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The workforce planning problem of hiring, dismissing and promoting has been the perennial difficulty of HR,
management. To cope with uncertain attrition, we propose a new approach of finding a course of action that
safeguards against violating organizational target-meeting constraints such as productivity, budget, head-
count, dismissal threshold and managerial span of control. As such, this approach leads to a tractable conic
optimization model that minimizes a decision criterion that is inspired by Aumann and Serrano (2008)’s
index, for which its value can be associated with probabilistic and robustness guarantees in meeting con-
straints under uncertainty. Additionally, our model departs from the literature by considering employees’
time-in-grade, which is known to affect resignations, as a decision variable. In our formulation, decisions and
the uncertainty are related. To solve the model, we introduce the technique of pipeline invariance, which
yields an exact re-formulation that may be tractably solved. Computational performance of the model is
studied by running simulations on a real dataset of employees performing the same job function in the
Singapore Civil Service. Using our model, we are able to numerically illustrate insights into HR, such as the
consequences of a lack of organizational renewal. Our model is also likely the first numerical illustration that

lends weight to a time-based progression policy common to bureaucracies.

1. Introduction

Human Resource (HR) function has recently gained prominence. This is driven by the growing
practice of Strategic HR Management or Strategic Workforce Planning (Ulrich and Dulebohn 2015,
Buyens and De Vos 2001), where human capital is structured to achieve transformational goals of
the organization. Strategic Workforce Planning contrasts against traditional workforce planning;
the former, Ulrich et al. (2012) argue, is tied in with the strategic objectives of the organization.
While this is recognized as a nascent field, we are seeing in-depth surveys that stocktake on the
practice of Strategic Workforce planning, for example a study by KPMG surveyed 37 organization
in the UK with at least half having at least 10,000 employees'. We also see an offering of consul-
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tancy services for Strategic Workforce Planning®3%:5. These consultancies often provide data-driven
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workforce planning tools or methodologies®. All these point to ambitions to utilize data-driven
tools in linking workforce planning to business strategy, and the actual practice in industry.
While practitioners employ different Strategic Workforce Planning processes, there are often
three stages, as exemplified by the following description from a global management consultancy
firm, “Strategic Workforce Planning enables translation of business drivers into demand for skills
and capabilities, assesses expected supply within the organization and in the labor market to
anticipate gaps or overages, and identifies how to solve them through reskilling, hiring, and
redeployment”?. The process begins with identification of the organization’s strategic objectives
and value-add. As Gartner describes, “The first step in building an effective workforce plan is

"4, By squaring the demand for work-

understanding the organization’s business strategy and goals
force, i.e. the workforce resourcing required to support these strategic goals and objectives, against
the supply, i.e. the existing workforce in the organization, planners are able to identify critical areas
of gap to be filled. At this point, many practitioners adopt analytics tools to project the evolution
of the workforce into the future. Such tools can “provide organisations/companies with visibility
into their current workforce (the supply) and how the composition of this workforce is expected to
change over time as a result of workforce dynamics relating to employees joining, moving within
the organisation and leaving”®. Finally, strategies are devised to close this gap, such as hiring,
promotions, transfers, retraining, out-sourcing and co-sharing, to name a few.

Part of the allure of Strategic Workforce Planning lies in the promise that it adopts a data-
driven approach towards the construction of the workforce plan. This is evidenced by how HR
analytics has been introduced in almost every aspect of HR Management (Davenport et al. 2010).
Examples include attrition and flight risk, talent and pipeline management, recruitment analytics
and employee value proposition, under-performance risks, remuneration and benefits, real-time
employee engagement and sentiment analysis, learning and gamification in the workplace, team

performance and social networks, to name only a few.

Linking Data to Strategy

In practice, there are many challenges with executing a data-driven Strategic Workforce Planning
process. Most primarily, it is not straightforward to either determine the gaps in the workforce
that emerge over time, or to deduce the accurate response to close these gaps. For example, an
organization is looking new service, with targetted outcomes within 5 years. What is the required
workforce to support such a function? Should new officers be hired, or should the organization
redeploy and retrain its existing officers? Should more specialized workers or generalists that can
be flexibly deployed but have lower task-specific productivity be employed? Translating these

strategic goals, if they can even be described as productivity targets, into actual workforce figures is
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notoriously difficult amongst practitioners. Moreover, different HR interventions cannot be assessed
separately as it is their combination that affects employees and their behaviors. For example, an
employee’s career management can have downstream effects on their flight risk, under-performance
risk, engagement levels, etc. As such, one needs to plan for this basket of interventions and to
minimize the risk of them not articulating into eventual outcomes of individuals and organizational
units (Paul and Mitlacher 2008).

These challenges persist despite the bountiful data available on employees’ resignation patterns,
performance and learning records, and engagement indicators. This is because HR analytics con-
tinues to struggle to draw the link between human capital and organizational outcomes (Marler
and Boudreau 2017). While data abounds, Strategic Workforce Planning does not immediately
translate into an analysis frame that seamlessly integrates these data and secondary analyses into
trade-offs and risks at the organizational level. As such, organizational leaders have repeatedly
reported the use of data as one of the key hurdles in the Strategic Workforce Planning process®.

In this paper, we hope to make preliminary steps towards this overarching goal. In particular
we would like to concentrate on the topic of workforce planning — how should a business unit hire,
promote, and design its operational structure in order to achieve a targeted productivity level,
while constrained by budget, availability of workforce and managerial span of control? This is
not simple; the trade-offs between different HR decisions may not be at first glance apparent. For
example, the optimal staffing level across different competency bands could depend on both the
productivity targets that the organization aspires to meet and the expectation of employees on
promotion and remuneration.

More specifically, our goal is to propose a data-driven methodology for the Strategic Workforce
Planning process by attempting to address two key capacity planning questions:

1. Given productivity targets on various segments of the workforce, how should staffing levels,
i.e. the number of employees that is required within every job function and level, be decided,
while constrained by the budget and other operating constraints.

2. Over time, how many officers need to be hired and/or promoted in order to achieve these
staffing levels, while carefully managing for loss of employees through resignations that cannot
be controlled.

In contrast, we will not include in the scope of our problem, challenges pertaining to the execution
of the workforce plan. Specifically, we avoid questions on which employees to promote or hire or
fire. We are cognizant that these decisions often lie within the decision domain of HR practitioners
and that we should not readily encroach upon. These decisions depend on many other factors and
considerations that cannot reasonably be articulated, much less optimized. For example, a possible

consideration for recruitment would be the mix of skills and working styles that the new member
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would bring to the team. Such considerations will depend idiosyncratically on the managers and
how they envision operations to be run. Indeed, the HR practitioners that we have interacted with
for this project have also communicated that these decision should lie within their control, while

they are happy for the model to advise on the number of individuals to be promoted.

Literature Review

The workforce planning problem is not new. Davis et al. (2018) motivates the need for workforce
planning in both the context of service continuity and financial planning. Over the last half a
century or so, there have been various approaches, such as a simulation-based or systems dynamics
approach (to raise a few examples: Park et al. 2008, Chung et al. 2010), an econometric approach
(e.g. Roos et al. 1999, Sing et al. 2012), and finally, a mathematical programming approach, which
is the focus of this paper.

The most popular approach has been from the perspective of a Markov model. Bartholomew
et al. (1991) provides a broad overview. Various improvements over the years have incorporated
learning effects and productivity (e.g. Gans and Zhou 2002), inter-departmental flows (Song and
Huang 2008), and staff scheduling (such as Abernathy et al. 1973, Kim and Mehrotra 2015) just
to name a few extensions. The primary goal of the Markov model is to set up the transition
probabilities through the hierarchy and determine the two central questions of attainability (Is
it possible to transit from one organization of work to another?) and sustainability (What is the
minimum cost to do so?). As explained in Guerry and De Feyter (2012), attainability is not always
guaranteed. As such, additional conditions and approximate measures (such as fuzzy sets as in
Dimitriou et al. 2013) have been introduced. Many of these models also require the development
of a heuristic to obtain tractable solutions (as is the case in Gans and Zhou 2002).

At the broader level, some researchers have moved away from the Markov paradigm and
approached the problem via dynamic programming (as in Mehlmann 1980, Flynn 1981, Rao 1990).
In order to balance between competing organizational outcomes, some have adopted a goal pro-
gramming paradigm (Price and Piskor 1972, Georgiou and Tsantas 2002). In more modern lit-
erature, researchers have applied stochastic programming techniques supported by linearisations
and Bender’s decomposition as in Zhu and Sherali (2009), in order to tackle the computational
difficulties. A recent work by De Feyter et al. (2017) considers a multiple objective model to control
for costs and proximity to the desired organizational structure. Their approach, however, does not
consider promotions as part of the decision variables.

Nonetheless, these methods suffer from the curse of dimensionality, and become rapidly unscal-
able with the number of input variables. For example, in Zhu and Sherali’s case, the stochastic

model only solved three out of ten times in computational tests. In the age of data analytics, taking
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as input individual-level machine learning predictions of flight risk and performance risk would
very likely exceed the computational limits of these models. Often, the optimal organizational
structure or production model may also not be known (Valeva et al. 2017, designed a learning
model in the context of uncertain product demand). Moreover, while uncertainty in resignations,
which are known to fluctuate wildly, is accounted for in the Markov structure of the problems,
it is not immediately apparent how these models can be made robust to the wrong estimation of
resignation likelihood from the data.

Most critically, time spent by an employee in a grade (time-in-grade, for short) is often ignored,
though it is known to be a major contributing factor that shapes employee behavior, such as
resignations. Studies drawing the connection between resignations and time-in-organization or
time-in-grade are not in scarce supply (e.g. Iverson 1999, Kuwaiti et al. 2016). The data from our
partnering agency also illustrates the connection, and it is not a linear one. Understanding HR
decisions along the dimensions of time-in-grade is also an important problem (such as Senerdem
2001, and the subsequent literature). Incorporating them however poses challenges — the uncertainty
at each time period will depend on decisions made in the previous period. Hence, techniques to
deal with it are few and far in between.

One of the earliest attempts was by Bres et al. (1980), which presented a linear goal program-
ming model that decided on the number of promotions where time-in-organization was a factor.
Subsequently, Kalamatianou (1987) retained the Markov framework, by cutting up the population
of employees into those yet-to-be and those ready-to-be-promoted, and estimating the transition
probabilities based on the age distribution. Nonetheless, this did not directly address the inter-
dependence of decision and uncertainty and was a workaround. Finally, Nilakantan and Raghaven-
dra (2008) attempted a Markov model based on both time-in-grade and time-in-organization, but
only under strict assumptions. Unfortunately, they also stopped short of attainability.

We also make a quick note about the literature on learning curves (Shafer et al. 2001). In this
stream, a learning curve is assumed that describes the evolution of the productivity of employees
with time and then optimized under a productivity and cost model. As described by Nembhard
and Bentefouet (2012), non-linear formulations often arise out of optimization problems structured
around learning curves. These models may require heuristics or simplifications to solve. From a
different perspective, Arlotto et al. (2014) instead utilized an infinite-armed bandit model to under-
stand the trade-offs between productivity and the opportunity cost of retaining a poor performing
employee. We note the presence of such literature in learning curves, however, we seek to describe
productivity in a more general fashion and be able to consider decisions that relate promotion

decisions to time-in-grade in a tractable fashion.
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The above literature review identifies a few key gaps in the present literature. First, tractability
of present models is a key consideration. In the first place, attainability is not guaranteed in Markov
models. Moreover, many of the models we examined may only be solved under heuristics or only
for small instances. It is also not clear whether these heuristics provide guarantees on model perfor-
mance. As we move towards greater integration of predictive analytics with HR management where
large amounts of data is ingested by the model, such approaches will rapidly become untenable.
Second, these models cannot be fundamentally extended to take into consideration time-in-grade
without key technical innovations. This is despite the benefits of better accuracy resulting from
greater granularity in the decisions and resignations. This is because decisions and uncertainty
become intertwined. Attempts to model time-in-grade are also extremely limited.

This lack of computational tractability and modeling flexibility limits the ability of HR practi-
tioners to implement a recruitment and progression strategy based on time-in-grade. At its base,
there isn’t even conclusive numerical evidence in support of time-based progression, which is prac-
ticed across many bureaucracies. We aim to fill this gap in this paper.

To address these challenges, we propose to consider approaches based on robust optimization. In
workforce planning, robust optimization has traditionally been applied to staffing and scheduling
problems (e.g. Burke et al. 2004, Lusby et al. 2012, Yan et al. 2017). However, to the best of
our knowledge, we haven’t seen any literature on its application to strategic workforce capacity

planning.

Contributions

First and foremost, our model is a novel robust multi-period optimization framework that considers
time-in-grade as a second timescale. In particular, the uncertainty and decision space have a specific
inter-dependent structure, termed ‘pipeline invariance’. This improves on the literature because:
1. Its decision criterion is based on Aumann and Serrano (2008)’s index, for which its value can be
associated with probabilistic and robustness guarantees in meeting organizational constraints
under uncertainty. Specifically, it is able to handle distributional ambiguity in the estimation
of resignation probabilities.
2. It can be formulated as an exponential conic optimization problem, whose properties can be
exploited to be solved efficiently despite the inter-dependence of uncertainty and decisions.
3. It may be reasonably extended to incorporate data at the individualized level, which can take
as input the results from various predictive analytics models.
Second, we claim that our model provides a novel application in the domain of HR, by providing
a possible means to address the difficulties in Strategic Workforce Planning. Our model can be

applied within a variety of contexts and is customizable to different measures of productivity and
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organizational structure. As such, we can use our model to illustrate insights into HR, in particular,
giving quantitative substantiation for a time-based progression model and the ramifications of a
lack of organizational renewal. The model is utilized in the Singapore Civil Service.

Our work is also closely related to the literature on inventory models and service management.
Specifically, Gans and Zhou (2002) motivated their approach from the context of call centres and
explicitly drew the connections to inventory models in their paper; Fry et al. (2006) described their

workforce model as an adaptation of the newsvendor problem to a decision-dependent context.

Notation

Given N € N, let [N] represent {1,..., N} and denote [N], := {0} U[N]. Let Z§ be the non-negative
integers. We use bold-faced characters such as £ € RV to represent vectors, while z; denotes its
i-th element. The tilde sign denotes an uncertain or random parameter such as Z without explicitly
stating its probability distribution. We use the convention, log0 = max () = —oo and min () = co.We
shall use Ep[] to represent the expectation with respect to the reference distribution P over the
uncertainty across all time periods, unless otherwise stated. When the reference distribution is
unambiguous, P is dropped. Where unambiguous, sums are assumed to be over the entire range of

the indices.

Notes

[1] Workforce Strategy Audit Survey Report. Colin Beames. 2015. KPMG. Extracted
on Jan 4, 2021 from https://assets.kpmg/content/dam/kpmg/pdf/2015/08/
workforce-strategy—-audit-survey-report.pdf.

[2] Talent | Organization | McKinsey & Company. Extracted on Oct 5, 2020 from https://www.
mckinsey.com/business-functions/organization/how-we-help-clients/talent.

[3] Strategic Workforce Planning brochure by Mercer. Extracted on Oct 5, 2020
from https://www.mercer.com/content/dam/mercer/attachments/global/Talent/
Forecast-brochureStratWrkfcPlan.pdf.

[4] Strategic Workforce Planning page of Gartner. Extracted on Oct 5, 2020 from https://www.
gartner.com/en/human-resources/insights/workforce-planning.

[6] Strategic Workforce Planning brochure by Deloitte. Extracted on Oct 5, 2020
from the link https://www2.deloitte.com/content/dam/Deloitte/za/Documents/audit/za_
strategic_workforce_planning_012019.pdf, available off https://www2.deloitte.com/za/

en/pages/audit/solutions/strategic-workforce-planning.html.
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2. Workforce Planning under Uncertainty

Traditionally, the workforce planning problem is set up over a finite time horizon t € [Ty, where
t =" is the last time period to be considered. Often, the objective is to attain a known staffing
level. Employees are often split into different department, specializations or job roles. For now,
we assume that the employees belong to just one department or job role. The interested reader is
diverted to Appendix B for details on the general setting.

Let the stock (8);'" := ;" denote the number of employees at time ¢ € [T for all the times up to
the last planning time 7', having spent 7 € [M], years at grade [ € [L]. When ¢t =0, s\’ represents
the known initial data. Each employee in grade ! and having spent 7 years in the grade is paid
wage w; and generates a return of productivity of r]. The organizational structure is the hierarchy
of grades. Similar to existing literature, we categorize individual contributors into skills strata
1 € W:= L], where L is the highest skills stratum. These contributors are supervised by managers,
limited by the maximum number of employees they can manage, called the span of control ¢]. In
our model, managers occupy the higher grades | € M :={L+1,..., L}, where L is the highest grade
in the hierarchy. Promotion is the movement of employees between adjacent strata. For simplicity,
assume that promotion only occurs between adjacent grades and ignore complications, such as
transfers across departments (see Appendix B for details).

Employees may be lost through attrition. In the literature, attrition is often understood as a
rate — an annual proportion of stock S. Instead, we hope to model attrition as a random variable
depending on the decision variables, so as to capture the inter-dependence — employees who were
not promoted have a different chance of leaving compared to those who were. To do so, we need

the following assumption:

Assumption 1 a) Different employees make independent resignation decisions; and,
b) An employee’s probability of resignation depends solely on his/her grade and the time spent
in that grade.

Arguably, Assumption 1 is debatable on both counts. In practice, resignation decisions of different
employees might not be independent. For example, employees from the same department might
leave due to similar reasons, possibly even influencing each other to leave. Moreover, resignation
decisions by employees are also endogenous with the promotion decisions made; for example, it
is conceivable that if there are more employees promoted, there may be a perceived impression
that there are fewer opportunities for advancement amongst the remaining employees, which might
promote higher levels of resignation. In general, part (b) of the assumption would also not be true.
It is well known that resignation decisions depend on a wide range of factors both idiosyncratic to

the employee and shared across all employees, such as organizational culture.
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Despite these reasons, we have chosen to make this assumption for the reason that it does make
the formulation tractable, and additionally, there are some features that we can build into the
model that can alleviate the impact of this assumption. In the discussion after Proposition 1 later,
we will discuss how the definition of the uncertainty set will allow our model to be robust to the
independence assumption. Additionally, we also note that Assumption 1b) is already comparatively
relaxed compared to traditional Markov models that assume that the probability of resignation
depends solely on the grade.

For both of these assumptions, our model permits an additional modification that can mitigate or
reduce their impact. Specifically, our model allows us to group employees into categories ¢ € Z. This
would amount to adding an index ¢, that represents these groupings, to every state variable, decision
variable and uncertainty. The benefit of this is that Assumption 1 may be relaxed. For example,
suppose a clustering was first performed on the employee’s likelihood of resignation, using a wide
set of predictors and side information, including past evaluations, demographics, reporting lines
and even engagement scores. Then, Assumption 1b) would now read as “An employee’s probability
of resignation depends solely on his/her grade, the time spent in that grade and the cluster ¢ to
which they belong to”. As such, factors that we believe predict attrition and factors that might
lead to the lack of independence previously, can all be incorporated into the dataset. Based on this,
we can construct clusters ¢ and hence implicitly capture the effect of these factors in our model.

More of this is discussed in Appendix B.

Assumption 1 allows us to model the attrition process via the Binomial distribution, where
Bin(z, q) represents the number of successes under = number of trials, each with success probability
g > 0. In our case, x represents the stock before attrition and ¢ represents the chance an employee
stays within an organization till the next year (also called ‘retention’). Specifically, define ¢/ as
the probability that an employee that has spent 7 time in grade [ will voluntarily remain in the

organization till the next year.

HR Decisions

The workforce planner makes two types of decisions in this process, which articulate into the orga-
nizational structure. The first is the promotion of employees. Specifically, let pi"” € [0, 1] represent
the decision variable of the fraction of employees that have spent 7 years in grade [ at time
t > 1 to be retained in grade [. The remaining fraction 1 — pf’T forms both the promotees and those
dismissed.

As such, the Binomial model induces the following dynamics for all ¢t € [T],7 € [M] and [ € [L]:

57 ~Bin (5 "y T ). (1)
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The sequence of events is as follows: Amongst all of the employees 5, "', the planner makes the
decision to only retain 5/ "7 'p/~"7"! of them in this grade. Attrition then sets in, with each of

these employees experiencing a 1 — g/ chance of resigning.

The second type of decision to be made is the number of newcomers to each grade [. Notice that
sf’o represents the number of employees who have spent 0 years at grade [ at time ¢ > 1. This is
precisely the newcomers to grade [. Let this be a decision variable.

As such, we are able to determine the net inflow of employees into the organization at grade [
at time ¢. Denote this random variable by izf, and it is given by the following expression. Figure 1

illustrates how this expression is derived.

Bi=sil =Y (1) vie [T Vie L] (2

7./

New hires

N

Net inflow Newcomers
Dismissals < - — Grade [ +1

ht sho

T I+1 I4+1

- - Promotees & P 4]

LT =T — romotees
ZT: S (=p ) Dismissals

Removed Removed ‘

Grade [
ST T g

Figure 1 Flow balance amongst hiring, dismissal and promotion decisions

Consequently, whenever lNLf 4120, flf 41 new hires are made to replenish the stock. Otherwise,
—}N‘Lf 41 of employees removed from grade [ will be dismissed. As an illustration, suppose sffl =4
and 5 employees are to be removed from grade [. The interpretation is that out of all the employees
from grade [, HR is to choose 1 to be terminated and 4 to be promoted. In practice, HR can choose
to terminate the worst performing employee in that grade and promote the best 4, or use any other
metric they so desire. Observe that at the boundary, we have 3%11 =0 to denote the situation when

all employees removed from grade L will be dismissed.
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Target-Meeting Constraints

As we motivated in the Introduction, the organization plans for various target-meeting constraints
during the Strategic Workforce Planning process that must be satisfied. These constraints can be
affected by uncertain attrition. These include, inter alia, productivity, budget, headcount, dismissal
threshold and managerial span of control.

1. Productivity constraint : Y. 3;7r] > P,, Vt € [T).

LT

2. Headcount constraint: > 5" < H,, Vt € [T},

LT

3. Budget constraint: 3.5 w] < By, Vt € [T).

LT

4. Span of control constraint: For each | € M, let W, C [l — 1] be the employee grades supervised
by the manager. Then Y257 c] > > 347, Vi€ M, Vt € [T]. We can simplify this by letting

)\GW[
—cj if A=1
=11 if AeWw,
0 otherwise

then the constraint may simply be written as Y 5y7b], <0, Vt € [T],Vl € M.

A, T
5. Dismissal threshold constraint: —h!,, < FY,,, Vt € [T],VI € [L], meaning that no more than
F! | >0 employees ought to be dismissed. Equivalently, this is

Z~t 17'< tl7’>_$l+1<F1lt+1 (3)
Table 1 below describes all of the variables and parameters defined above in the model.

On Productivity Constraints

While we only consider a single form for the productivity constraint, the model permits the planner
to include as many productivity constraints as necessary; and they do not need to be in the same
units. The only restriction is that the constraints must be linear in 3]'7. This turns out to be
reasonably general — many measures of productivity can be described as such. We describe the
following examples:
1. Quantity / Quality of finished work: Suppose an employee having worked for 7 years at grade
[ can finish 7] pieces of work in an allocated time, then the total quantity of work completed
is S 7757. This is in the linear form required.
2. TinTle (or average time) to complete tasks: Again, if an employee having worked for 7 years

at grade [ takes u] to finish a task, then Zul r7507 is the total time taken to complete all

ujr] .
the tasks and —U" 5T g the average time to complete tasks. Hence, an average time
ZTTI gf T ! Y

T l 1
7_/
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Dimensions
T : Last modelling time
M . Largest possible years-in-grade
L : Largest possible grade

State and decision variables

3™ . Random variable of the number of employees having spent 7> 0 years at grade [ at time #

fzf : Random variable of the net inflow of employees into the organization at grade [ at time ¢

5% & Decision variable of the number of newcomers to grade [ at time ¢

py™ ¢ Decision variable of the proportion of employees having spent 7 > 0 years at grade [ to be retained at time ¢
Parameters

s¥7 . Current employees having spent 7 years at grade

g/ : Retention probability of an officer having spent 7 years in grade [

r]  : Productivity rate of having spent 7 years in grade [

P, : Productivity target to be achieved at time ¢

H, : Headcount target to be kept within at time ¢

w] : Wage of an officer having spent 7 years in grade [

B; : Budget target to be kept within at time ¢

Span of control of a manager having spent 7 years in grade /

Ff,

1 Target to keep the number of dismissed officers from grade [ within at time ¢

Table 1 List of Parameters and Variables

“Z—TZT ~t, T T ~t,T

constraint ) | —LL— 357 <U" has the equivalent expression ) (uj —U")r] 57 <0, which is in
T LA T
the linear fOI‘IITl/ as desired.

3. Less common forms of productivity can also be considered, e.g. chance of defective product.
Suppose it is necessary to keep the chance of a defective product under some bound €. Suppose
every employee has an independent probability 1 — jl(T) of creating a defective product. Then
the probability that no defective product is created amongst all the goods is [ | jlf)rm. Then
the constraint becomes 377 log(5\™)37 <log(1 — ¢€), which is in the desired foTrm.

In particular, measuring tﬁe quality and quantity of finished work could be a daunting task.
Assuming that a dataset of observed work quantities and employee demographics, containing time-
in-grade information, is given, one can, in the simplest case, take an average over all employees in
the same grade and having spent the same time in that grade, to obtain the curve r]. As this is
subjected to potential noise, an additional smoothing in form of a parametric regression could also
be performed. In the numerical simulations later, we shall see how this could be done. Once r] is
obtained, the productivity constraint > 773" > R* could be written.

-
A common approach to parametrically smooth the curve 7] is via learning curves, for example,

using the form that appears in Shafer et al. (2001). In learning curves, the productivity of the
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employee is assumed to vary with the amount of work experience, in other words, time-in-grade.
As such, learning curves are fully compatible with our model. Using the notation in our paper,

i=n () (4)

T+Uv+Y

where 7 is the accumulated experience, here in the context of our exposition, understood as the
time-in-grade, and 7;, v and v, are fitted parameters denoting the maximum asymptotic produc-
tivity that can be reached for that grade [, contribution from prior experience, and a learning rate
term idiosyncratic to the grade [ respectively. Similar to the previous case, once the parametric
learning curve model is obtained, one simply needs to iterate over discrete times-in-grade 7 € [M],
to obtain the vector 7] to compose the productivity constraint Zr[éf > R'. We present a simple
case study in Appendix B.1 to illustrate specifically how this is Tdone on a synthetic dataset.

Recently, it has been increasingly popular to use wider sets of employee data to predict employee
performance. With the addition of an index ¢ to represent employee clusters, our model is able to
remain compatible with such data-driven predictive analytics methodologies. More is discussed in
Appendix B.

The above approach assumes the expected productivity rate on each employee. More generally,
it is also possible to model productivity of individual officers as being independently and identically

drawn from a productivity distribution. In this case, we phrase the productivity constraints as
ZFZT (g;,‘l') Z Pt7 (5)
LT

where 77 (s), representing the total random productivity contributions by s employees, each with
a random i.i.d. productivity rate of rJ;, is defined as

7 (s):= Z ;-

1€[s]
Decision Criterion

In the literature, one might minimize the costs of maintaining a workforce, maximize the total
productivity of employees, or deal with these multiple objectives in the goal programming sense
(for example in Price and Piskor 1972). However, it could be difficult to prescribe the trade-offs
between costs and productivity (e.g. for a maintenance crew), say in goal programming.

It may also be appropriate in some business contexts neither to maximize output nor minimize
operating costs, but to run the least risk of disruption, such as a service centre. Without a clear
objective function, we instead pursue an optimization model which minimizes this risk. It sounds

tempting to minimize the joint probability of constraint violation similar to the P-model proposed
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by Charnes and Cooper (1963), which, often and in particular in this case, has intractable formu-
lations. In fact, our goal doesn’t necessitate the minimization of the chance of constraint violation
per se. Instead, we simply desire a policy that does not fare too poorly, in other words, a course of
action with some guarantees over the risks of violation.

Aumann and Serrano (2008)’s index has this functionality. Let Z be the set of all random
variables on our probability space (€2, X,P). Define the Aumann and Serrano (2008)’s index as the
functional p: Z — R} U{occ}:

p[Z] =inf{k>0:Cy[2] <0}, (6)

in terms of the certainty equivalence

klog <E[exp (z/k)D if k>0
Crlzl:=1 g3 if k= o0
esssup z if k=0.

Here, Z represents the size of the violation — a positive number constitutes a violation and vice

versa. The exponential disutility penalizes ever larger violations.

Proposition 1 The Aumann and Serrano (2008)’s index obeys the following properties:
1. Satisficing: p[z] =0 if and only if P[2<0]=1.
2. Infeasibility: If E[Z] >0, then p[Z] = cc.
3. Convexity: 1 is convex in Z.
4

. Probabilistic Guarantees: For u[Z] >0 and ¢ >0,

Pz > ¢] <exp(—¢/pl2]).

5. Robustness Guarantees: For any probability measure Q absolutely continuous in P and Q # P,

Eo[?] 5
DGl ="

where D(Q||P) is the Kullback-Leibler divergence of Q from the reference distribution P.

Proof. The first four properties are well established (see, for instance, Brown and Sim 2008).
The last property arises from the dual representation of the certainty equivalence relating to the

Kullback-Leibler (KL) divergence (see, for example, Lim and Shanthikumar 2007) given by

Cil2] = Sup {Eq[2] — KD(QIIP))} - (7)

O
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The first property states that there is no risk if there is no chance of violation. The second dictates
that if violations are always expected, then the risk is always infinite. The third requires convexity
and the fourth is our desired guarantee against constraint violation, which is the consequence of
Markov’s inequality. Hence u[Z] captures the notion of risk — the lower p[Z] is, the sharper the
guarantee against ever larger violations ¢ of the constraint. The last property connects the index
with the notion of robust optimization. It implies that even if the true probability distribution
were to deviate from P, the worst case expectation of the underlying random variable, normalized
by its KL divergence from the reference distribution is bounded below by the index. Intuitively, a
lower index is associated with higher tolerance of distributional ambiguity against the impact of
constraint violation.

Robustness is critical — any model would naturally be sensitive to the specification of the attri-
tion estimates ¢/. In reality, estimating ¢/ from the data could be subject to large errors (see
Figure 3 later). These errors would arise from a few sources. First, there could be factors affecting
resignations that vary over the time span of the dataset, for example, the outlook of the economic
sector the business belongs to. Second, by considering the additional dimension of time-in-grade,
a greater number of data points is required to achieve the same error per estimate. These errors
cannot be fully eradicated even after parsing the estimates through a smoothing model (be it, a
loess regression, such as in Figure 5, or a survival-based model). Without Proposition 1, the model
would suffer from similar model misspecification errors as experienced by assuming the probability
distributions in other stochastic programming approaches in the literature.

Moreover, the robustness guarantee property does also mitigate the independence assumption
(Assumption 1) to some extent. In this case, the reference distribution P would be the assumed
empirical distribution, and that which we have assumed to be independent across employees. Sup-
pose that the true distribution Q was indeed dependent, but with marginals that are identical to
P. The Kullback-Leibler divergence is known to capture this difference (D(Q||P) > D(Qx||Px) +
D(Qy]|Py), if P=PxPy is independent, with equality if and only if Q = Q+Qy is independent, i.e.
the sum of KL-divergences over the marginal distributions is less than the KL-divergence over the
full distributions, which is a consequence of the properties of Shannon entropy, Shannon 1948).
Hence, by being robust over the set of all distributions that are within some radius in terms of
the KL divergence distance from the reference distribution, the model also encompasses dependent
distributions that are not too far away from the reference distribution. In other words, the opti-
mal solution obtained would provide a lower bound in terms of the performance to any solution
obtained using any of these distributions.

While it might have been possible to pick an uncertainty set that does not require the assump-

tion of independence, for example, a moment uncertainty set (such as one that defines the mean



Jaillet et al.: Strategic Workforce Planning under Uncertainty

16 Operations Research

and variance on the number of employees who resigned), however, it would be difficult to define
a tractable formulation. In particular, it would be difficult to decouple the effects of our deci-
sions (promotions) from the definition of the uncertainty set itself (the mean number of resigning
employees), or to deal with the multi-period and sequential decision nature of the problem. Our
model, by assuming independence, allows us to decompose these two components after some careful
re-formulation. In contrast, we have paid a small cost in exchange for this tractability, because the
robustness property of the model alleviates having confined ourselves to independent distributions.

Aumann and Serrano (2008)’s index fits well to our multi-objective setting where we have to
assess the combined risk of violating any of the operational constraints. Specifically, given a set
of linear constraints, {Z; < G;,j € J}, we evaluate the combined risk under uncertainty via the

following decision criterion,

* jj_Gj . > . .',i'j—Gj < .
M—r;le%}({u[ej ]}—mf{k_o.ck[ej }_OVJEJ, (8)

which picks the value of p[-] arising from the worst performing constraint j. This criterion gives
rise to the probabilistic guarantees,
5 — G
P2y ] <emlco) Voo,
J

and robustness guarantees,

Eo[2, -Gy /0; _ .
p@E) "

for all constraints, j € J, as a result of Proposition 1.

vQ,

Across constraints, 6; > 0 are the normalization parameters that calibrate the uncertainty aver-
sion of violating each constraint, for example, say to emphasize that the budget constraint is more
critical than the headcount, or across time, such as a stronger aversion to earlier time violation
than in the future as with discounting. In practice, the constraint would be normalized by the
target, for instance, 6; = |G;| and hence, violations are understood as proportional to the target

G, making it comparable across different constraints and across different units of measurement.

Model Formulation

We now state our proposed Strategic Workforce Planning under Uncertainty (SWPU) model,

arising from (8):

inf k 9)

1
91< §f’T—Ht)] <0 vt e [T
t LT
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ENES
Ck 97752 (Z:SZ57 wy; _Bt> SO

LT

1 e

1 s

[P

<0

[ 1 ~t—1,7—1 t—1,7—1 t,0
Ck 0 ( 5 (1 -p ) S Flt+1
6\ 5

k>0,5">0,579,=0,0<p;" <1

vt e [T

Vt e [T]

vt € [T],vl € M

vt e [T],Vi € [L]

vVt e [T],Vl € [L],VT € [M]

where the random variables have the decision dependent marginal distributions presented in (1).

Note that it is not immediately clear whether we can formulate Problem (9) as a tractable opti-

mization problem, since the problem is not convex in the decision variables even if k is fixed.

3. Tractable Conic Optimization Model

To convexify Problem (9), we perform a change of variables to obtain the following formulation.

inf &k

s.t. Ck

1 T
Cy 9—? (Zsf w; —Bt>

C

Ck

<0

[ 1 ~t—1,7— t,T
Cr | g5 (Z ST = ) —Ff+1>
t,0

T

t,0 t, t—1,7—1 40, 0,
k>0,d%, =0,0<d ™ <d T a0 = 0

where the underlying random variables have the following dynamics

t
d;"

—1—1> i
d ="

~t : ~t—1,7—1
5" ~ Bin (Sz 7

(10)

Vt e [T]

vt e [T

vt e [T]

vt € [T],vl € M

Vt e [T],VI € [L]

Vt e [T],Vl € [L],VT € [M]

T) Vt e [T],VY1 € [M],Vl e [L]. (11)

We use the convention that dzt’T/d’lf*“*1 =0 whenever df_l’T_l = 0. We call the optimal k*, the risk

level associated with this specification of constraints.
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Proposition 2 Models (9) and (10) are equivalent. In particular, given an optimal solution to

t,0 __ dt,O

Problem (10), we can obtain the the corresponding solution to Problem (9) by letting s, o)

t—17—1 _ gt gt—l7—1 g t—17—1 t,
and p; T =d;7/d;T T, with p T =0 whenever d;7 =0.

Proof. Consider the feasible solution in Problem (9), as d;, = s, and d);, = 5,7, we let

t,r _ t—1,7—1 ;t—1,7—1
" =p d

for all t € [T],1 € [L],7 € [M]. Observe from (1), whenever p, """ =0, then §f+t/’7+tl =0 almost
surely for all ¢ > 0. (11) indicates that this is also true for the decision dependent random variables
in Problem (10). Therefore, the solution would also be feasible in Problem (10). Conversely, consider
a feasible solution in Problem (10), and let 5,7, = d;, and p, "7 ' =d;7 /d; " withp, 71 =0

whenever d] "7 ~' = 0. By inspection, this solution would be feasible in Problem (9). O

The decision variable df’T has the convenient interpretation that it is the number of employees

that have stayed for 7 years in grade [ in the absence of any attrition:

Proposition 3 For all t € [T],l € [L],T € [M], we have that d;” =esssup ;" =E[5,7] /7] where
=114

telr]

Proof. The results follows easily from (11). O

Hence, under Proposition 3, the feasible set of Problem (10) is a polyhedron whenever k =
0 or kK =o00. To obtain non-trivial solutions, we assume that the constraints are such that k €
(0,00), that is, there does not exist a solution that satisfies all constraints with certainty, and
that there exists a solution such that all the constraints can be met in expectation. Organizations
operating in the former regime are overly nonchalant in setting targets, while those operating in
the latter are deemed unrealistic. Subsequently, we will show that for a given k£ > 0, the feasible
set of Problem (10) is convex in d. As we have explained, quite apart from other approaches,
the decision criterion based on the Aumann and Serrano (2008)’s index, which is associated with
robustness guarantees, permits modest divergence from the above assumptions while ensuring the

organizational constraints are satisfied as well as possible under distributional ambiguity.

Pipeline Invariance

This model turns out to be tractable. We first notice a useful property about the dynamics we

have defined:
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Property 1 (Pipeline Invariance) Let g € (0,1) be fized. Let §(x) ~ Bin(x,q) be a family of
Binomial-distributed random variables with parameter x € X C ZF. We say that they are pipeline
invariant when

E [exp(y3(z))] =exp (z- p(y)),Vz € X,Vy €R, (12)

and p(-), which we call the relay function, is given by the expression,

p(y) =log (1 —q+qe’). (13)

Pipeline invariance preserves the exponential functional form under the action of taking expecta-
tions. It turns out that pipeline invariance is satisfied by distributions other than the Binomial,
such as the Poisson random variable Pois(x) with rate parameter z, or the Chi-squared distribution
x2(df) with degrees of freedom df. Moreover, their relay functions are convex over the domain.

As the consequence of pipeline invariance, the constraints in (10) have convex reformulations.

THEOREM 1 (Pipeline Reformulation). If integrality of 5 is relazed, then for any y € R,
Cy [y5)7] = inf ke (14)
st Aol (y/k) <&
A G R
where p] (y) :=log(1 —qf +q]e).
Proof of Theorem 1. We present the proof in Appendix A. O

REMARK 1. Relaxing integrality of § is common in the literature (for example, it also appears in
Gans and Zhou 2002). When integrality is relaxed, the random variable Z ~ Bin(z, ¢) is understood
as being defined by the corresponding moment generating function Elexp(2t)] = ((1 — ¢) + gexp(t))”
and that esssup Z = x. When z is large, integrality is less a concern — inaccuracies arising from the

approximation are minimal.

REMARK 2. The constraints in Problem (14) have the form
dlog(1 —gq+qe’’) <¢

when it is defined on d > 0. At d =0, observe that lﬁgdbg(l — q+ ge/?) = max{0,(}, and the
constraint should interpreted as ( <&,0< ¢ at d=0.

Proposition 4 (Independence of Pipelines) Under Assumption 1, any two state variables

t, T

~ ~t 7! . . . .- ..
57 and 8,7, L #1' and T # 7' in the same time t are independent, conditional on decisions

{df/’T :te[T),Te [M]O} in the previous time periods t' <t.
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Proof. We relegate the proof to Appendix A. O

REMARK 3. a. Notice that this result does not require independence across modelling time t.
This is neither true in general, nor required in Theorem 2.
b. Assumption 1 alone is insufficient for this proposition. The specific definition of df’o as a

decision variable is required.

Theorem 1 depends on the repeated application of pipeline invariance. The idea is that the
functional form exp(-) is preserved within the expectation, hence enabling us to evaluate Elexp(-)]
repeatedly over time. In this process, it creates a nested series of relay functions p, which being
convex, can be represented as auxiliary variables &£ in epigraph form. This is illustrative of the

concept of pipelines, which the stock in each grade [ is aligned in:

0,0 _ .00 z1,1 £2,2

P ={s,8",5"7,...}
01 _ ;.01 212 23

P = {s",8"7,5",...}

1,0 1,0 ~2,1 ~3,2
Pl _{Sl 781 781 7}

2,0 ;.20 =3,1 ~4,2
P ={s",8",8"",...

—

An employee belonging to a particular pipeline remains in the same pipeline across time. Attrition
erodes the stock in the pipelines over time and promotion re-distributes across pipelines. Such
an interpretation also explains why the independence result in Proposition 4 works — each state
variable is a stochastic function of its predecessor in its pipeline, that is retraced to its ancestor
which is either an initial condition or a decision variable.

The following results illustrate that considering individual variations in productivity as in (5)

can be accepted under the model formulation (10).

Proposition 5 The general productivity constraints in (5), where individual variations in produc-
tivity is considered, Cy, [913 <Pt —>77 (557))] <0, has the equivalent form as a normal productiv-
t LT

1ty constraint,

C

1 e
o (Pt—;sf’ 7] (k))] <0,

r-ensa(elon (1)

where
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Proof of Proposition 5. By Proposition 4, 7] (5;7) are independent random variables for differ-

ent grade [, and time-in-grade 7. As such, we have

o <Pt Z ~”> =P,/0; = Cy [F] (57) /67] .

Cy, [77 (5]7) /6}] = klogE |exp | > ro8
t

~t, 7

i€[5"]

’FT gt,T
= klogE [exp (92%10% (E {exp <k03>] 91%))]
= Ci [r] (k)57 /0],

and hence the results follows. O

Observe that

THEOREM 2. If integrality of & is relazed, then constraints of the form,

<Z §hTuT — Ut) /9] <0 (15)

may be reformulated as the convex set of constraints

Zsto O—I—kr Z f +kZ£l17T7t+1§Ut (16)

Ck

1<t<t TZZt
407 (v o) < €7 vre M)
dtrT<t+1T+1// ><§ Vt/E[t—l],TG[M—t—Ft/]

Proof. Independence as a result of Proposition 4 allows the sum to be taken out of the certainty

equivalence operator Cy[-], which can be evaluated using Theorem 1. ]

The remaining challenging is to deal with the dismissal threshold constraint. Thankfully,

Proposition 6 (Re-distribution Constraint) Under the same assumptions as Theorem 2, for

1,71 d T —dp” £,0 ¢
81 — et G R | /01 <0 (17)
- 1

is equivalent to the set of equations

A7 —d kY kY &< R+ dY,

1<t/ <t T>t—1

fixed 1, the constraint

Cr

t—1,7 t,7+1
d}f—l,T T (dl kedt le ) < é-t 1,7 vT c [M] (18)
1
Y g/ +LTH y
g () sgt wep-dre -4
1

Proof. The proof is similar to the proof of Theorem 2; as such, it is omitted. Again, note that

for fixed k, the problem remains convex. O
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3.1. Solving the Model

To solve the Strategic Workforce Planning under Uncertainty model, one can perform bisection
search on k. For a fixed k, the feasible set of Problem (10) can be expressed as a conic optimization

problem involving exponential cones.

Proposition 7 The constraint of the form

dlog(l —q+qe¥/?) <& ifd>0
(<E,0<¢ ifd=0

1 equivalent to the following constraints

(1-qy +ay2<d
<y27d7< - g) € ,CEa

for some y1,y» € R, where the exponential cone is defined as
Kg:={(z1,29,23) : x4 >x2exp (x3/22), 22} U{(21,0,25 : x4 >0,253 <0}.
Proof. For d >0, the nonlinear constraint can be expressed as

(1 —q)dexp(—¢/d) +qdexp(C —&/d) <d

or equivalently as

(1-q)y +ay <d

dexp(=¢/d) <y

dexp(C—¢&/d) <y»
for some 1,y € R. We can also check that when d =0, the constraints of (19) requires y; =y, =0
and £>0,£—(>0. 0

It is well known that exponential cones constraints can be approximated with a series of second-

order cones (see for example Ben-Tal and A. 2001). More recently, there have also been advances
in the efficient computation of exponential cones, especially using interior point methods. A com-
mercial solver, MOSEK ApS (2019) is among the first to include support for exponential cones.
Solvers are already available in MATLAB (CVX Research 2012) and also in Julia/JuMP (e.g. Miles
et al. 2016), extending to MICPs. Our model does not compromise tractability — the number of
constraints does not grow exponentially with time horizon T, or any of the other parameters, such
as grades L or maximum time-in-grade M. Indeed, in Theorem 1, for each t € [T], the number
of exponential cone constraints required to reformulate one linear constraint is of order O(LMT).

Hence, in total, O(LMT?) exponential cone constraints are required.
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Cutting Plane Approach

Even in the absence of nonlinear solvers, we can use the cutting plane approach to solve the conic
optimization problem. This approach has the advantage of keeping the model linear, which has
the benefit of having greater availability of solvers and incorporating discrete decision variables. In
fact, we use this approach to compute the solutions.

We observe that for ¢ € [0,1], the function §(d,(¢) := dlog(1l — q + ge*/?) is jointly convex and
differentiable on d > 0, hence for all d >0 and ¢ € R. Hence, we can replace the nonlinear function

by a maximum of an infinite set of affine functions,

6(d, () = d?ﬁfg {0(do, Co) + 991 (do, Go)(d — do) + 2(do, o) (¢ — o) }

where 06; and 04, respectively denotes the partial derivatives of §, with respect to its first and
second argument. These affine functions can be introduced on the fly in a standard cutting plane
implementation. This approach works surprisingly well in our computational studies. Observe that
d(d,¢) ~ dlog(1 — q) as ¢ = —oo and §(d,() ~ ¢ + dlogq as ( — oo. As such, the behavior of
dlog(1 — g+ ge¥/?) < £ is asymptotically linear with respect to ¢, alluding to why the cutting plane
method works well in practice.

Lastly, we comment that one can adapt the model, by using a different k; for each constraint,
indexed in a set j € J and then performing a lexicographic minimization on k := (k;),;cs (see
Waltz 1967, on how to execute this procedure). This methodology may be employed if the decision-
maker is agnostic to the relative risk aversions of each constraint and would prefer the strongest
performance achievable. In this paper, we hope to use 6, to control the tightness of each constraint
and to gather insights from how the cost of greater risk aversion in one constraint would affect
other constraints. As such, we do not perform the lexicographic minimization in this paper. We
shall see this at work later when we examine the flexibility of public sector agencies in dismissing

employees in §4.

4. Strategic Workforce Planning in a Firm

In this section, we illustrate the Strategic Workforce Planning under Uncertainty model using real
data of > 5,000 employees in the Singapore Civil Service, who can be safely assumed to have similar
job characteristics and backgrounds, tracked over 6 years. This data is collected periodically at the
individualized level, and for this illustration, we are able to summarize it into the form of the inputs
for our model. This includes their attrition, performance and wage patterns — personnel data that
is similarly collected by most large organizations. Due to confidentiality, we are unable to reveal

more about the nature of the data, though in the subsequent description, we will illustrate some
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features as far as we are able to share. In this illustration, we shall look at a 5-year time window,
T=>5.

We model L =4 grades in this organization, two ‘individual contributor’ grades labelled I1C1
and IC2, which generate a large part of the productivity, and two manager grades, denoted M1
and M2. Progression occurs in this order and skipping of grades is disallowed. We truncate the
maximum number of years that an employee may remain in any grade to M = 20, where thereafter
the employee is assumed to have retired. At each grade [, we assume that employees are paid a
base wage w; with an annual fixed increment ¢;. Hence, w] = w; 4+ 7¢;. The parameters w; and ¢
were statistically estimated from wage data by means of a linear regression, and rounded. Due to
its sensitivity, we are unable to disclose these estimates.

To prescribe the productivity curve of the employees, we directly obtained the average produc-
tivity curve from the data itself. Specifically, we grouped employees into each grade and (discrete)
time-in-grade and then averaged their performances to obtain r] across time-in-grade. In this
study, the performance data is measured as a composite of both quality and quantity of work done
by the employee. It is ranked and also scaled and normalized across the entire workforce in the
organization. Figure 2 shows the mean productivity by years-in-grade, as obtained from the data.
It rises with more years-in-grade, a reflection of the accumulation of experience, before dipping
with increasing employee boredom and disengagement. Manager span of control is also computed

similarly.

Figure 2  Profile of Performance with Time-in-Grade

Performance Profile with Years-in-grade
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Retention rates ¢/ were estimated from the data. Figure 3 illustrates the estimates. Where the

data was sparse, fluctuations were severe. Nonetheless, Proposition 1 provides the guarantee that
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Figure 3  Retention Rates with Time-in-Grade
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Table 2 Specification of Constraints
Constraint | Equation Target Specification
Headcount > s?’T <H, |H;=g4! H, ghn=g
l,T
Budget | > s w] < B: | Bi=g;Bo g=9
LT
Productivity | Y>s/"rT > R, | R, = gyRo | 9p=141.05(g—1)
LT

even if we were to wrongly estimate the retention rates, we are still robust as long as the true
distribution is not far off from our estimate. Later, when analyzing the robustness of the model,
we shall explore this further.

Finally, we specify the constraint targets. From here on, the targets shall always be fixed as a
geometric rate of growth g from the initial state at time ¢ = 0. We vary these rates of growth in
different simulations. Table 2 summarizes this. We also require that the productivity target grows
at a slightly faster rate than the headcount and budget targets. We set F} =0, that is, that zero
dismissals is preferred.

Because the certainty equivalence C}, is not scale invariant, we normalized all constraints so as
to ensure equitable comparisons (without having to calibrate 6; separately for each constraint). In
other words, the model penalizes the proportional violation of targets equally across constraints.

With this specification, the model seeks to minimize the risk level, k. It returns k, in addition to
optimal solutions for the decision variables of newcomers sf’o (from which we compute net inflow
h!) and promotion d;”". To simulate the uncertainty and test the model, for each analysis, we
ran 1,000 simulations with the random outcomes of employees’ retention drawn from a binomial

distribution of estimated retention rates, g/, as the success probability.
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The model was solved using the cutting-plane algorithm as detailed in Algorithm 1. Because
of the asymptotically linear structure of the conic constraints, the algorithm reaches within high
accuracy very quickly. In computational tests, the model always solves within 5 minutes on an
Intel® i7-6650U dual-core processor, with the worst constraint requiring no more than 7 cutting

planes to get within 10~° accuracy of estimating the constraint.

Robustness

We first examine the robustness properties of the model. By design, the model provides guarantees
against constraint violation. To illustrate this, we compare our model against a deterministic model.
The deterministic model is not intended as a comparative benchmark to ascertain the strength
of our model. Because our robust model recovers the deterministic model as k — oo, the latter
is a guidepost for us to understand the degree of performance traded off for robustness. For the
description of the deterministic model, please refer to Appendix A.3.

We first ran the model for growth rate g = 1.02, i.e. the organization is allowed to grow by
2% annually. Our model seeks the minimum risk level k*. In this case, k* ~ 35, which yields the
exponential envelope of the probability of constraint violation.

In Figure 4, we plot, for the headcount constraint, the actual materialized deviation from target
H, —>" sf’T based on the uncertainty. A positive figure indicates that the headcount target was not
exceeld:ed and its magnitude gives the slack; a negative value indicates constraint violation and its
magnitude, the extent. The green line represents the Markov guarantee where the probability of
constraint violation should be no more than one-third. As Figure 4 illustrates, this guarantee is

very loose — only 2% of the simulations exceeded this bound.

Figure 4 Simulated Violation of Headcount Target in Year t=1
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We now compare this against the deterministic model. The simulated deviations from the head-
count target for each model is compared in Table 3. Our model provides guarantees against con-

straint violation, and if violations occur, they do so with a smaller magnitude.

Table 3 Comparison of Constraint Violation in Robust and Deterministic Models

Deviation from H; | Robust | Deterministic
Median 8.07 -4.40
Mean 7.18 -5.57
1%¢ Quartile -14.29 -27.42

However, one can expect that the gains in the guarantees may not be universal for different
specification of the targets. To illustrate this, let us vary the productivity target P; (via g,), while
keeping all other targets fixed. Intuitively, there should be a monotone relationship between P; and
k* — the higher P,, that is, the higher the productivity target that must be met, the more difficult
it is to do so and hence the risk level k* of failing should be expected to rise. We try this for 3
configurations: g, = 1.023 (where k* large), g, = 1.021 (an intermediate region), and g, = 1.015
(where k* small). Table 4 below summarizes the statistics for these 3 regimes, under a comparison

between the robust and deterministic models.

Table 4 Different Regimes of Tightness of Targets

Tougher target Intermediate Easier target
Growth Rate g, =1.023 g, =1.021 g, =1.015
(Risk level) (k* ~232) (k* =~ 35) (k* ~10)
Deviation from Ps | Robust Deterministic | Robust Deterministic | Robust Deterministic
Median deviation | -4.09 5.43 30.19 96.70 127.10 379.36
Mean deviation -5.16 4.14 29.13 97.63 123.16 379.07
1% Quartile -43.7 -28.60 -1.74 65.59 88.39 344.40
Deviation from Hs | Robust Deterministic | Robust Deterministic | Robust Deterministic
Median deviation 17.95 15.81 41.64 18.39 111.18 14.51
Mean deviation 18.91 16.59 42.02 18.45 113.48 13.92
1° Quartile -14.30 -14.19 12.64 -12.61 82.18 -16.49

In Table 4, we compare two constraints. The first is the productivity constraint at time 7.

This was the objective in the deterministic model and hence we should reasonably expect the
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deterministic model to out-perform the robust model in all instances. Their difference can be
understood as the price to pay for robustness. In the second, we compare the headcount constraint.
Across the different regimes, since the deterministic model is agnostic to the risk of constraint
violation, the distribution in the deviation from the headcount target is approximately the same.
Here, however, we can see the action of the robust model.

We observe three kinds of scenarios:

1. When k* is very large (first regime), the problem is near infeasible. In this case, the guarantees
on constraint violation erode away and the robust model approximates the deterministic
model. The guarantees are so minimal, it is effectively sub-optimal. In other words, when the
system is near its limits of operability, robustness is a luxury that cannot be afforded.

2. When k* is very small, we are in the third regime. Here, the guarantees are very sharp — so
sharp it is over-conservative. As seen in Table 4, the loss in productivity is sizeable. On the
other hand, the deterministic model is not without reproach — a huge trade-off between head-
count and productivity was made, by virtue of the fact that productivity was the objective.
A reasonable course of action at this point is to tighten the target.

3. There is an intermediate region where the trade-off is balanced to some extent. In the second
regime, the robust model does not incur a large cost to productivity, yet provides reasonable
guarantees against constraint violation.

In the last segment of this analysis on robustness, we examine if the optimal solution is robust
to the input parameters of attrition rates. To do so, we smooth the attrition rates (one minus the
retention rates in Figure 3) using a Loess regression and prune negative values. The smoothed
attrition rates are shown in Figure 5. Here, points represent the raw estimates and lines the
smoothed outcome. We then perform the same analysis we have done before.

With smoothing, the risk level rises to k* &~ 44 from the previous k* =~ 35. Additionally, we also
examine the optimal policies for promotion (in Figure 6 which can be compared against the optimal
policy without smoothing in Figure 8) and hiring (in Figure 7 where the original policy is in points
and the smoothed version is lined). We can see that there are only slight differences between the

optimal policies suggested by the two models.

Time-based Progression

In this section, we examine insights that can be gleaned for HR. In the first instance, we are
interested in the question: When is it optimal to promote employees? In other words, how long
should T keep an employee at a particular grade before promoting him/her?

We study p;”. Recall that p;'", which is equivalent to the ratio df“’”l/df”, is the proportion

of employees at time ¢t whom we retain at grade [ for an additional year, having already spent 7
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Figure 5  Loess Smoothed Attrition Rates for each Grade
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Figure 6  Policy for Progressing from IC1 to IC2 under Smoothing
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years at this grade [. As such, the closer this ratio is to 1, the fewer employees we are promoting.
For the purposes of fairness and continuity, HR would set a limit to the maximum proportion of
employees at a grade that may be promoted in any year. Our partners do not wish for their limit
to be shared. As such, for illustrative purposes, we have chosen the bar of 50%: di'” /d!~""~' > 0.5.
Figure 8 shows the policy for progressing employees at grade IC1 to grade 1C2 as prescribed by
the Strategic Workforce Planning under Uncertainty model.

The prescribed policy is a threshold — the model believes that employees should not progress
to the next grade until they have accumulated a minimum number of years, after which, they
should be promoted with haste. There is a certain logic in this. In the early years, the productivity

of employees rises with time spent in that grade due to the learning curve (Figure 2). As such,
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Figure 7  Policy for Hiring across Grade and Time under Smoothing
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promoting employees too early incurs an opportunity cost of potential productivity. The model

avoids this. After some point, remaining for too long at the same grade can have a disengaging

effect on employees and they may leave the organization (Figure 3). The model also avoids this, by

expediting their promotion after some time. In other words, the model seeks a balance between the

productivity an employee brings, and the risk of losing the employee. This finding lends numerical

support not just to the choice of ‘time-based progression’, but also its rationale.
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Factors Affecting the Risk Level

In this second piece of analysis, we shall examine the impact that the growth rate g has on the
optimal risk level k*. As before, we fixed the allowed growth rates of headcount, budget and

productivity to be a function of g. Now we vary g. Figure 9 plots the relationship.

Figure 9  Risk Level k" at Different Growth Rates g
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From Figure 9, we infer that there is a higher risk level when the growth rate is smaller. This
mirrors common wisdom that it is easier to grow firms than to downsize. The explanation the
model gives is this: Risk originates from the uncertainty — resignations. The higher the growth rate
g, the greater the number of new recruits. Recruitment of employees fills the vacancies created
by those who left and thus mitigates the uncertainty. As such, the more employees that can be
recruited, the larger the capacity of HR to manage the risks arising from resignation, and thus the
lower risk on the overall.

The simple consequence of this is that there are inherent operational risks to a lack of organi-
zational renewal. Yet this is not necessarily a straightforward question to address. For example, in
an organization with a higher attrition level, we can expect two competing forces at work. One,
the higher the attrition, the greater the uncertainty and hence the higher the risk. Two, the higher
the attrition, the greater the capacity to hire since there are more vacancies to replace, hence the
lower the risk. We study which effect really plays out in our dataset.

In our model, ¢/ represents the retention rate of officers having spent time 7 at grade /. Hence,
the attrition rate is a] =1 —¢q]. We now artificially suppress or boost the attrition rate by a factor
of a, via @] =a-of. If a <1, the attrition rate is suppressed, and vice versa. As such, we have a

new q; =1—-aj.
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Figure 10 plots what happens to the risk level k* as we vary a. With lower attrition, the risk
level k* rises. This is a grim consequence for advanced economies where an ageing population
is beginning to take hold. As older employees are often less employable in the workforce, they
tend to move between organizations less frequently than younger employees. As such, with ageing
population, firms can expect to see attrition rates fall across the board. Instead, they will be faced
with ever rising challenges in managing their workforce. This is not to mention that the shrinking

workforce would force many firms to reduce their growth rates, which further heightens the risk.
Figure 10  Risk Level k£* with Different Scaling of Attrition a
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For the final insight, we look at varying the tightness of a constraint. Specifically, we shall
examine the importance of organizational renewal. For our partners, they were interested to see if
the inherent difficulty of public sector organizations to lay off their employees, and hence a limited
capacity for organizational renewal, would result in greater difficulties in managing their workforce,
and if so, how large are these difficulties. To elucidate this, we perform the following analysis. Recall
that we could calibrate ¢; to dictate the tightness the bounds for the corresponding constraint j.
Now, we do so for the dismissal threshold constraint. The lower the value of 6;, the more averse
the model is to releasing employees. Figures 11 and 12 tell us the consequences of this.

In Figure 11, we can see that the difference between not allowing any and allowing some dismissals
is an almost doubling of the risk level. Figure 12 illustrates the trade-off. We plot here the largest
number of employees released amongst the 1,000 simulations. If this number is negative, it means
that in all the simulations, there wasn’t a single case where an employee was released. At risk level
k* =~ 35 and # =1, about 40 employees were released in total across the grades. If the decision-
maker is to refrain from releasing any of these employees, then 6 must be decreased to 1073, This

would incur an almost 50% increase in the risk level.
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Figure 11 Risk Level k* with Tightening of Hiring Constraint
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Figure 12 Largest Number of Employees Released in any of the 1,000 Simulations
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This quantifies the natural challenges faced by public sector organizations compared to their
private sector counterparts. In this regard, it is therefore paramount that public agencies find new

and innovative ways to rejuvenate and renew their workforce.

5. Conclusions

We have presented a tractable model for workforce planning. While we illustrate our model on
data from a public agency, the model can still be utilized in some profit-seeking firms. We have
also illustrated HR insights and provided numerical quantification of such risks that firms can face,

such as the need for organizational renewal.
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At its root, the Strategic Workforce Planning under Uncertainty model is an application of
the concept of pipeline invariance under the context of multi-period optimization. The general
intuition is that while it is difficult to perform multi-period optimization, we may alleviate these
difficulties if we declare a formal structure (here, pipeline invariance) on how the decisions and
the uncertainty are related, and hence exploit this structure to gain tractable formulations. On
this note, we hope, in the future, to construct a formal framework for using pipeline invariance in

multi-period optimization problems.
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A. Proofs Omitted from the Main Text
A.1. Proof of Theorem 1

The idea is to show by induction on 7/ =1,...,min{¢, 7}, that the following relationship holds:
Ck [kyé«;ﬁ/dfﬂ'] :ll’glf Ck: |:k§lt—7'/+1,7'—7',+1§§—T/,T—T,/d;—7',,7'—7'/:| (20)

! ! ! ! ! !
st df—t 1t +1plT (y/dwl:—t 1t +1) < gf—t 1=t 41 Vi e []

Here, we have abused the notation slightly as the C} operator on the left hand side is an expectation

over all uncertain ;" until v <t, whereas the right hand side is only up till times v <t — 7.
First, notice that the induction step going from 7’ to 7’ 4 1 is inherent from the form of (20)

— simply take y = §f77,+1’7771+1. As such, it suffices to prove only the step 7/ =1. We evaluate as

follows:

C [ky§f’7/df77] = klogE [exp (y§fT/d§T)]

= klogESt,l [Et [exp (yéfﬁ/dfﬁ)] ] (21)
dt,T
= klogE«;_, [exp <§§_1’7_1t_fT_1plT < %))} (22)
> dl 5 dl’

Here, we have used iterated expectations in (21) and then pipeline invariance in (22). At this point,

notice that d;"pJ (¥/d"") is jointly convex in both y and d;” as pj is a convex function. As such,
we may represent it in the epigraph format d;” pj (v/d"") < &;'". Hence, this proves the 7/ =1 case.

When 7/ = min{t, 7}, we achieve the result in the theorem. O

A.2. Proof of Proposition 4

Observe that two state variables 5,7 and §§;7/, l#1" and 7 # 7' in the same time ¢ can be associated
different sets of employees that do not overlap. Hence, under Assumption 1, the random states

should also be independent. We shall do so by induction on £ > 0. When ¢ = 0, this is trivially true,

s T

/
since s° are the initial conditions. Suppose any two different 3,7 and sf,’T are independent. First,

A LI EA
true. Suppose now that 7> 1 and that if I’ =1, then 7/ #7—1,

consider E []l . If =0, then §§+1’T is a decision variable, hence this is trivially

Lr <i,}” (23)

= ]E ]l gt,q—’gj}]E |:]].{§2‘.+1,T§Z.} ‘ 1{§§’T_1§i’} i|:| (24)

l/

E |:1l{§;t+l,‘r<i}]l{§§;.,./<j}:| = E -E |:]1{§§+1,T<i}]1{§§;7_/<j}

—E|1 {gﬁ;ﬂﬁ}} E[E |1y | Lo icn || (25)

—E [y | E {]1 {g;;,,gj}} . (26)
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~t,7—1

The line (24) follows because of the independence between ;" "and 5;” " as assumed in the induc-

tion hypothesis; and the equation (25) follows since E |:]l{§t+1,7<i} ]l{§t,7—l<i,}:| is just a function
“l - “l =
of §f’7_1 due to the dynamics defined in (11) and thus, independence again allows the splitting of

expectations. Now, we perform the next step. Again, similar logic applies if 7 =0, otherwise,

£ ]1{§§+1,7§i}]1{§;/+1,7,<j}} =E :E [1{55“”9}]1{571*’<j} ’ 1{55“19"}” 27)
=E _]1{~§,+1 T <j}]E []l{gf“’@i} ‘ ]l{éf’TISz"}H (28)
—E _n i }] E B [1genrey [T | (29)
= E {gt“ T<Z}} [ s - j}] ) (30)

~t+1, I

where (28) follows because of the independence between 5, and 57" as proven in the previous

step, and similarly for (29). O

A.3. Description of the Deterministic Model

We write the deterministic model below. We shall take productivity in the last time period (Pr) as
the objective. Note that from Proposition 3, the deterministic model is obtained from the robust

formulation in the limit k& — oo.

max lZ’deTT
s.t. Z'y dy” < H, vt e [T
lva d;"w < B, vt e [T]
12:%’ d,"r] > P, Vt € [T] (31)
ivfdi’fbh <0 Vit e [T],Vle M
ZVT Yd T —dl ) < dil + FY, Ve [T, Vie [L—1)

dgil =0,0<d” <d "N d)T =s)7 Yt € [T),Vl € [L],VT € [M]

B. Extensions and Generality of the Model

In this subsection, we discuss how the model could be applied to two aspects, the first regarding its
connection to employee archetypes and clustering and the second regarding departmental transfers.
These extensions are made possible because our model permits the categorization of employees
under some index set ¢ € Z, by which, we meant that we can append the index ¢ to all of our

state variables 3’ 1> and decision variables dfz , etc. This is akin to building many copies of the
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organizational structure that do not intersect, but where they operate under common organizational
target-meeting constraints, e.g. headcount Y357 < H'.

In the most general setting, ¢ could represzerlftT each employee, both existing and potential future
hires. In this setting however, all of the parameters would have to be known. These include the
likelihood of resignations 1 — g ; and productivities r/;. This might be more consistent with existing
paradigms in predictive analytics, where one is able to establish predictions for the likelihood of
resignation at different times-in-grade for every employee with different covariates, e.g. given a
data set of side information of employees X;, one constructs the predictive model ¢J; ~ ¢ | X;, such
as via a survival model, or ¢f; ~ qi| X;, 7;, through say a classification methodology, like a random
forest. Such side information X; could contain information of employees on their demographics,
work environment and outcomes, or job nature, to name a few. The similar may be said about the
productivities, where machine learning could be applied to predict the productivity trajectories of
employees, or via a learning curve (which we shall illustrate in the later subsection).

The drawback of such an approach would be the high dimension of the optimization problem
to be solved, as introduced by the index ¢, which now increases the complexity by the scale of the
number of employees. Also, there are some subtleties with dealing with how the inflow could be
modelled.

Instead, the more reasonable approach might be to group employees into clusters. Suppose now
that employees are instead labelled as e € £, then we can consider a partitioning of the employees
into subsets £ = J&;. These subsets can be constructed either as a demarcated grouping, e.g.
departments, or Vizx data-driven methods, e.g. clustering on side information of the employees i| X..

Clustering on employee archetypes. Many organizations understand their employees along the

lines of employee archetypes. In this first application, we can consider ¢ € Z to represent an employee
archetype. In a broader sense, the concept of using archetypes to understand retention, performance
and hiring preferences is well-established. Moving forward, there will be greater application of data-
driven methods to do so, where the archetypes of employees are constructed through employee side
information. Already, the practice of utilizing latent class analysis to construct archetypes in the
domain of HR has existed (e.g. in Perelman et al. 2019). With the onset of analytics, it is increasing
popular to perform clustering (or any dictionary learning algorithms) in order to construct the
archetypes ¢ € Z. These archetypes can have a very high accuracy in predicting the retention of
employees ¢;, or their level of performance ;. Our model fully supports such approaches.

Modelling departmental transfers. Suppose i represents the department that the employee is

t—1,7—1 t,T

. . . ~t—1,7r—1d ’ —d;’

in. Recall in our dynamics (3), we had used 5" “—=r==— to model the number of employ-
1

ees removed from grade [, where sffl represents the number promoted and the difference those

fired (after subtracting for the new hires). Let us introduce the new notation 5}/ (@~ b7 —apT) to
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represent the proportion of employees who are removed from grade [ stipulated for transfer from
department ¢ into another department j. Table 5 illustrates the count of all employees under this

notation.

Table 5 Illustration of the Flows under a Departmental Transfer Model

~t—1,7—1
Total: 5,7
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t, T t, T t,T
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1 j 1+1 1
Fired

~t—1,7—1
Sil

t—1,7—1

&l
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4 Ay =805 <
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J
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£,0 ¢ st—1,7—1 Bilii
Si+1 hijen — > S+t -1
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Notice from Table 5 that the number of employees retained and those transferred from depart-
ment ¢ to j are in the tractable form required for Theorem 2. Similarly, we have the non-positive
constraint applied on the officers fired. When evaluating this under the entropic risk operator,
by independence, each component of the sum will split and we will arrive at a tractability result
similar to Proposition 6. This illustrates how the model may be extended to departmental flows

without losing tractability.

B.1. Describing Productivity using Learning Curves

In this subsection, we illustrate specifically how learning curves may be used within the framework
of our model.

Let each employee be denoted by the index e € | J&;, where & is the collection of all employees
in the grade [. Assume that we have longitudinal peist performance data of each employees at time
point t and grade [, denoted R, (l,t). Then the learning curve approach involves fitting the observed
data R.(l,t) to the following form (assuming that of Shafer et al. 2001):

T+,
o= — T 32
O <T+Ve+¢e)’ (32)
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where 7 is the time-in-grade, 7; is the maximum asymptotic productivity that can be reached
for the grade [ in which employee e € & is in, v, is employee e’s prior experience and 1), a term
idiosyncratic to employee e.

In this situation, we can compile the productivity estimate for the grade by taking the average

estimated productivities:

T+ Ve
Tl ’gl| Zr Zm <T+Ve+¢e> (33)

If in the case, where we are assuming that each employee segment i is precisely the employees
themselves, such as in the earlier discussion at the start of this section, then the learning curves may
be directly used: r], := =Ty As a brief remark, we note that in order to supply the model enough
information, we would also require the counterfactual estimates of the employee’s performance at
higher grades, I’ > [. This can be obtained in two ways. The first is to find a group of closely
matching employees, in terms of their side information, and to consider a weighted sum of their
productivities as a means of imputing this estimate. The second is to examine the history of
past employees and to estimate the amount of change that the accumulated prior experience v,
and idiosyncratic term v, would change under promotion. Whichever the case, as our model is
constructed to be robust to wrong estimation in the parameters, the errors in estimation would be

mitigated by the optimization procedure.



