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Abstract

In this paper, we formalize the active set ordering problem, which involves actively
discovering a set of inputs based on their orderings determined by expensive evalua-
tions of a blackbox function. We then propose the mean prediction (MP) algorithm
and theoretically analyze it in terms of the regret of predicted pairwise orderings
between inputs. Notably, as a special case of this framework, we can cast Bayesian
optimization as an active set ordering problem by recognizing that maximizers can
be identified solely by comparison rather than by precisely estimating the function
evaluations. As a result, we are able to construct the popular Gaussian process
upper confidence bound (GP-UCB) algorithm through the lens of ordering with
several nuanced insights. We empirically validate the performance of our proposed
solution using various synthetic functions and real-world datasets.

1 Introduction

In real-world applications, we often encounter the problem of estimating an unknown function,
known as a blackbox function, (i.e., those without closed-form expressions or derivatives) using
their expensive and noisy evaluations. Under these circumstances, an efficient sequential process of
evaluating the function is desired. On one extreme, experimental design (ED) aims to estimate the
function in its entire input domain, e.g., by decreasing the uncertainty of the function globally in
Bayesian ED [4, 18]. On the other extreme, the renowned Bayesian optimization (BO) targets inputs
with the extreme function values such as the maximizers and the minimizers [2, 6, 7].

While the connection between ED and BO is studied in the classic work of [19], we still lack a problem
formulation that strikes a balance between the prohibitively expensive process of estimating the entire
function globally in ED and the lack of information about the function away from extreme locations
in BO. One may consider a related problem, called level set estimation (LSE), which focuses on
estimating inputs with function evaluations above or below a given (or implicit) threshold [1, 3, 8, 14].
However, without domain knowledge of the blackbox function, it is easy to set a threshold that leads
to undesirably large or small level sets.

Let us consider an environmental monitoring problem of estimating a chemical concentration in a
field. The blackbox function is the mapping from locations of the field to the chemical concentration
measurement. It can be of a greater interest to estimate the maximizers, the minimizers, the top-k
locations (with the highest chemical concentration) and the bottom-k locations. On one hand,
these estimates provide more information about the blackbox function than just the maximizers or
minimizers in BO. On the other hand, they may require less resource (i.e., evaluations of the blackbox
function) than estimating the entire function in ED. Besides, as the top-k locations consist of exactly k
locations in the field, it circumvents the issue of undesirably large or small level sets in LSE.
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Our main contribution in this paper is to formulate the above challenge and resolve it with a
theoretically grounded solution. Specifically, we propose the active set ordering problem to capture
the above scenario (Sec. 2.1). It aims to estimate subsets of the input domain that are defined based on
pairwise comparisons/orderings between the blackbox function evaluations.1 These subsets include
the maximizers, the minimizers, and the top-k inputs with the highest function evaluations. Like
Bayesian ED, BO, and LSE, we adopt the pool-based active learning setting [18] in constructing a
solution that sequentially selects a sampling input from the domain at each iteration. The knowledge
from observing function evaluations at the sampling inputs helps predicting the subsets of interest and
directs the algorithm to select the next sampling input. To facilitate the presentation of our method,
we begin with the building block of our ordering-based problem: pairwise comparison/ordering
between function evaluations in Sec. 3. Specifically, we propose a new kind of regret to quantify the
loss of a pairwise ordering (Sec. 3.1), a prediction of the top-k inputs based on only the posterior
mean (Sec. 3.2), and a sampling strategy that is equipped with a theoretical performance guarantee
for the proposed prediction (Sec. 3.3). Subsequently, these concepts of the regret, the prediction,
and the sampling strategy are extended to orderings between sets, which ultimately addresses the
active set ordering problem in Sec. 4. Notably, the regret simplifies to the well-known regret in BO
(Remark 4.1). Hence, we recover both the theoretical analysis and the GP-UCB algorithm [19] when
considering a special case of our problem setting (Remark 4.5). In Sec. 5, we empirically validate the
performance of our solution using several synthetic functions and real-world datasets.

2 Preliminaries and Problem Statement

2.1 Top-k set

Adopting an assumption in existing level set estimation (LSE) works [1, 8], we consider a blackbox
function f : X → R where the domain X is a finite set of n elements in Rd. Let Sc ≜ X \ S denote
the complement of any subset S ⊂ X . In this paper, the ordering between inputs are determined with
respect to their corresponding blackbox function evaluations. Hence, we use the term “the ordering
between x and x′” and “the ordering between f(x) and f(x′)” interchangeably.

Definition 2.1 (Top-k set). The top-k set, denoted as S(k), is the set of k inputs with the highest
function evaluations. Specifically, |S(k)| = k and ∀x ∈ S(k), ∀x′ ∈ Sc(k), f(x) ≥ f(x′).

In this work, we propose the active set ordering problem to estimate the top-k set S(k) of a blackbox
function f by efficiently gathering noisy function evaluations in a sequential manner. Furthermore, it
includes the Bayesian optimization (BO) problem when k = 1 because the top-1 set S(1) contains a
maximizer of f .

2.2 Gaussian Process

The noisy function evaluation mentioned in the previous section is denoted as y(x) ≜ f(x) + ϵ(x)
where the noise ϵ(x) ∼ N (0, σ2

n) is a Gaussian random variable with a known (or estimated)
variance σ2

n. To obtain the posterior distribution of the unknown function f given these noisy
evaluations, we model f using a Gaussian process (GP), that is, every subset of {f(x)}x∈X follows a
multivariate Gaussian distribution [16]. A GP is fully specified by its prior mean and its kernel kx,x′ ≜
cov(f(x), f(x′)) which measures the covariance between function values. Let Dt denote the set of
sampling inputs in the first t−1 iterations. Then, given yDt

≜ (y(x))x∈Dt
, the predictive distribution

of any function evaluation f(x) follows a Gaussian distribution with the following mean and variance:

µt(x) ≜ kt(x)
⊤(Kt + σ2

nI)
−1yDt σ2

t (x) ≜ k(x,x)− kt(x)
⊤(Kt + σ2

nI)
−1kt(x)

where kt(x) ≜ (k(x,x′))x′∈Dt
, Kt ≜ (k(x,x′))x,x′∈Dt

, and I is the identity matrix [16].

Assuming f belongs to a reproducing kernel Hilbert space with its norm bounded by B > 0, due
to [5], we have the following confidence bound of f(x).2

1Existing research on best-k arm identification in the multi-armed bandit literature poses a similar problem,
but it often focuses on the pure exploration setting and assumes independent arms which are inadequate for
modelling blackbox functions [10–12].

2Alternatively, we may consider using the confidence bounds established in [19].
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Lemma 2.2. Pick δ ∈ (0, 1) and set βt = (B + σn

√
2(γt−1 + 1 + log 1/δ))2. Then, the following

event happens with probability of at least 1− δ,

∀x ∈ X , ∀t ≥ 1, lt(x) ≤ f(x) ≤ ut(x)

where lt(x) ≜ µt(x) − β
1/2
t σt(x), ut(x) ≜ µt(x) + β

1/2
t σt(x), and γt−1 ≜

maxA⊂X :|A|=t−1 I(yA; fA) is the maximum information gain of fA ≜ {f(x)}x∈A through ob-
serving yA over all subsets A ⊂ X of size |A| = t− 1.

To ease notational clutter, we denote the above confidence interval of f(x) as Ct(x) ≜ [lt(x), ut(x)]

and its length as |Ct(x)| ≜ ut(x)− lt(x).

3 Active Pairwise Ordering: n = 2

From Definition 2.1, pairwise orderings (or pairwise comparisons) are the building blocks of our
active set ordering problem. Hence, to facilitate the exposition of the key ideas, let us begin with
a simplistic setting where the input domain X consists of only n = 2 inputs, i.e., X = {x̃, x̃′}
and f(x̃) ̸= f(x̃′). The problem is to determine the top-1 set S(1), i.e., the maximizer of f
(equivalently, the minimizer of f ). In essence, the goal is to check if f(x̃) > f(x̃′) by strategically
collecting noisy evaluations y(x̃) and y(x̃′). In particular, at iteration t, the algorithm proposes a
sampling input xt ∈ X to obtain a noisy evaluation y(xt). Then, the GP posterior distribution of f is
updated and used to construct a predicted ordering between x̃ and x̃′ (i.e., the ordering between f(x̃)
and f(x̃′)). The problem boils down to the strategy of selecting the sampling input xt such that a
performance metric of the predicted ordering between f(x̃) and f(x̃′) is satisfactory. In the next
section, we introduce a regret definition to serve as a performance metric.

3.1 Regret

Let us denote the (unknown) true ordering between x̃ and x̃′ according to the evaluations of the
blackbox function f as π∗:

π∗(x̃, x̃
′) ≜ 1f(x̃)≥f(x̃′) (1)

where the indicator function 1f(x̃)≥f(x̃′) = 1 if f(x̃) ≥ f(x̃′) and 0 otherwise. For any ordering π :
{(x̃, x̃′)} → {0, 1}, we define the following regret of π(x̃, x̃′):

rπ(x̃,x̃′) ≜ max (0, (2π(x̃, x̃′)− 1)(f(x̃′)− f(x̃))) . (2)

In particular, rπ(x̃,x̃′)=1 = max(0, f(x̃′) − f(x̃)) and rπ(x̃,x̃′)=0 = max(0, f(x̃) − f(x̃′)). The
rationale is to ensure poor performance leads to large regret: The regret is |f(x̃) − f(x̃′)| (which
increases as the gap between f(x̃) and f(x̃′) increases) if the ordering π does not align with the
true ordering, i.e., π(x̃, x̃′) ̸= π∗(x̃, x̃

′). On the contrary, the regret is 0 (i.e., the best performance)
if π(x̃, x̃′) = π∗(x̃, x̃

′).

However, the blackbox function f renders the evaluation of rπ(x̃,x̃′) impossible. Thus, we resort to
relying on the GP posterior distribution of f at iteration t to construct an upper bound of the above
regret in the following lemma (proof in Appendix A).

Lemma 3.1. For all t ≥ 1, let us define

ρ
(t)
π(x̃,x̃′) ≜

{
max(0, ut(x̃

′)− lt(x̃)) if π(x̃, x̃′) = 1

max(0, ut(x̃)− lt(x̃
′)) if π(x̃, x̃′) = 0 .

(3)

Then, ρ(t)π(x̃,x̃′) is an upper confidence bound of the regret rπ(x̃,x̃′), i.e.,

P
(
∀t ≥ 1, rπ(x̃,x̃′) ≤ ρ

(t)
π(x̃,x̃′)

)
≥ 1− δ

where δ is as defined in Lemma 2.2.
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3.2 Prediction

Definition 3.2 (Predicted pairwise ordering πµt ). Given the above upper bound ρ
(t)
π(x̃,x̃′) of the regret,

we would like to make a prediction πµt that minimizes ρ(t)π(x̃,x̃′). Therefore, πµt is defined as follows

πµt(x̃, x̃
′) ≜ argmin

a∈{0,1}
ρ
(t)
π(x̃,x̃′)=a . (4)

As a result, the upper confidence bound of the regret in (3) is minimized at π(x̃, x̃′) = πµt(x̃, x̃
′)

and its minimum value is

ρ
(t)
πµt (x̃,x̃

′) = max (0,min(ut(x̃
′)− lt(x̃), ut(x̃)− lt(x̃

′))) . (5)

We note that the upper confidence bound of the regret can be interpreted as a measure of the
approximation quality or the uncertainty reduction as discussed in the following two remarks.

Remark 3.3 (Approximation quality). Since ρ
(t)
πµt (x̃,x̃

′) ≥ rπµt (x̃,x̃
′) for all t ≥ 1 with probabil-

ity of at least 1 − δ, the regret incurred by the ordering πµt
cannot exceed the worst-case re-

gret ρ(t)πµt (x̃,x̃
′) as shown in Fig. 1a. Hence, if |f(x̃) − f(x̃′)| > ρ

(t)
πµt (x̃,x̃

′), πµt
(x̃, x̃′) is the true

ordering, i.e., πµt
(x̃, x̃′) = π∗(x̃, x̃

′), with probability of at least 1− δ.

Remark 3.4 (Minimum uncertainty reduction). In Fig. 1b, one can interpret ρ(t)πµt (x̃,x̃
′) as the minimum

amount that the confidence intervals Ct(x̃) and Ct(x̃′) (representing the uncertainty) reduce so
that rπµt (x̃,x̃

′) = 0 with probability of at least 1− δ.

Moreover, the prediction πµt
can be obtained using only the GP posterior mean (proof in Appendix B),

which explains the name of our approach: mean prediction (MP) and the notation πµt .
Lemma 3.5 (Mean prediction). The predicted ordering πµt

defined in (4) can be determined from
the GP posterior mean

πµt
(x̃, x̃′) = 1µt(x̃)≥µt(x̃′) . (6)

lt(x̃
′) ut(x̃

′)

lt(x̃) ut(x̃)

ρ
(t)

πµt (x̃,x̃
′) = worst-case regret

lt(x̃
′) ut(x̃

′)

lt(x̃) ut(x̃)

ρ
(t)

πµt (x̃,x̃
′) = worst-case regret

(a) ρ(t)πµt (x̃,x̃
′) is the worst-case regret happening when f(x̃) = lt(x̃) and f(x̃′) = ut(x̃

′).

lt(x̃
′) ut(x̃

′)

lt(x̃) ut(x̃)
l′t(x̃)

u′
t(x̃

′)

ρ
(t)
πµt (x̃,x̃

′)

lt(x̃
′) ut(x̃

′)
u′
t(x̃

′)

lt(x̃)
l′t(x̃)

ut(x̃)

ρ
(t)
πµt (x̃,x̃

′)

(b) rπµt (x̃,x̃
′) = 0 when (ut, lt) are refined to (u′

t, l
′
t) following an observation, i.e., the reduction

in the uncertainty represented as the sum of the two red dashed segments is at least ρ(t)πµt (x̃,x̃
′).

Figure 1: Interpretations of the upper bound ρ
(t)
πµt (x̃,x̃

′) when πµt
(x̃, x̃′) = 1.

3.3 Sampling Strategy

Given the regret in Sec. 3.1 and the predicted ordering πµt(x̃, x̃
′) in Sec. 3.2, we would like to select a

sampling input xt ∈ X = {x̃, x̃′} such that the regret rπµt (x̃,x̃
′) of the predicted ordering πµt

(x̃, x̃′)
reduces quickly.
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While rπµt (x̃,x̃
′) is unknown, it is bounded by ρ

(t)
πµt (x̃,x̃

′) with probability of at least 1− δ. Hence,

to reduce rπµt (x̃,x̃
′), we aim to reduce ρ

(t)
πµt (x̃,x̃

′). It is also noted that observing y(xt) decreases
the confidence interval |Ct(xt)|. Hence, to induce the reduction in the regret rπµt (x̃,x̃

′) through ob-

serving y(xt), we select xt such that its confidence interval |Ct(xt)| ≥ ρ
(t)
πµt (x̃,x̃

′) (which guarantees
that |Ct(xt)| ≥ rπµt (x̃,x̃

′) with probability of at least 1 − δ). For instance, choosing xt = x̃ in the
left plot of Fig. 1a satisfies this condition, but it does not in the right plot of Fig. 1a. In the following
lemma, we show that the following 4 choices of the sampling input satisfy the proposed condition
(see Appendix C).

Lemma 3.6. Let Qt ≜ {x̃ ▽ x̃′, x̃△ x̃′, x̃ ∨ x̃′, x̃ ∧ x̃′} denote a set3 of inputs at iteration t where

x̃ ▽ x̃′ ≜ argmax
x∈{x̃,x̃′}

ut(x) x̃△ x̃′ ≜ argmin
x∈{x̃,x̃′}

lt(x)

x̃ ∨ x̃′ ≜ argmax
x∈{x̃,x̃′}

|Ct(x)| x̃ ∧ x̃′ ≜ argmin
x∈{x̃▽x̃′,x̃△x̃′}

|Ct(x)| .

For any xt ∈ Qt, |Ct(xt)| ≥ ρ
(t)
πµt (x̃,x̃

′).

Theorem 3.7. By sampling the input xt following Lemma 3.6, we obtain the following regret bound

P

(
∀T ≥ 1, ∀(xt)

T
t=1 ∈

T∏
t=1

Qt, RT ≜
T∑

t=1

rπµt (x̃,x̃
′) ≤ O(

√
TβT γT )

)
≥ 1− δ

where βT , γT , and δ are as defined in Lemma 2.2.
Remark 3.8 (Sublinear cumulative regret). If γT is sublinear, our average cumulative regret is
sublinear. This requirement is similar to most BO and LSE algorithms. It is noted that γT is sublinear
for many popular kernels. For instance, γT = O((log T )d+1) for the squared exponential (SE) kernel
as discussed in [19]. In this case, our cumulative regret bound RT ≤ O∗(

√
T (log T )2d) is the same

as that of GP-UCB [19] (where O∗(·) denotes asymptotic expressions up to dimension-independent
logarithmic factors and is the dimension of the input).

We defer the pseudocode to the next section when n ≥ 2.

4 Active Set Ordering: n ≥ 2

In this section, we utilize the results in Sec. 3 to present the mean prediction (MP) algorithm for the
active set ordering problem with n ≥ 2.

4.1 Regret

When X consists of n > 2 inputs, there are multiple pairwise orderings between inputs in X . We
overload the ordering notation π∗ of the true pairwise ordering between 2 inputs in (1) to the ordering
between 2 sets as follows: for any subsets X0 ⊂ X and X1 ⊂ X c

0 ,

π∗(X0,X1) =

{
1 if ∀x ∈ X0, ∀x′ ∈ X1, π∗(x,x

′) = 1

0 if ∀x ∈ X0, ∀x′ ∈ X1, π∗(x,x
′) = 0 .

(7)

It is noted that π∗(X0,X1) remains undefined if the two cases above are not satisfied. However, this
situation does not arise in our solution. We define the regret of a set ordering (i.e., multiple pairwise
orderings) as the maximum regret of all pairwise orderings:

rπ(X0,X1) ≜ max
(x,x′)∈X0×X1

rπ(x,x′)=π(X0,X1)

where rπ(x,x′) is defined in (2) and X0 ×X1 is the Cartesian product of X0 and X1, i.e.,

rπ(X0,X1) = max

(
0, (2π(X0,X1)− 1) max

(x,x′)∈X0×X1

(f(x′)− f(x))

)
. (8)

3For convenience, we allow duplicate elements in Qt.
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Remark 4.1. It is noted that rπ(X0,X1) coincides with the well-known regret in BO when we consider
the problem of predicting a maximizer of f . In particularly, predicting x̂∗ as a maximizer of f is
equivalent to predicting the set ordering π({x̂∗},X \ {x̂∗}) = 1. Its regret is rπ({x̂∗},X\{x̂∗})=1 =
maxx∈X f(x)− f(x̂∗) as shown in Appendix E.1.

Following the upper confidence bound of the regret of pairwise orderings in (3), we show in Ap-
pendix F that with probability of at least 1 − δ, for all t ≥ 1 and for all subsets X0 ⊂ X , X1 ⊂
X c

0 , rπ(X0,X1) ≤ ρ
(t)
π(X0,X1)

where

ρ
(t)
π(X0,X1)

≜ max
(x,x′)∈X0×X1

ρ
(t)
π(x,x′)=π(X0,X1)

.

4.2 Prediction

In this section, we generalize the prediction in Sec. 3.2 to set orderings. From Lemma 3.5, there is
no contradiction in the pairwise orderings πµt(x,x

′) (defined in (4)) for all {x,x′} ⊂ X . In other
words, the transitivity property holds for the binary relation πµt as shown in Appendix G.
Definition 4.2 (Predicted top-k set Sµt

(k)). Let Sµt
(k) be a subset of X such that

|Sµt(k)| = k , πµt(Sµt(k),Scµt
(k)) = 1 (9)

where the set ordering πµt
(Sµt

(k),Scµt
(k)) is obtained by substituting π∗ with the pairwise order-

ing πµt
(see Definition 3.2) in (7). From Lemma 3.5, Sµt

(k) is basically the set of k inputs with the
highest GP posterior mean values.

As πµt
(Sµt

(k),Scµt
(k)) = 1 implies that πµt

(x,x′) = 1 for all (x,x′) ∈ Sµt
(k) × Scµt

(k), the
upper confidence bound of the regret is

ρ
(t)
πµt (Sµt (k),Sc

µt
(k)) = max

(x,x′)∈Sµt (k)×Sc
µt

(k)
ρ
(t)
πµt (x,x

′) . (10)

4.3 Sampling Strategy

Like in Sec. 3.3, our key idea is to select xt such that the length |Ct(xt)| of its confidence interval
bounds ρ

(t)
πµt (Sµt (k),Sc

µt
(k)) (in (10)). Since ρ

(t)
πµt (Sµt (k),Sc

µt
(k)) is the maximum upper confidence

bound of the regret of all pairwise orderings involved in defining Sµt
(k), we first determine the input

pair (x̄t, x̄
′
t) that incurs the maximum upper confidence bound of the regret. This is also the input

pair that πµt most likely makes a mistake, following the intuition from [12].

(x̄t, x̄
′
t) ≜ argmax

(x,x′)∈Sµt (k)×Sc
µt

(k)

ρ
(t)
πµt (x,x

′) . (11)

It is noted that (x̄t, x̄
′
t) is constructed from an input in the predicted top-k set Sµt

(k) and an input in
its complement Scµt

(k). As the estimation of the top-k set improves, we expect these 2 inputs to be at
both sides of the boundary of the top-k set: inside the top-k set vs. outside the top-k set.

Then, extended from Lemma 3.6, the following lemma shows that the above desirable property
is satisfied by choosing the sampling input xt from any inputs in the set Q̄t ≜ {x̄t ▽ x̄′

t, x̄t △
x̄′
t, x̄t ∨ x̄′

t, x̄t ∧ x̄′
t} (defined in Lemma 3.6).

Lemma 4.3. For any xt ∈ Q̄t, |Ct(xt)| ≥ ρ
(t)
πµt (Sµt (k),Sc

µt
(k)).

The proof is shown in Appendix H. As a result, the cumulative regret incurred by choosing xt in
Lemma 4.3 is bounded in the following theorem (proof in Appendix I).
Theorem 4.4. By sampling xt following Lemma 4.3, we obtain the following cumulative regret bound

P

(
∀T ≥ 1, ∀(xt)

T
t=1 ∈

T∏
i=1

Q̄t, RT,k ≜
T∑

t=1

rπµt (Sµt (k),Sc
µt

(k)) ≤ O(
√

TβT γT )

)
≥ 1− δ

where βT , γT , and δ are as defined in Lemma 2.2.
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Algorithm 1 Mean Prediction (MP) for Active Set Ordering
Require: X , D0, k, T

1: for t = 1 to T do
2: Update GP posterior belief: {µt(x)}x∈X , {σt(x)}x∈X .
3: Construct Sµt

(k) as top-k inputs with the highest values of µt. ▷ Prediction
4: (x̄t, x̄

′
t) = argmax(x,x′)∈Sµt (k)×Sc

µt
(k) ρ

(t)
πµt (x,x

′)

5: Select xt ∈ {x̄t ▽ x̄′
t, x̄t△ x̄′

t, x̄t ∨ x̄′
t, x̄t ∧ x̄′

t}. ▷ Sampling input
6: yt(Dt)← y(Dt−1) ∪ {y(xt)}
7: end for
8: Update GP posterior belief: {µT+1(x)}x∈X , {σT+1(x)}x∈X .
9: Construct SµT+1

(k) as top-k inputs with the highest values of µT+1.
10: return SµT+1

(k).

We call the algorithm that makes prediction using the GP posterior mean and selects the sampling
input xt following Lemma 4.3 the mean prediction (MP) algorithm. Its pseudocode is shown
in Algorithm 1. Theorem 4.4 indicates that MP incurs a sublinear cumulative regret for several
commonly used kernels with sublinear γT [19].
Remark 4.5 (Bayesian optimization as an active set ordering problem with k = 1). We show in
Appendix E.2 that when k = 1, x̄t ▽ x̄′

t ∈ argmaxx∈X ut(x), which is the sampling input in the
GP-UCB algorithm [19]. Additionally, as discussed in Sec. 4.1, the regret rπ(S(1),Sc(1)) is the well-
known regret in BO. Hence, we recover both the GP-UCB algorithm and its regret bound when k = 1
(although we consider the regret of the prediction rather than that of the sampling input). Moreover,
this new construction of GP-UCB leads to some subtle insights. Firstly, while the GP posterior mean
has been used in computing the inference regret of entropy search methods [9, 21], there has not been
any theoretical justification for using the posterior mean. In contrast, the theoretical analysis in our
work justifies the use of the maximizer of the GP posterior mean as an estimate of the maximizer of f .
Secondly, by predicting the maximizer using the GP posterior mean, x̄ ▽ x̄′ is not the only sampling
input that achieves a sublinear cumulative regret. In fact, there are other choices of the sampling
input as shown in Lemma 4.3. Similarly, we note that the LCB algorithm to find the minimizer of a
blackbox function can be recovered by setting k = n− 1 and xt = x̄△ x̄′.
Remark 4.6 (Lower bound of active set ordering problem). Let the lower bound of the active set
ordering problem be the lower bound of the cumulative regret of the worst-case problem instance
over all possible values of k. Then, it should be at least as large as the lower bound of the special
case where k = 1, which is the BO problem according to Remark 4.5. Furthermore, BO has known
lower bounds for several common kernels, e.g., for the SE kernel, the lower bound of the cumulative
regret is Ω(

√
T (log T )d/2) [17]. Hence, the lower bound of the active set ordering problem is at

least Ω(
√
T (log T )d/2). Additionally, similar to Remark 3.8, the cumulative regret of our solution in

Theorem 4.4 is bounded by RT ≤ O∗(
√

T (log T )2d). Hence, it matches the lower bound up to the
replacement of d/2 by 2d+O(1).
Remark 4.7. Updating the GP posterior belief incurs O(|Dt|3 + n|Dt|2) (including O(|Dt|3) for
training and O(n|Dt|2) for prediction). Given the GP posterior belief, Algorithm 1 involves the
following 2 major steps. First, in line 3 of Algorithm 1, it takes O(n log k) to find the top-k
inputs Sµt(k) by using a max heap of size k and scanning through the GP posterior mean of all n
inputs. Second, in line 4 of Algorithm 1, it takesO(k(n−k)) to scan through the elements in Sµt(k)×
Scµt

(k). Therefore, an iteration of Algorithm 1 takes O(|Dt|3 + n|Dt|2 + n log k + k(n− k)).
Remark 4.8 (Active multiple set ordering). Let us consider the problem of estimating m top-k
sets: S(k1),S(k2), . . . ,S(km) simultaneously (motivated in Sec. 1). This problem is analogous to
finding k contour lines of a blackbox function, where each contour line represents the boundary
between S(ki) and its complement Sc(ki). To solve this problem, we define the following input pair

(¯̄xt, ¯̄x
′
t) ≜ argmax

(x,x′)∈(∪m
i=1Sµt (ki)×Sc

µt
(ki))

ρ
(t)
πµt (x,x

′) . (12)

In other words, we aim to reduce the maximum regret incurred by the predicted pairwise orderings
in all m top-k sets. Given (¯̄xt, ¯̄x

′
t) in (12), MP proceeds by sampling the input xt according to

Lemma 4.3, i.e., xt ∈ {¯̄xt ▽ ¯̄x′
t, ¯̄xt△ ¯̄x′

t, ¯̄xt ∨ ¯̄x′
t, ¯̄xt ∧ ¯̄x′

t}. The approach is elaborated in Appendix J.
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t (x).

Figure 2: Plot of sampling inputs, GP posterior distribution, and the performance of (a) MP and (b) Var
in estimating S(20) of a synthetic function. The comparison pair is (x̄t, x̄

′
t) in (11). The histogram

on the horizontal axis shows the frequency of sampling inputs in 40 iterations.

We also note that active multiple set ordering is able to find both maximizers S(1) and minimizers
Sc(n− 1) simultaneously, a problem has not been studied in GP-UCB [19].

5 Experiments

5.1 Active Set Ordering

In this section, we validate the empirical performance of our MP algorithm with different choices
of the sampling input in Lemma 4.3: x̄t ▽ x̄′

t, x̄t△ x̄′
t, x̄t ∨ x̄′

t, and x̄t ∧ x̄′
t by comparing with 2

baselines: an uncertainty sampling approach, called Var, that selects the sampling input with the
highest GP posterior variance, i.e., xt ∈ argmaxx∈X σ2

t (x), and a baseline, called Rand, that selects
the sampling input at random. The regret rπµt (Sµt (k),Sc

µt
(k)) is used to measure the performance

of each algorithm, i.e., the prediction of the top-k set consists of the k inputs with the highest GP
posterior mean.

To begin with, we visualize sampling inputs and the accuracy of Sµt(20) that come from our MP
algorithm with xt = x̄t ∧ x̄′

t and the Var algorithm in Fig. 2. In Fig. 2a, the histogram shows that the
sampling inputs are at the boundary of S(20). This is highly desirable as it is challenging to decide if
an input at the boundary belongs to S(20). Similarly, the input pair in (11) also consists of inputs
around this boundary (depicted as vertical orange lines). On the other hand, precisely estimating
the function evaluations of inputs far from the boundary, e.g., inputs around x = 0.85 (in S(20))
and inputs around x = 0.1 (not part of S(20)) is unnecessary. We observe that the uncertainty of
the GP posterior distribution at these inputs is high in Fig. 2a. Hence, our MP algorithm is able
to efficiently concentrate its sampling budget on important inputs at the boundary of the top-k set.
Interestingly, this boundary serves as a contour line of the blackbox function, indicating that our
solution could potentially be applied to estimate the contour line by specifying the proportion of
the input domain where function evaluations exceed this contour. Regarding the Var algorithm (i.e.,
uncertainty sampling) in Fig. 2b, the histogram shows that sampling inputs are distributed evenly
across the input domain. It is because Var aims to reduce the uncertainty of the function evaluation
throughout the input domain without considering the current predicted Sµt

(20). For example, it
is inefficient to select sampling inputs far away from the boundary of S(20). It is observed that
the estimation of function evaluations at the boundary of S(20) using Var is more uncertain than
that using the MP algorithm given the same number of sampling inputs. This results in erroneously
predicting certain inputs in S(20) (depicted as red dots) and overlooking several inputs in S(20)
(depicted as black dots).4

We numerically report the performance using the proposed regret rπµt (Sµt (k),Sc
µt

(k)). The experi-
ments are conducted on 4 synthetic functions: a function sampled from a GP, Branin-Hoo function,
Goldstein-Price function with a noise of σn = 0.1, and Hartmann-6D function with a nosie of
σn = 0.01 [20]. For the first three synthetic functions, the input domain is discretized into a set
of 100 points, whereas for the Hartmann-6D function, it is discretized into a set of 1000 points.
Motivated by environmental monitoring problems, we generate 3 active set ordering problems that

4The complete animation is available in the supplementary materials.
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estimate the top-5 set using the dataset of NO3 concentration in the Lake Zurich (downloaded
from https://wldb.ilec.or.jp/Lake/EUR-06/datalist), the dataset of the phosphorus con-
centration in the Brooms Barn [22], and the dataset of the humidity in the Intel Lab (downloaded
from https://db.csail.mit.edu/labdata/labdata.html). The environment field is dis-
cretized into a set of 100 locations in the experiments with the NO3 and humidity datasets and
400 locations in the experiment with the phosphorus dataset. The experiments are repeated 15 times
to account for the randomness in the generation of the observations. Further details are provided in
Appendix K. The average and the standard error of the regret are shown in Figs. 3s:a-g. There is not
any significant difference in the performance of MP with different sampling inputs in Lemma 4.3.
Nevertheless, the MP algorithm with any choice of the sampling input in Q̄t outperforms the 2
baselines by converging to lower regret.
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Figure 3: Plots of the regret against the iteration in estimating (s:a-f) the top-5 set S(5) and
(m:a-f) multiple top-k sets: S(1), S(10), and S(20).

5.2 Active Multiple Set Ordering

To empirically validate the performance of our MP algorithm in solving the problem of estimat-
ing multiple top-k sets, we consider the problem of estimating S(1) (i.e., maximizers), S(10),
and S(20) simultaneously, i.e., k1 = 1, k2 = 10, k3 = 20 in Remark 4.8. We utilize the same set
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Figure 4: Plots of the regret of the predicted maximizer against the iteration.

of synthetic functions and real-world environmental datasets in the previous section to compare the
performance of MP with Var and Rand. The plot of the average and standard error of the maximum
regret maxk∈{1,10,20}(rπµt (Sµt (k),Sc

µt
(k))) over 15 repeated experiments are shown in Figs. 3m:a-g.

The MP algorithm outperforms the other 2 baselines by converging to lower regret. In some active
multiple set ordering experiments (e.g., in Figs. 3m:a, 3m:c), the performance gaps between MP and
Var are smaller than those in the previous active set ordering experiments (e.g., Figs. 3s:a, 3s:c). It is
because estimating multiple top-k sets requires more observations, which makes the performance of
MP tend towards that of Var which estimates the entire function.

5.3 Bayesian Optimization

When k = 1, the active set ordering problem reduces to the BO problem and a sampling input of
our MP algorithm, i.e., xt = x̄t▽x̄′

t, is the same as that of GP-UCB [19]. Therefore, this section
empirically demonstrates the performance of MP with different sampling inputs (xt ∈ {x̄t ▽ x̄′

t, x̄t△
x̄′
t, x̄t ∨ x̄′

t, x̄t ∧ x̄′
t}) in solving BO. Our aim is not to show that MP achieves the state-of-the-art

performance as a BO solver, but rather to demonstrate that it performs comparably to the well-known
GP-UCB algorithm. In addition to comparing with GP-UCB (equivalently, MP with xt = x̄t▽x̄′

t),
we also compare with 3 classical BO solutions: probability of improvement (PI) [13], expected
improvement (EI) [15], and max-value entropy search (MES) [21]. The average and the standard error
of the regret rπµt (Sµt (1),Sc

µt
(1)) over 15 repeated experiments are shown in Fig. 4. We observe that

MP performs comparably with the well-known GP-UCB algorithm (labelled as x̄t▽x̄′
t). Expectedly,

EI and MES outperform GP-UCB (and hence, MP) in some experiments such as in Figs. 4b and 4c.

6 Conclusion

This paper presents a new problem formulation, namely active set ordering, that aims to balance
between the expensive estimation of the entire function in ED and that of only the maximizers in BO.
We propose the mean prediction (MP) algorithm to address this problem with a theoretical no-regret
guarantee. Interestingly, BO can be framed as a special instance of active set ordering, which leads to
several new subtle understandings regarding the predicted maximizer and other alternative sampling
inputs. Last, the performance of MP is empirically evaluated using various synthetic functions and
real-world datasets.

Acknowledgments and Disclosure of Funding

This research/project is supported by the National Research Foundation Singapore and DSO National
Laboratories under the AI Singapore Programme (AISG Award No: AISG2-RP-2020-018).

DesCartes: this research is supported by the National Research Foundation, Prime Minister’s Office,
Singapore under its Campus for Research Excellence and Technological Enterprise (CREATE)
programme.

This research was partially supported by the Australian Government through the Australian Research
Council’s Discovery Projects funding scheme (project DP210102798). The views expressed herein
are those of the authors and are not necessarily those of the Australian Government or Australian
Research Council.

10



References
[1] I. Bogunovic, J. Scarlett, A. Krause, and V. Cevher. Truncated variance reduction: A unified

approach to Bayesian optimization and level-set estimation. In Proc. NIPS, pages 1507–1515,
2016.

[2] E. Brochu, V. M. Cora, and N. De Freitas. A tutorial on Bayesian optimization of expensive
cost functions, with application to active user modeling and hierarchical reinforcement learning.
arXiv preprint arXiv:1012.2599, 2010.

[3] B. Bryan, R. C. Nichol, C. R. Genovese, J. Schneider, C. J. Miller, and L. Wasserman. Active
learning for identifying function threshold boundaries. Proc. NeurIPS, 18, 2005.

[4] K. Chaloner and I. Verdinelli. Bayesian experimental design: A review. Statistical science,
pages 273–304, 1995.

[5] S. R. Chowdhury and A. Gopalan. On kernelized multi-armed bandits. In Proc. ICML, pages
844–853, 2017.

[6] P. I. Frazier. A tutorial on Bayesian optimization. arXiv preprint arXiv:1807.02811, 2018.

[7] Roman Garnett. Bayesian Optimization. Cambridge University Press, 2022.

[8] A. Gotovos, N. Casati, G. Hitz, and A. Krause. Active learning for level set estimation. In Proc.
IJCAI, 2013.

[9] J. M. Hernández-Lobato, M. W. Hoffman, and Z. Ghahramani. Predictive entropy search for
efficient global optimization of black-box functions. In Proc. NIPS, pages 918–926, 2014.

[10] H. Jiang, J. Li, and M. Qiao. Practical algorithms for best-k identification in multi-armed
bandits. arXiv preprint arXiv:1705.06894, 2017.

[11] S. Kalyanakrishnan and P. Stone. Efficient selection of multiple bandit arms: Theory and
practice. In Proc. ICML, volume 10, pages 511–518, 2010.

[12] S. Kalyanakrishnan, A. Tewari, P. Auer, and P. Stone. PAC subset selection in stochastic
multi-armed bandits. In Proc. ICML, volume 12, pages 655–662, 2012.

[13] H. J. Kushner. A new method of locating the maximum point of an arbitrary multipeak curve in
the presence of noise. Journal of basic engineering, 86(1):97–106, 1964.

[14] B. Mason, R. Camilleri, S. Mukherjee, K. Jamieson, R. Nowak, and L. Jain. Nearly optimal
algorithms for level set estimation. In Proc. AISTATS, 2022.
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A Proof of Lemma 3.1

We will show that ρ(t)π(x̃,x̃′) is an upper confidence bound of the regret rπ(x̃,x̃′), i.e.,

P
(
∀t ≥ 1, rπ(x̃,x̃′) ≤ ρ

(t)
π(x̃,x̃′)

)
≥ 1− δ .

The regret rπ(x̃,x̃′) is defined as follows

rπ(x̃,x̃′) ≜ max (0, (2π(x̃, x̃′)− 1)(f(x̃′)− f(x̃))) .

Furthermore, from Lemma 2.2, with probability of at least 1− δ, for all t ≥ 1,

lt(x̃) ≤ f(x̃) ≤ ut(x̃)

lt(x̃
′) ≤ f(x̃′) ≤ ut(x̃

′)

Hence, with probability of at least 1− δ, for all t ≥ 1,

f(x̃)− f(x̃′) ≤ ut(x̃)− lt(x̃
′)

f(x̃′)− f(x̃) ≤ ut(x̃
′)− lt(x̃)

Multiplying both sides with (2π(x̃, x̃′)− 1), we obtain

(2π(x̃, x̃′)− 1)(f(x̃′)− f(x̃)) ≤
{
ut(x̃)− lt(x̃

′) if π(x̃, x̃′) = 0

ut(x̃
′)− lt(x̃) if π(x̃, x̃′) = 1

≜ ρ
(t)
π(x̃,x̃′) .

Therefore, with probability of at least 1− δ, for all t ≥ 1,

rπ(x̃,x̃′) ≜ max (0, (2π(x̃, x̃′)− 1)(f(x̃′)− f(x̃))) ≤
{
max(0, ut(x̃)− lt(x̃

′)) if π(x̃, x̃′) = 0

max(0, ut(x̃
′)− lt(x̃)) if π(x̃, x̃′) = 1 .

B Proof of Lemma 3.5

We note that 1µt(x̃)≥µt(x̃′) = 1 happens when

µt(x̃) ≥ µt(x̃
′)

⇔ ut(x̃) + lt(x̃)

2
≥ ut(x̃

′) + lt(x̃
′)

2
⇔ ut(x̃)− lt(x̃

′) ≥ ut(x̃
′)− lt(x̃)

⇔ max(0, ut(x̃)− lt(x̃
′)) ≥ max(0, ut(x̃

′)− lt(x̃))

⇔ ρ
(t)
π(x̃,x̃′)=0 ≥ ρ

(t)
π(x̃,x̃′)=1 .

Therefore,

1µt(x̃)≥µt(x̃′) = 1
ρ
(t)

π(x̃,x̃′)=0
≥ρ

(t)

π(x̃,x̃′)=1

= argmin
a∈{0,1}

ρ
(t)
π(x̃,x̃′)=a = πµt

(x̃, x̃′) .

C Proof of Lemma 3.6

We will show that ρ(t)πµt (x̃,x̃
′) ≤ |Ct(xt)| when xt is taken from the set Qt ≜ {x̃ ▽ x̃′, x̃△ x̃′, x̃ ∨

x̃′, x̃ ∧ x̃′}.

Case 1: xt = x̃ ▽ x̃′ ≜ argmaxx∈{x̃,x̃′} ut(x)

ρ
(t)
πµt (x̃,x̃

′) = max(0,min(ut(x̃
′)− lt(x̃), ut(x̃)− lt(x̃

′)))

≤ max(0,min(ut(x̃ ▽ x̃′)− lt(x̃), ut(x̃ ▽ x̃′)− lt(x̃
′))) (13)

≤ max(0, ut(x̃ ▽ x̃′)− lt(x̃ ▽ x̃′)) (14)

= ut(x̃ ▽ x̃′)− lt(x̃ ▽ x̃′) (15)

= |Ct(x̃ ▽ x̃′)| (16)
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where (13) is because x̃ ▽ x̃′ ≜ argmaxx∈{x̃,x̃′} ut(x), (14) is because x̃ ▽ x̃′ ∈ {x̃, x̃′}, (15) is
because ut(x̃ ▽ x̃′)− lt(x̃ ▽ x̃′) ≥ 0.

Case 2: xt = x̃△ x̃′ ≜ argminx∈{x̃,x̃′} lt(x)

ρ
(t)
πµt (x̃,x̃

′) = max(0,min(ut(x̃
′)− lt(x̃), ut(x̃)− lt(x̃

′))) (17)

≤ max(0,min(ut(x̃
′)− lt(x̃△ x̃′), ut(x̃)− lt(x̃△ x̃′))) (18)

≤ max(0, ut(x̃△ x̃′)− lt(x̃△ x̃′)) (19)

= ut(x̃△ x̃′)− lt(x̃△ x̃′) (20)

= |Ct(x̃△ x̃′)| (21)

where (18) is because x̃ △ x̃′ ≜ argminx∈{x̃,x̃′} lt(x), (19) is because x̃ △ x̃′ ∈ {x̃, x̃′}, (20) is
because ut(x̃△ x̃′)− lt(x̃△ x̃′) ≥ 0.

Case 3: xt = x̃ ∨ x̃′ ≜ argmaxx∈{x̃,x̃′} |Ct(x)|, i.e.,

|Ct(x̃ ∨ x̃′)| = max
x∈{x̃,x̃′}

|Ct(x)| (22)

≥ |Ct(x̃△ x̃′)| (23)

≥ ρ
(t)
πµt (x̃,x̃

′) (24)

where (23) is because x̃△ x̃′ ∈ {x̃, x̃′}, (24) is from the above proof of case 2 in (21).

Case 4: xt = x̃ ∧ x̃′ ≜ argminx∈{x̃ ▽ x̃′,x̃△̃x′} |Ct(x)|. From (16) and (21), it follows that |Ct(x̃ ∧
x̃′)| ≥ ρ

(t)
πµt (x̃,x̃

′).

D Proof of Theorem 3.7

By choosing xt following Lemma 3.6, with probability of at least 1− δ, for all t ≥ 1,

rπµt (x̃,x̃
′) ≤ ρ

(t)
πµt (x̃,x̃

′) ≤ |Ct(xt)| = 2β
1/2
t σt(xt)

Hence, with probability of at least 1− δ, for all T ≥ 1,

T∑
t=1

rπµt (x̃,x̃
′) ≤

T∑
t=1

2β
1/2
t σt(xt)

Since βt is a non-decreasing sequence, βt ≤ βT for all t ≤ T . Therefore, with probability of at
least 1− δ, for all T ≥ 1,

T∑
t=1

rπµt (x̃,x̃
′) ≤ 2β

1/2
T

T∑
t=1

σt(xt)

From Lemma 4 in [5],
T∑

t=1

σt(xt) ≤
√
4(T + 2)γT = O(

√
TγT )

Hence, with probability of at least 1− δ, for all T ≥ 1,

T∑
t=1

rπµt (x̃,x̃
′) ≤ O(

√
TβT γT ) .

i.e.,

RT ≜
T∑

t=1

rπµt (x̃,x̃
′) ≤ O(

√
TβT γT ) .
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E Bayesian Optimization as Active Set Ordering with k = 1

E.1 Regret

For a predicted top-1 set Sµt
(1), πµt

(Sµt
(1),Scµt

(1)) = 1. Hence, the regret for predicting Sµt
(1)

is expressed as follows.

rπµt (Sµt (1),Sc
µt

(1)) = max

(
0, max

(x,x′)∈Sµt (1)×Sc
µt

(1)
f(x′)− f(x)

)
.

Let Sµt
(1) ≜ {x̂∗} and x∗ ∈ argmaxx∈X f(x).

rπµt (Sµt (1),Sc
µt

(1)) = max

(
0, max

x∈Sc
µt

(1)
(f(x)− f(x̂∗))

)

= max

(
0,

(
max

x∈Sc
µt

(1)
f(x)

)
− f(x̂∗)

)
.

Since X = Sµt
(1) ∪ Scµt

(1), there are 2 cases

• If x∗ ∈ Scµt
(1), then maxx∈Sc

µt
(1) f(x) = f(x∗) ≥ f(x̂∗) and

rπµt (Sµt (1),Sc
µt

(1)) = max (0, f(x∗)− f(x̂∗)) = f(x∗)− f(x̂∗) .

• If x∗ ∈ Sµt(1), i.e., x∗ = x̂∗, then maxx∈Sc
µt

(1) f(x) ≤ f(x̂∗) and

rπµt (Sµt (1),Sc
µt

(1)) = 0 = f(x∗)− f(x̂∗) .

E.2 Sampling Input

We will show that

x̄t ▽ x̄′
t ∈ argmax

x∈X
ut(x) .

When k = 1, due to the definition of Sµt
(k) in Definition 4.2

x̄t ∈ argmax
x∈X

µt(x) .

Let

x̂t ∈ argmax
x∈X

ut(x) .

We consider the following 2 cases:

Case 1: If ut(x̂t) = ut(x̄t), then

x̄t ▽ x̄′
t ∈ argmax

x∈X
ut(x) .

Case 2: If ut(x̂t) ̸= ut(x̄t) which implies that x̂t ∈ Scµt
(k) and ut(x̂t) > ut(x̄t), then we prove

that ut(x̂t) = ut(x̄
′
t) by contradiction. Assuming that

ut(x̂t) > ut(x̄
′
t) . (25)

Let us consider the following upper confidence bounds of pairwise orderings:

ρ
(t)
πµt (x̄t,x̂t)

= max(0, ut(x̂t)− lt(x̄t)) = ut(x̂t)− lt(x̄t) > 0

ρ
(t)
πµt (x̄t,x̄′

t)
= max(0, ut(x̄

′
t)− lt(x̄t)) .
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Furthermore, from the choice of (x̄t, x̄
′
t) in (11) and x̂t ∈ Scµt

(k),

ρ
(t)
πµt (x̄t,x̄′

t)
≥ ρ

(t)
πµt (x̄t,x̂t)

.

Hence,

max(0, ut(x̄
′
t)− lt(x̄t) ≥ max(0, ut(x̂t)− lt(x̄t)) = ut(x̂t)− lt(x̄t) > 0

ut(x̄
′
t)− lt(x̄t) ≥ ut(x̂t)− lt(x̄t)

ut(x̄
′
t) ≥ ut(x̂t)

which contradicts to the assumption 25. Therefore, ut(x̂t) = ut(x̄
′
t) and

x̄t ▽ x̄′
t ∈ argmax

x∈X
ut(x) .

F Upper Confidence Bound of the Regret rπ(X0,X1)

rπ(X0,X1) ≜ max
(x,x′)∈X0×X1

rπ(x,x′)=π(X0,X1)

With probability of at least 1 − δ, for all t ≥ 1 and for all {x,x′} ⊂ X , rπ(x,x′)=π(X0,X1) ≤
ρ
(t)
π(x,x′)=π(X0,X1)

. Therefore, with probability of at least 1− δ, for all t ≥ 1 and for all {x,x′} ⊂ X ,

rπ(X0,X1) ≤ max
(x,x′)∈X0×X1

ρ
(t)
π(x,x′)=π(X0,X1)

≜ ρ
(t)
π(X0,X1)

.

G Transitivity of Pairwise Orderings

The transitivity property of the binary relation µπt
follows directly from its connection to the GP

posterior mean in Lemma 3.5. In particular, we would like to show that if

πµt
(x,x′) = 1 πµt

(x′,x′′) = 1 (26)

then

πµt(x,x
′′) = 1 .

From Lemma 3.5, the premise (26) implies that

µt(x) ≥ µt(x
′) µt(x

′) ≥ µt(x
′′)

which implies that

µt(x) ≥ µt(x
′′) .

Applying Lemma 3.5 again, we conclude

πµt
(x,x′′) = 1 .

H Proof of Lemma 4.3

Applying Lemma 3.6 to the input pair (x̄t, x̄
′
t), by selecting xt ∈ {x̄t ▽ x̄′

t, x̄t△ x̄′
t, x̄t∨ x̄′

t, x̄t∧ x̄′
t},

|Ct(xt)| ≥ ρ
(t)
πµt (x̄t,x̄′

t)
.

Furthermore, from the choice of (x̄t, x̄
′
t) in (11),

ρ
(t)
πµt (x̄t,x̄′

t)
= max

(x,x′)∈Sµt (k)×Sc
µt

(k)
ρ
(t)
πµt (x,x

′) = ρ
(t)
πµt (Sµt (k),Sc

µt
(k) .

Therefore,

|Ct(xt)| ≥ ρ
(t)
πµt (Sµt (k),Sc

µt
(k) .
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Algorithm 2 Mean Prediction (MP) for Active Multiple Set Ordering
Require: X , D0, {k1, k2, . . . , km}, T

1: for t = 1 to T do
2: Update GP posterior belief: {µt(x)}x∈X , {σt(x)}x∈X .
3: Construct {Sµt

(ki)}mi=1 as the collection of m top-k sets predicted using µt. ▷ Prediction
4: (¯̄xt, ¯̄x

′
t) ≜ argmax(x,x′)∈∪m

i=1Sµt (ki)×Sc
µt

(ki) ρ
(t)
πµt (x,x

′)

5: Select xt ∈ {¯̄xt ▽ ¯̄x′
t, ¯̄xt△ ¯̄x′

t, ¯̄xt ∨ ¯̄x′
t, ¯̄xt ∧ ¯̄x′

t}. ▷ Sampling input
6: yt(Dt)← y(Dt−1) ∪ {y(xt)}
7: end for
8: Update GP posterior belief: {µT+1(x)}x∈X , {σT+1(x)}x∈X .
9: Construct {SµT+1

(ki)}mi=1 as the collection of m top-k sets predicted using µT+1.
10: return {SµT+1

(ki)}mi=1.

I Proof of Theorem 4.4

By choosing xt following Lemma 4.3, with probability of at least 1− δ, for all t ≥ 1,

rπµt (Sµt (k),Sc
µt

(k)) ≤ ρ
(t)
πµt (Sµt (k),Sc

µt
(k)) ≤ |Ct(xt)| = 2β

1/2
t σt(xt) .

Furthermore, from the non-decreasing property of the sequence (βt)
T
t=1,

T∑
t=1

rπµt (Sµt (k),Sc
µt

(k)) ≤
T∑

t=1

2β
1/2
t σt(xt) ≤ 2β

1/2
T

T∑
t=1

σt(xt)

By utilizing the result from [5] like Appendix D, we can obtain
T∑

t=1

σt(xt) ≤ O(
√
TγT ) .

Therefore, with probability of at least 1− δ, for all T ≥ 1,
T∑

t=1

2β
1/2
T σt(xt) ≤ O(

√
TβT γT )

i.e.,

RT,k ≜
T∑

t=1

rπµt (Sµt (k),Sc
µt

(k)) ≤ O(
√

TβT γT ) .

J Active Multiple Set Ordering

The pseudocode of MP algorithm for the active multiple set ordering problem is shown in Algorithm 2.
In the rest of this section, we prove the cumulative regret bound of Algorithm 2.

We recall that in (12),

(¯̄xt, ¯̄x
′
t) ≜ argmax

(x,x′)∈(∪m
i=1Sµt (ki)×Sc

µt
(ki))

ρ
(t)
πµt (x,x

′)

Therefore,

∀i ∈ {1, 2, . . . ,m}, ρ(t)πµt (¯̄xt,¯̄x′
t)
≥ max

(x,x′)∈S(ki)×Sc(ki)
ρ
(t)
πµt (x,x

′)

= ρ
(t)
πµt (Sµt (ki),Sc

µt
(ki))

Furthermore, applying Lemma 3.6 to the input pair (¯̄xt, ¯̄x
′
t), for any xt ∈ {¯̄xt ▽ ¯̄x′

t, ¯̄xt△ ¯̄x′
t, ¯̄xt ∨

¯̄x′
t, ¯̄xt ∧ ¯̄x′

t}

|Ct(xt)| ≥ ρ
(t)
πµt (¯̄xt,¯̄x′

t)
.
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Therefore,

∀i ∈ {1, 2, . . . ,m},

|Ct(xt)| ≥ ρ
(t)
πµt (Sµt (ki),Sc

µt
(ki))

.

Hence, with probability of at least 1− δ, for all t ≥ 1,

∀i ∈ {1, 2, . . . ,m}, rπµt (Sµt (ki),Sc
µt

(ki)) ≤ ρ
(t)
πµt (Sµt (ki),Sc

µt
(ki))

≤ |Ct(xt)| .

As a result, with probability of at least 1− δ, for all T ≥ 1,

∀i ∈ {1, 2, . . . ,m}, RT,ki ≜
T∑

t=1

rπµt (Sµt (ki),Sc
µt

(ki)) ≤
T∑

t=1

|Ct(xt)| ≤ O(
√
TβT γT )

where the last inequality comes from Appendix I.

K Experiments

All experiments were conducted on a computer equipped with an AMD Ryzen 7 6800HS processor
and 16GB of RAM.

To generate a function sampled from a GP, we randomly generate 3 observations {(xi, y(xi))}3i=1
and fit a GP model to these observations. Then, we sample function evaluations at all inputs in the
domain from the GP posterior distribution. These function evaluations are considered the evaluations
of the blackbox function. To generate an observation at a sampling input, we add a Gaussian noise
(of σn = 0.1) to the evaluations of the blackbox function at the sampling input.

The expressions for the Branin-Hoo and Goldstein-Price functions are described at [20]. We transform
the input domain of these functions to [0, 1]2 and standardize the function evaluations. The input
domain is discretized into n = 100 points randomly selected in the domain [0, 1]2. The noise is
chosen with σn = 0.1.

To perform experiments with the NO3 dataset from Lake Zurich (available at https://wldb.ilec.
or.jp/Lake/EUR-06/datalist), we standardize the NO3 measurements. Then, a GP model is
trained on the standardized dataset to generate the noisy evaluations of the blackbox function over
n = 100 randomly chosen locations.

We use the logarithmic values of the phosphorus measurements in the soy survey of Brooms Barn [22]
to construct a blackbox function. The locations are normalized to the range [0, 1]2 and the logarithmic
values of the phosphorus measurements are standardized. Then, we train a GP model to generate the
noisy evaluations of the blackbox function over n = 400 randomly chosen locations.

To perform experiments with the humidity dataset, we extract the humidity measurements at different
locations with the same mote id of 31167 from the Intel Lab data (available at https://db.csail.
mit.edu/labdata/labdata.html). The humidity measurements are standardized. Then, a GP
model is trained to this extracted dataset to generate the noisy evaluations of the blackbox function
over n = 100 randomly chosen locations.

To remove the potential inefficiency due to repeated sampling in Rand and Var, we provide additional
experiments by replacing the Rand and Var baselines with RandNoRepl and VarNoRepl, which do not
allow repeated sampling. This modification potentially gives RandNoRepl (random sampling without
replacement across different iterations) and VarNoRepl (uncertainty sampling without replacement
across different iterations) an additional advantage over our solutions which allow repeated sampling.
By avoiding repeated sampling, RandNoRepl and VarNoRepl can sample the input domain more
uniformly, whereas our methods might re-sample certain input regions. However, as shown in
Figure 5, RandNoRepl and VarNoRepl still do not outperform our solutions. The justification for the
efficiency of our solutions is in the nature of noisy observations: With a noise standard deviation of
σn = 0.1, a single observation at each input may not suffice to accurately determine the ordering with
its neighboring inputs in terms of the function value. Hence, spreading the sampling budget across
the whole input domain may not perform well. In contrast, our approach allocates more sampling
inputs to the boundary of the top-k set, where it is particularly challenging to check if inputs belong
to the top-k set (see Figure 2).
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Figure 5: Plots of the regret against the iteration in estimating the top-5 set S(t).
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• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.
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• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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