_i\} \in (0, 1]$.

For iterations $i = 0, 1, \ldots$, do:

Solve l.o.o. subproblem: Compute $\tilde{\beta}^i \in \arg \min_\beta \left\{ (d^i)^T \beta + R(\beta) \right\}$

Choose random index: Choose $j_i \in U[1, \ldots, n]$

Update s value: $s_{j_i}^{i+1} \leftarrow (1 - \eta_i)s_{j_i}^i + \eta_i(x_{j_i}^T \tilde{\beta}^i)$, and $s_{j}^{i+1} \leftarrow s_j^i$ for $j \neq j_i$

Update substitute gradient:
$$d^{i+1} = \frac{1}{n} X^T \nabla L(s^{i+1}) = d^i + \frac{1}{n} \left(\hat{l}_{j_i}(s_{j_i}^{i+1}) - \hat{l}_{j_i}(s_{j_i}^i) \right) x_{j_i}$$

Update primal variable: $\bar{\beta}^i \leftarrow (1 - \alpha_i)\bar{\beta}^{i-1} + \alpha_i\tilde{\beta}^i$.

(Optional Accounting): $w^{i+1} \leftarrow \nabla L(s^{i+1})$
Stochastic Generalized Frank-Wolfe Method with Substitute Gradient

Initialize with $\bar{\beta}^{-1} = 0$, $s^0 = 0$, and substitute gradient $d^0 = \frac{1}{n} X^T \nabla L(s^0)$, with step-size sequences $\{\alpha_i\} \in (0, 1]$, $\{\eta_i\} \in (0, 1]$.

For iterations $i = 0, 1, \ldots$, do:

Solve I.o.o. subproblem: Compute $\tilde{\beta}^i \in \arg \min_{\beta} \left\{ (d^i)^T \beta + R(\beta) \right\}$

Choose random index: Choose $j_i \in U[1, \ldots, n]$

Update s value: $s_{j_i}^{i+1} \leftarrow (1 - \eta_i)s_{j_i}^i + \eta_i(x_{j_i}^T \tilde{\beta}^i)$, and $s_j^{i+1} \leftarrow s_j^i$ for $j \neq j_i$

Update substitute gradient:
$$d^{i+1} = \frac{1}{n} X^T \nabla L(s^{i+1}) = d^i + \frac{1}{n} \left(\dot{i}_{j_i}(s_{j_i}^{i+1}) - \dot{i}_{j_i}(s_{j_i}^i) \right) x_{j_i}$$

Update primal variable: $\bar{\beta}^i \leftarrow (1 - \alpha_i)\bar{\beta}^{i-1} + \alpha_i \tilde{\beta}^i$.

(Optional Accounting:) $w^{i+1} \leftarrow \nabla L(s^{i+1})$
Stochastic Generalized Frank-Wolfe Method with Substitute Gradient

Stochastic Generalized Frank-Wolfe with Substitute Gradient (SGFW)

Initialize with $\bar{\beta}^{-1} = 0$, $s^0 = 0$, and substitute gradient $d^0 = \frac{1}{n}X^T\nabla L(s^0)$, with step-size sequences $\{\alpha_i\} \in (0, 1]$, $\{\eta_i\} \in (0, 1]$.

For iterations $i = 0, 1, \ldots$, do:

Solve l.o.o. subproblem: Compute $\bar{\beta}^i \in \text{arg min}_\beta \left\{ (d^i)^T \beta + R(\beta) \right\}$

Choose random index: Choose $j_i \in \mathcal{U}[1, \ldots, n]$

Update s value: $s_{j_i}^{i+1} \leftarrow (1 - \eta_i)s_{j_i}^i + \eta_i(x_{j_i}^T\bar{\beta}^i)$, and $s_{j}^{i+1} \leftarrow s_{j}^i$ for $j \neq j_i$

Update substitute gradient:

$$d^{i+1} = \frac{1}{n}X^T\nabla L(s^{i+1}) = d^i + \frac{1}{n}\left(\dot{l}_{j_i}(s_{j_i}^{i+1}) - \dot{l}_{j_i}(s_{j_i}^i)\right)x_{j_i}$$

Update primal variable: $\bar{\beta}^i \leftarrow (1 - \alpha_i)\bar{\beta}^{i-1} + \alpha_i\bar{\beta}^i$

(Optional Accounting:) $w^{i+1} \leftarrow \nabla L(s^{i+1})$
Stochastic Generalized Frank-Wolfe Method with Substitute Gradient

Stochastic Generalized Frank-Wolfe with Substitute Gradient (SGFW)

Initialize with $\bar{\beta}^{-1} = 0$, $s^0 = 0$, and substitute gradient $d^0 = \frac{1}{n} X^T \nabla L(s^0)$, with step-size sequences $\{\alpha_i\} \in (0, 1]$, $\{\eta_i\} \in (0, 1]$.

For iterations $i = 0, 1, \ldots$, do:

Solve l.o.o. subproblem: Compute $\tilde{\beta}^i \in \arg \min_{\beta} \left\{ (d^i)^T \beta + R(\beta) \right\}$

Choose random index: Choose $j_i \in U[1, \ldots, n]$

Update s value: $s_{j_i}^{i+1} \leftarrow (1 - \eta_i) s_{j_i}^i + \eta_i (x_{j_i}^T \tilde{\beta}^i)$, and $s_j^{i+1} \leftarrow s_j^i$ for $j \neq j_i$

Update substitute gradient:

$$d^{i+1} = \frac{1}{n} X^T \nabla L(s^{i+1}) = d^i + \frac{1}{n} \left(\hat{l}_{j_i}(s_{j_i}^{i+1}) - \hat{l}_{j_i}(s_{j_i}^i) \right) x_{j_i}$$

Update primal variable: $\bar{\beta}^i \leftarrow (1 - \alpha_i) \bar{\beta}^{i-1} + \alpha_i \tilde{\beta}^i$

(Optional Accounting:) $w^{i+1} \leftarrow \nabla L(s^{i+1})$
Stochastic Generalized Frank-Wolfe Method with Substitute Gradient

Initialize with $\bar{\beta}^{-1} = 0$, $s^0 = 0$, and substitute gradient $d^0 = \frac{1}{n} X^T \nabla L(s^0)$, with step-size sequences $\{\alpha_i\} \in (0, 1]$, $\{\eta_i\} \in (0, 1]$.

For iterations $i = 0, 1, \ldots$, do:

Solve I.o.o. subproblem: Compute $\tilde{\beta}^i \in \text{arg min}_\beta \left\{ (d^i)^T \beta + R(\beta) \right\}$

Choose random index: Choose $j_i \in \mathcal{U}[1, \ldots, n]$

Update s value: $s_{j_i}^{i+1} \leftarrow (1 - \eta_i)s_{j_i}^i + \eta_i(x_{j_i}^T \tilde{\beta}^i)$, and $s_{j}^{i+1} \leftarrow s_j$ for $j \neq j_i$

Update substitute gradient:
$$d^{i+1} = \frac{1}{n} X^T \nabla L(s^{i+1}) = d^i + \frac{1}{n} \left(\dot{l}_{j_i}(s_{j_i}^{i+1}) - \dot{l}_{j_i}(s_{j_i}^i) \right) x_{j_i}$$

Update primal variable: $\bar{\beta}^i \leftarrow (1 - \alpha_i)\bar{\beta}^{i-1} + \alpha_i \tilde{\beta}^i$

(Optional Accounting:) $w^{i+1} \leftarrow \nabla L(s^{i+1})$
Stochastic Generalized Frank-Wolfe Method with Substitute Gradient (SGFW)

Initialize with $\bar{\beta}^{-1} = 0$, $s^0 = 0$, and substitute gradient $d^0 = \frac{1}{n} X^T \nabla L(s^0)$, with step-size sequences $\{\alpha_i\} \in (0, 1]$, $\{\eta_i\} \in (0, 1]$. For iterations $i = 0, 1, \ldots$, do:

Solve l.o.o. subproblem: Compute $\tilde{\beta}^i \in \arg \min_{\beta} \left\{ (d^i)^T \beta + R(\beta) \right\}$

Choose random index: Choose $j_i \in \mathcal{U}[1, \ldots, n]$

Update s value:
$s_{j_i}^{i+1} \leftarrow (1 - \eta_i) s_{j_i}^i + \eta_i (x_{j_i}^T \tilde{\beta}^i)$, and $s_{j}^{i+1} \leftarrow s_{j}^{i}$ for $j \neq j_i$

Update substitute gradient:
$d^{i+1} = \frac{1}{n} X^T \nabla L(s^{i+1}) = d^i + \frac{1}{n} \left(\dot{l}_{j_i}(s_{j_i}^{i+1}) - \dot{l}_{j_i}(s_{j_i}^i) \right) x_{j_i}$

Update primal variable: $\bar{\beta}^i \leftarrow (1 - \alpha_i) \bar{\beta}^{i-1} + \alpha_i \tilde{\beta}^i$

(Optional Accounting:)
$w^{i+1} \leftarrow \nabla L(s^{i+1})$
Stochastic Generalized Frank-Wolfe Method with Substitute Gradient

Stochastic Generalized Frank-Wolfe with Substitute Gradient (SGFW)
Initiate with $\bar{\beta}^{-1} = 0$, $s^0 = 0$, and substitute gradient $d^0 = \frac{1}{n} X^T \nabla L(s^0)$, with step-size sequences $\{\alpha_i\} \in (0, 1]$, $\{\eta_i\} \in (0, 1]$.

For iterations $i = 0, 1, \ldots$, do:

Solve I.o.o. subproblem: Compute $\tilde{\beta}^i \in \arg \min_\beta \left\{ (d^i)^T \beta + R(\beta) \right\}$

Choose random index: Choose $j_i \in \mathcal{U}[1, \ldots, n]$

Update s value: $s^i_{j_i} \leftarrow (1 - \eta_i)s^i_{j_i} + \eta_i(x^T_{j_i} \tilde{\beta}^i)$, and $s^i_{j^*} \leftarrow s^i_{j^*}$ for $j \neq j_i$

Update substitute gradient: $d^{i+1} = \frac{1}{n} X^T \nabla L(s^{i+1}) = d^i + \frac{1}{n} \left(\hat{l}_{j_i}(s^i_{j_i}) - \hat{l}_{j_i}(s^i_{j^*}) \right) x_{j_i}$

Update primal variable: $\bar{\beta}^i \leftarrow (1 - \alpha_i) \bar{\beta}^{i-1} + \alpha_i \tilde{\beta}^i$

(Optional Accounting:) $w^{i+1} \leftarrow \nabla L(s^{i+1})$
Stochastic Generalized Frank-Wolfe Method with Substitute Gradient

Remarks

- SGFW takes place completely in the primal space

- We used two step-size sequences:
 - $\{\eta_i\}$ is used to update the s_{ji} values
 - $\{\alpha_i\}$ is used to update the $\bar{\beta}_i^j$ values
Randomized Dual Coordinate Mirror Descent

The Dual Problem

\[
\max_w D(w) := -R^* \left(-\frac{1}{n} X^T w \right) - \frac{1}{n} \sum_{j=1}^{n} l_j^*(w_j) .
\]

- \(D(w)\) may not be differentiable, but it is strongly convex.
- Let us define \(L^*(w) := \sum_{j=1}^{n} l_j^*(w_j)\) and
 \[
 \tilde{\beta}^i \in \arg \min_{\beta} \left\{ \left(\frac{1}{n} (w^i)^T X \beta + R(\beta) \right) \right\} ,
 \]
 then it turns out
 \[
 g^i := \frac{1}{n} \left(X \tilde{\beta}^i - \nabla L^*(w^i) \right) \in \partial D(w^i) .
 \]
- Therefore
 \[
 \tilde{g}^i \leftarrow \frac{1}{n} \left(x_{ji}^T \tilde{\beta}^i - l_j^*(w_{ji}^i) \right) e_{ji}
 \]
 is a coordinate of a subgradient of \(D(w)\) at \(w^i\).
Randomized Dual Coordinate Mirror Descent

Randomized Dual Coordinate Mirror Descent (RDCMD)

Define the prox function $h(w) := \frac{1}{n} \sum_{j=1}^{n} l_j^*(w_j)$. Initialize with $w^0 = \arg\min_w \frac{1}{n} \sum_{j=1}^{n} l_j^*(w_j)$ and step-size sequences $\{\alpha_i\} \in (0, 1]$ and $\{\eta_i\} \in (0, 1]$. (Optional: set $\bar{\beta}^{-1} = 0$.)

For iterations $i = 0, 1, \ldots$

Compute Randomized Coordinate of Subgradient of $D(\cdot)$ at w^i

Compute $\tilde{\beta}^i \in \arg\min_\beta \left\{ \left(\frac{1}{n}(w^i)^T X \beta + R(\beta) \right) \right\}$

Choose random index. Choose $j_i \in U[1, \ldots, n]$

Compute subgradient coordinate vector: $\tilde{g}^i \leftarrow \frac{1}{n} \left(x_{j_i}^T \tilde{\beta}^i - l_{j_i}^*(w_{j_i}^i) \right) e_{j_i}$

Update dual variable: Compute $w^{i+1} = \arg\min_w \left\{ \langle -\eta_i \tilde{g}^i, w - w^i \rangle + D_h(w, w^i) \right\}$

(Optional Accounting:) $\bar{\beta}^i \leftarrow (1 - \alpha_i) \bar{\beta}^{i-1} + \alpha_i \tilde{\beta}^i$.
Randomized Dual Coordinate Mirror Descent (RDCMD)

Define the prox function $h(w) := \frac{1}{n} \sum_{i=1}^{n} l_i^*(w_i)$. Initialize with $w^0 = \arg\min_w \frac{1}{n} \sum_{i=1}^{n} l_i^*(w_i)$ and step-size sequences $\{\alpha_i\} \in (0, 1]$ and $\{\eta_i\} \in (0, 1]$. (Optional: set $\tilde{\beta}^{-1} = 0$.)

For iterations $i = 0, 1, \ldots$

Compute Randomized Coordinate of Subgradient of $D(\cdot)$ at w^i

Compute $\tilde{\beta}^i \in \arg\min_{\beta} \left\{ \left(\frac{1}{n} (w^i)^T X \beta + R(\beta) \right) \right\}$

Choose random index. Choose $j_i \in U[1, \ldots, n]$

Compute subgradient coordinate vector: $\tilde{g}^i \leftarrow \frac{1}{n} \left(x_{j_i}^T \tilde{\beta}^i - i_{j_i}^* (w_{j_i}^i) \right) e_{j_i}$

Update dual variable: Compute $w^{i+1} = \arg\min_w \left\{ \langle -\eta_i \tilde{g}^i, w - w^i \rangle + D_h(w, w^i) \right\}$

Optional Accounting: $\tilde{\beta}^i \leftarrow (1 - \alpha_i) \tilde{\beta}^{i-1} + \alpha_i \tilde{\beta}^i$.
Randomized Dual Coordinate Mirror Descent (RDCMD)

Define the prox function $h(w) := \frac{1}{n} \sum_{i=1}^{n} l^*_i(w_i)$. Initialize with $w^0 = \arg \min_w \frac{1}{n} \sum_{i=1}^{n} l^*_i(w_i)$ and step-size sequences $\{\alpha_i\} \in (0, 1]$ and $\{\eta_i\} \in (0, 1]$. (Optional: set $\bar{\beta}^{-1} = 0$.)

For iterations $i = 0, 1, \ldots$

Compute Randomized Coordinate of Subgradient of $D(\cdot)$ at w^i

Compute $\tilde{\beta}^i \in \arg \min_\beta \left\{ \left(\frac{1}{n} (w^i)^T X \beta + R(\beta) \right) \right\}$

Choose random index. Choose $j_i \in U[1, \ldots, n]$

Compute subgradient coordinate vector: $\tilde{g}^i \leftarrow \frac{1}{n} \left(x_{j_i}^T \tilde{\beta}^i - l^*_i(w_{j_i}) \right) e_{j_i}$

Update dual variable: Compute $w^{i+1} = \arg \min_w \left\{ \langle -\eta_i \tilde{g}^i, w - w^i \rangle + D_h(w, w^i) \right\}$

(Optional Accounting:) $\bar{\beta}^i \leftarrow (1 - \alpha_i) \bar{\beta}^{i-1} + \alpha_i \tilde{\beta}^i$.
Randomized Dual Coordinate Mirror Descent (RDCMD)

Define the prox function \(h(w) := \frac{1}{n} \sum_{i=1}^{n} l_i^*(w_i) \). Initialize with \(w^0 = \arg \min_w \frac{1}{n} \sum_{i=1}^{n} l_i^*(w_i) \) and step-size sequences \(\{\alpha_i\} \in (0, 1] \) and \(\{\eta_i\} \in (0, 1] \). (Optional: set \(\bar{\beta}^{-1} = 0 \).)

For iterations \(i = 0, 1, \ldots \)

Compute Randomized Coordinate of Subgradient of \(D(\cdot) \) **at** \(w^i \)

Compute \(\tilde{\beta}^i \in \arg \min_{\beta} \left\{ \left(\frac{1}{n}(w^i)^T X \beta + R(\beta) \right) \right\} \)

Choose random index. Choose \(j_i \in U[1, \ldots, n] \)

Compute subgradient coordinate vector: \(\tilde{g}^i \leftarrow \frac{1}{n} \left(x_{j_i}^T \tilde{\beta}^i - j_i^*(w_{j_i}^i) \right) e_{j_i} \)

Update dual variable: Compute \(w^{i+1} = \arg \min_w \{ \langle -\eta_i \tilde{g}^i, w - w^i \rangle + D_h(w, w^i) \} \)

(Optional Accounting:) \(\tilde{\beta}^i \leftarrow (1 - \alpha_i) \tilde{\beta}^{i-1} + \alpha_i \tilde{\beta}^i. \)
Recall the Bregman Distance

\[D_h(w, w^i) := h(w) - h(w^i) - \langle \nabla h(w^i), w - w^i \rangle \]
Randomized Dual Coordinate Mirror Descent (RDCMD)

Define the prox function \(h(w) := \frac{1}{n} \sum_{i=1}^{n} l_i^*(w_i) \). Initialize with \(w^0 = \arg\min_w \frac{1}{n} \sum_{i=1}^{n} l_i^*(w_i) \) and step-size sequences \(\{\alpha_i\} \in (0, 1] \) and \(\{\eta_i\} \in (0, 1] \). (Optional: set \(\bar{\beta}^{-1} = 0 \).)

For iterations \(i = 0, 1, \ldots \)

Compute Randomized Coordinate of Subgradient of \(D(\cdot) \) **at** \(w^i \)

Compute \(\tilde{\beta}^i \in \arg\min_{\beta} \left\{ \left(\frac{1}{n} (w^i)^T X \beta + R(\beta) \right) \right\} \)

Choose random index. Choose \(j_i \in U[1, \ldots, n] \)

Compute subgradient coordinate vector: \(\tilde{g}^i \leftarrow \frac{1}{n} \left(x_{j_i}^T \tilde{\beta}^i - j_i^*(w_{j_i}^i) \right) e_{j_i} \)

Update dual variable: Compute

\[
 w^{i+1} = \arg\min_w \left\{ \langle -\eta_i \tilde{g}^i, w - w^i \rangle + D_h(w, w^i) \right\}
\]

(Optional Accounting:) \(\bar{\beta}^i \leftarrow (1 - \alpha_i) \bar{\beta}^{i-1} + \alpha_i \tilde{\beta}^i \).
Randomized Dual Coordinate Mirror Descent

Remarks

- RDCMD takes place completely in the dual space.

- We also used two step-size sequences:
 - \(\{\eta_i\} \) is used in the prox subproblem updates of \(w^i \)
 - \(\{\alpha_i\} \) is used in the optional accounting to update the \(\beta^i \) values
Equivalence Lemma

GSFW and RDCMD are equivalent as follows: the iterate sequence of either algorithm exactly corresponds to an iterate sequence of the other.

- In the deterministic case, [Bach 2015] showed that the Frank-Wolfe method for the primal problem is equivalent to mirror descent algorithm for the dual problem under some assumptions.
- This provides a new primal interpretation of a randomized dual coordinate descent type of algorithm first introduced in [Shalev-Shwartz, Zhang 2013].
Computational Guarantees
First, Some New Metrics

- Let
 \[M := \max_{\beta \in \text{dom} R(\cdot)} \max_{j=1, \ldots, n} \{ |x_j^T \beta| \}, \]
 then \(M < +\infty \) if \(\text{dom} R(\cdot) \) is bounded. Moreover, when \(\|x_j\| \) is bounded for any \(j \), \(M \) is independent of \(n \).

- Let \(\mathcal{W} \subset \mathbb{R}^n \) be the set of “optimal \(w \) responses” to values \(\beta \in \text{dom} R(\cdot) \) in the saddle-function \(\phi(\beta, w) \), namely:
 \[\mathcal{W} := \{ \hat{w} \in \mathbb{R}^n : \hat{w} \in \arg\max_w \phi(\hat{\beta}, w) \text{ for some } \hat{\beta} \in \text{dom} R(\cdot) \}. \]

- Let \(D_{\text{max}} \) be any upper bound on \(D_h(\hat{w}, w^0) \) as \(\hat{w} \) ranges over all values in \(\mathcal{W} \):
 \[D_h(\hat{w}, w^0) \leq D_{\text{max}} \text{ for all } \hat{w} \in \mathcal{W}. \]
An Upper Bound on D_{max}

Proposition: Upper bound on D_{max}

It holds that

$$D_{\text{max}} \leq \gamma M^2.$$

- However, a much smaller value of D_{max} can often be easily derived based on the structure of $l_j(\cdot)$. For example, in logistic regression we have simply that $D_{\text{max}} = \ln(2)$.
Convergence Guarantees when $R(\cdot)$ is not Strongly Convex

Theorem: Convergence Guarantees when $R(\cdot)$ is not Strongly Convex

Consider SGFW (or RDCMD) with step-size sequences $\alpha_i = \frac{2(2n+i)}{(i+1)(4n+i)}$ and $\eta_i = \frac{2n}{2n+i+1}$ for $i = 0, 1, \ldots$. Denote

$$\bar{w}^k = \frac{2}{(4n+k)(k+1)} \sum_{i=0}^{k} (2n+i)w^i.$$

It holds for all $k \geq 0$ that

$$\mathbb{E} \left[P(\bar{\beta}^k) - D(\bar{w}^k) \right] \leq \frac{8n\gamma M^2}{(4n+k)} + \frac{2n(2n-1)D_{\text{max}}}{(4n+k)(k+1)}.$$
Convergence Guarantees when $R(\cdot)$ is not Strongly Convex

Theorem: Convergence Guarantees when $R(\cdot)$ is not Strongly Convex

Consider SGFW (or RDCMD) with step-size sequences $\alpha_i = \frac{2(2n+i)}{(i+1)(4n+i)}$ and $\eta_i = \frac{2n}{2n+i+1}$ for $i = 0, 1, \ldots$. Denote

$$\bar{w}^k = \frac{2}{(4n+k)(k+1)} \sum_{i=0}^{k} (2n + i)w^i.$$

It holds for all $k \geq 0$ that

$$\mathbb{E} \left[P(\bar{\beta}^k) - D(\bar{w}^k) \right] \leq \frac{8n\gamma M^2}{(4n+k)} + \frac{2n(2n-1)D_{\max}}{(4n+k)(k+1)}.$$

We prove this theorem through the dual lens.
Randomized Dual Coordinate Mirror Descent (RDCMD)

Define the prox function $h(w) := \frac{1}{n} \sum_{i=1}^{n} l_i^*(w_i)$. Initialize with $w^0 = \arg\min_w \frac{1}{n} \sum_{i=1}^{n} l_i^*(w_i)$ and step-size sequences $\{\alpha_i\} \in (0, 1]$ and $\{\eta_i\} \in (0, 1]$. (Optional: set $\bar{\beta}^{-1} = 0$.)

For iterations $i = 0, 1, \ldots$

Compute Randomized Coordinate of Subgradient of $D(\cdot)$ at w^i

Compute $\tilde{\beta}^i \in \arg\min_{\beta} \left\{ \left(\frac{1}{n} (w^i)^T X \beta + R(\beta) \right) \right\}$

Choose random index. Choose $j_i \in U[1, \ldots, n]$

Compute subgradient coordinate vector: $\tilde{g}^i \leftarrow \frac{1}{n} \left(x_{j_i}^T \tilde{\beta}^i - l_{j_i}^*(w_{j_i}^i) \right) e_{j_i}$

Update dual variable: Compute $w^{i+1} = \arg\min_w \left\{ \langle -\eta_i \tilde{g}^i, w - w^i \rangle + D_h(w, w^i) \right\}$

(Optional Accounting:) $\bar{\beta}^i \leftarrow (1 - \alpha_i)\bar{\beta}^{i-1} + \alpha_i \tilde{\beta}^i$.

Review

SGFW and RDCM

Computational Guarantees

Contribution/Summary
Proof Technique: First-Order Methods (FOM) Naturally Reduce the Primal-Dual Gap Bound

- Previous work on dual coordinate methods need extra assumptions (such as $R(\cdot)$ is strongly convex) and extra mechanics to obtain primal certificates.

- However, first-order methods (stochastic or deterministic, accelerated or non-accelerated, mirror descent or dual averaging) should naturally reduce the primal-dual gap bound, and it is a matter of seeing where this is manifest.
Proof Technique: First-Order Methods (FOM) Naturally Minimize the Primal-Dual Gap Bound, continued

- In standard proof for FOM, one always ends up with

\[
D(w) - D(\bar{w}_k^k) \leq \sum_{i=0}^{k} \gamma_i (D(w) - D(w^i)) \leq \sum_{i=0}^{k} \gamma_i \langle g^i, w - w^i \rangle \leq \cdots .
\]

- Actually we have

\[
\sum_{i=0}^{k} \gamma_i \langle g^i, w - w^i \rangle = \sum_{i=0}^{k} \gamma_i \langle \nabla_w \phi(\bar{\beta}^i, w^i), w - w^i \rangle \geq \sum_{i=0}^{k} \gamma_i \left(\phi(\bar{\beta}^i, w) - D(w^i) \right) \geq \phi(\bar{\beta}^k, w) - D(\bar{w}^k) ,
\]

- Choosing \(w = \arg \min_w \phi(\bar{\beta}^k, w) \), the right-hand-side becomes \(P(\bar{\beta}^k) - D(\bar{w}^k) \).
There are many results on randomized coordinate descent types of methods for smooth optimization, but not for non-smooth optimization due to the lack of smoothness (used to upper-bound the function).

One can think of a randomized coordinate of a subgradient as an unbiased estimator of an exact subgradient (up to a scalar multiple). Recall that

$$\tilde{g}^i \leftarrow \frac{1}{n} \left(x_{ji}^T \tilde{\beta}^i - \bar{I}_{ji}^*(w_{ji}^i) \right) e_{ji},$$

whereby

$$n \cdot \mathbb{E}[\tilde{g}^i] = g^i \in \partial D(w^i).$$

We use the new analysis for stochastic mirror descent algorithm for non-smooth optimization in [Lu 2017].
Theorem: Convergence Guarantees when \(R(\cdot) \) is not Strongly Convex

Consider SGFW (or RDCMD) with step-size sequences \(\alpha_i = \frac{2(2n+i)}{(i+1)(4n+i)} \) and \(\eta_i = \frac{2n}{2n+i+1} \) for \(i = 0, 1, \ldots \). Denote

\[
\bar{w}^k = \frac{2}{(4n + k)(k + 1)} \sum_{i=0}^{k} (2n + i)w^i .
\]

It holds for all \(k \geq 0 \) that

\[
\mathbb{E} \left[P(\bar{\beta}^k) - D(\bar{w}^k) \right] \leq \frac{8n\gamma M^2}{(4n + k)} + \frac{2n(2n - 1)D_{\max}}{(4n + k)(k + 1)} .
\]

- We prove the theorem through the dual lens.
Relative Strong Convexity

Definition: Relative Strong Convexity [Lu, Freund, Nesterov 2018]

\[f(\cdot) \text{ is } \mu\text{-strongly convex relative to } h(\cdot) \text{ if for any } x, y, \text{ there is a scalar } \mu \text{ for which} \]
\[
 f(y) \geq f(x) + \langle \nabla f(x), y - x \rangle + \mu D_h(y, x).
\]

- This is a stronger definition than \(h(\cdot) \) is strongly convex with respect to a norm and \(f(\cdot) \) is strongly convex with respect to that norm.

- But it is only with this stronger definition that we have a linear convergence result for the mirror descent algorithm ([Lu, Freund, Nesterov 2018]), but see also [Hanzely and Richtarik 2018].
Coordinate-Wise Relative Smoothness

Definition: Coordinate-Wise Relative Smoothness (Adapted from [Hanzely and Richtarik 2018])

$f(\cdot)$ is coordinate-wise σ-smooth relative to a separable convex reference function $h(\cdot)$ if there is a scalar σ such that for any x, scalar t and coordinate j and $y = x + te_j$ we have

$$f(y) \leq f(x) + \langle \nabla f(x), y - x \rangle + \sigma D_h(y, x).$$
Convergence Guarantees when \(R(\cdot) \) is Strongly Convex

Theorem: Convergence Guarantees when \(R(\cdot) \) is Strongly Convex

Assume \(D(w) \) is \(\sigma \) coordinate-wise smooth relative to \(h(w) \). Consider the Randomized Dual Coordinate Mirror Descent method with step-size \(\eta_i = \frac{1}{\sigma} \) and \(\alpha_i = \frac{\sigma^i}{\sigma^{i+1} - (\sigma - 1/n)^{i+1}} \). Denote

\[
\bar{w}^k \leftarrow \frac{1}{\sum_{i=0}^{k} \left(\frac{n\sigma}{n\sigma - 1} \right)^i} \sum_{i=0}^{k} \left(\frac{n\sigma}{n\sigma - 1} \right)^i w^i,
\]

then we have

\[
\mathbb{E} \left[P(\bar{\beta}^k) - D(\bar{w}^k) \right] \leq \frac{D_{\text{max}}}{\left(1 + \frac{1}{n\sigma - 1}\right)^k - 1} \leq \frac{\gamma M^2}{\left(1 + \frac{1}{n\sigma - 1}\right)^k - 1}.
\]

A simpler (but looser) bound is simply

\[
\frac{D_h(x,x^0)}{\left(1 + \frac{1}{n\sigma - 1}\right)^k - 1} \leq n\sigma \left(1 - \frac{1}{n\sigma}\right)^k D_h(x,x^0).
\]
Convergence Guarantees when $R(\cdot)$ is Strongly Convex

Corollary

1. If $R(\cdot)$ is not separable, let $\sigma = \frac{\lambda_{\text{max}}(XX^T)}{n\mu\gamma} + 1$, then the Theorem implies

\[
\mathbb{E}[P(\bar{\beta}^k) - D(\bar{w}^k)] \leq \frac{M^2\lambda_{\text{max}}(XX^T)}{\mu} \left(1 - \frac{\lambda_{\text{max}}(XX^T)}{\mu\gamma}\right)^k.
\]

2. If $R(\cdot)$ is separable, let $\sigma = \frac{\max_j \|X_j\|_2^2}{n\mu\gamma} + 1$, then the Theorem implies

\[
\mathbb{E}[P(\bar{\beta}^k) - D(\bar{w}^k)] \leq \frac{M^2 \max_j \|X_j\|_2^2}{\mu} \left(1 - \frac{\max_j \|X_j\|_2^2}{\mu\gamma}\right)^k.
\]
Some Discussions/Extensions

- Both the algorithm and the analysis can be easily extended to the mini-batch setting.

- We can also generalize the algorithm and analysis to non-uniform sampling.

- When $R(\cdot)$ is strongly convex, we can also achieve accelerated linear convergence by utilizing the technique developed in [Lin, Lu, Xiao 2015].

- The unaccelerated version of [Lin, Lu, Xiao 2015] can be viewed as randomized dual coordinate mirror descent with the reference function $h(w) = \frac{1}{n} \sum_{j=1}^{n} l_j^*(w_j) + \frac{\lambda}{2} \|w\|^2$ for some λ, while we here use randomized dual coordinate mirror descent with reference function $h(w) = \frac{1}{n} \sum_{j=1}^{n} l_j^*(w_j)$.
Contribution/Summary:

- Stochastic Generalized Frank-Wolfe Method with Substitute Gradient
- Randomized Dual Coordinate Mirror Descent Algorithm
- Equivalence of SGFW and RDCMD, which leads to new primal interpretations of dual coordinate methods
- $O\left(\frac{1}{\varepsilon}\right)$ Stochastic Frank-Wolfe Method
- Linear convergence result when $R(\cdot)$ is strongly convex
- We show that these FOMs inherently reduce the primal-dual gap bound
- Computational guarantees for randomized coordinate descent for minimizing non-smooth functions
References

- Francis Bach, *Duality between subgradient and conditional gradient methods*
- Filip Hanzely and Peter Richtárik, *Fastest rates for stochastic mirror descent methods*
- Elad Hazan and Satyen Kale, *Projection-free online learning*
- Elad Hazan and Haipeng Luo, *Variance-reduced and projection-free stochastic optimization*
- Martin Jaggi, *Revisiting Frank-Wolfe: Projection-free sparse convex optimization*
- Guanghui Lan and Yi Zhou, *Conditional gradient sliding for convex optimization*
- Qihang Lin, Zhaosong Lu, and Lin Xiao, *An accelerated randomized proximal coordinate gradient method and its application to regularized empirical risk minimization*
- Haihao Lu, "relative-continuity" for non-lipschitz non-smooth convex optimization using stochastic (or deterministic) mirror descent
- Haihao Lu, Robert M Freund, and Yurii Nesterov, *Relatively smooth convex optimization by first-order methods, and applications*
- Zhaosong Lu and Lin Xiao, *On the complexity analysis of randomized block-coordinate descent methods*
- Yu Nesterov, *Efficiency of coordinate descent methods on huge-scale optimization problems*
- Peter Richtarik and Martin Takac, *Iteration complexity of randomized block-coordinate descent methods for minimizing a composite function*
- Shai Shalev-Shwartz and Tong Zhang, *Stochastic dual coordinate ascent methods for regularized loss minimization*
- Shai Shalev-Shwartz and Tong Zhang, *Accelerated proximal stochastic dual coordinate ascent for regularized loss minimization*