next up previous contents index
Next: 3. Differential Geometry of Up: 2. Differential Geometry of Previous: 2.3 Binormal vector and   Contents   Index


2.4 Frenet-Serret formulae

From (2.20) and (2.44), we found that
$\displaystyle {\bf t}' = \kappa {\bf n}\;,$     (2.53)
$\displaystyle {\bf b}' = -\tau {\bf n}\;.$     (2.54)

From these equations we deduce
$\displaystyle {\bf n}' = ({\bf b}\times {\bf t})' = {\bf b}'\times {\bf t} + {\...
...\times
(\kappa{\bf n}) = -\kappa {\bf t} + \tau {\bf b}\;. % Cho \nonumber \\
$     (2.55)

In matrix form we can express the differential equations as
$\displaystyle \begin{pmatrix}
{\bf t}' \\
{\bf n}' \\
{\bf b}'
\end{pmatrix}=...
...u& 0
\end{pmatrix}\begin{pmatrix}
{\bf t} \\
{\bf n}\\
{\bf b}
\end{pmatrix}.$     (2.56)

Thus, $ {\bf t}$ , $ {\bf n}$ , $ {\bf b}$ are completely determined by the curvature and torsion of the curve as a function of parameter $ s$ . The equations $ \kappa = \kappa(s)$ , $ \tau = \tau(s)$ are called intrinsic equations of the curve. The formulae (2.56) are known as the Frenet-Serret formulae and describe the motion of a moving trihedron ( $ {\bf t,\; n,\;
b} $ ) along the curve. From these $ {\bf t}$ , $ {\bf n}$ , $ {\bf b}$ the shape of the curve can be determined apart from a translation and rotation. For arbitrary speed curve the Frenet-Serret formulae are given by

$\displaystyle \begin{pmatrix}
\dot{\bf t} \\
\dot{\bf n} \\
\dot{\bf b}
\end{...
...u& 0
\end{pmatrix}\begin{pmatrix}
{\bf t} \\
{\bf n}\\
{\bf b}
\end{pmatrix},$     (2.57)

where $ v=\frac{ds}{dt}$ is the parametric speed.

Example 2.4.1 As shown in Example 2.3.1 the intrinsic equations of circular helix are given by $ \kappa(s)=\frac{a}{c^2}$ , $ \tau(s)=\frac{b}{c^2}$ , where $ c=\sqrt{a^2+ b^2}$ . In this example we derive the parametric equations of circular helix from these intrinsic equations. Substituting the intrinsic equations into the Frenet-Serret equations we obtain

$\displaystyle \frac{d{\bf t}}{ds}=\frac{a}{c^2}{\bf n},\;\;\;\;\;\;
\frac{d{\bf...
...\frac{b}{c^2}{\bf b},
\;\;\;\;\;\; \frac{d{\bf b}}{ds}=-\frac{b}{c^2}{\bf n}\;.$      

We first differentiate the first equation twice and the second equation once with respect to $ s$ , which yield


$\displaystyle \frac{d^2 \mathbf{t} }{ds^2} = \frac{a}{c^2} \frac{d \mathbf{n}}{...
...c{d^2{\bf n}}{ds^2}=-\frac{a}{c^2}\frac{d{\bf t}}{ds}-\frac{b^2}{c^4}{\bf n}\;,$      

where the third equation is used to replace $ \frac{d{\bf b}}{ds}$ . Eliminating $ {\bf n}$ , $ {\frac{d{\bf n}}{ds}}$ , $ {\frac{d^2{\bf n}}{ds^2}}$ and recognizing that $ \mathbf{t} = \frac{d \mathbf{r}}{ds} $ , we obtain the fourth order differential equation
$\displaystyle \frac{d^4 \mathbf{r} }{ds^4}+ \frac{1}{c^2}\frac{d^2 \mathbf{r}}{ds^2}=0\;.$      

The general solution to this differential equation is given by
$\displaystyle {\bf r}(s) = {\bf C}_1 + {\bf C}_2s + {\bf C}_3\cos\frac{s}{c} +
{\bf C}_4\sin\frac{s}{c}\;,$      

where $ {\bf C}_1$ , $ {\bf C}_2$ , $ {\bf C}_3$ and $ {\bf C}_4$ are the vector constants determined by the initial conditions. In this case we assume the following initial conditions
$\displaystyle {\bf r}(0)=(a, 0, 0)^T,\;\;\;\;\;\;{\bf
r}'(0)=\left(0,\frac{a}{c...
...c^2},0,0\right)^T,\;\;\;\;\;\;
{\bf r}'''(0)=\left(0,-\frac{a}{c^3},0\right)^T,$      

which yield
$\displaystyle {\bf C}_1=(0,0,0)^T,\;\;\;\;\;\; {\bf C}_2=\left(0,0,\frac{b}{c}\right)^T, {\bf
C}_3= (a,0,0)^T,\;\;\;\;\;\;{\bf C}_4=(0,a,0)^T\;,$      

thus, we have $ {\bf r}(s) = \left(a \cos \frac{s}{c}, a \sin
\frac{s}{c}, \frac{bs}{c}\right)^T$ .
next up previous contents index
Next: 3. Differential Geometry of Up: 2. Differential Geometry of Previous: 2.3 Binormal vector and   Contents   Index
December 2009