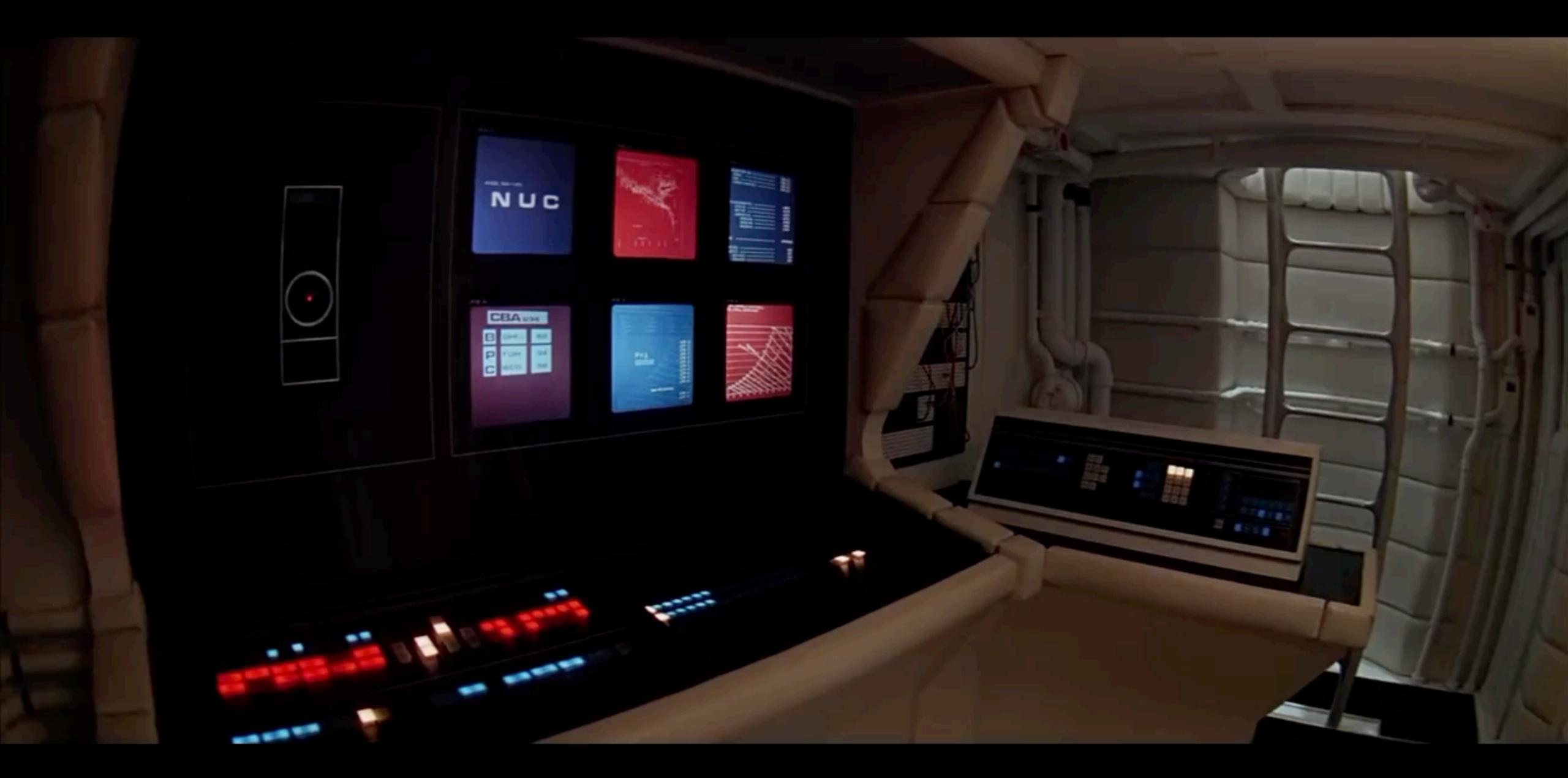
Opening the pod bay doors

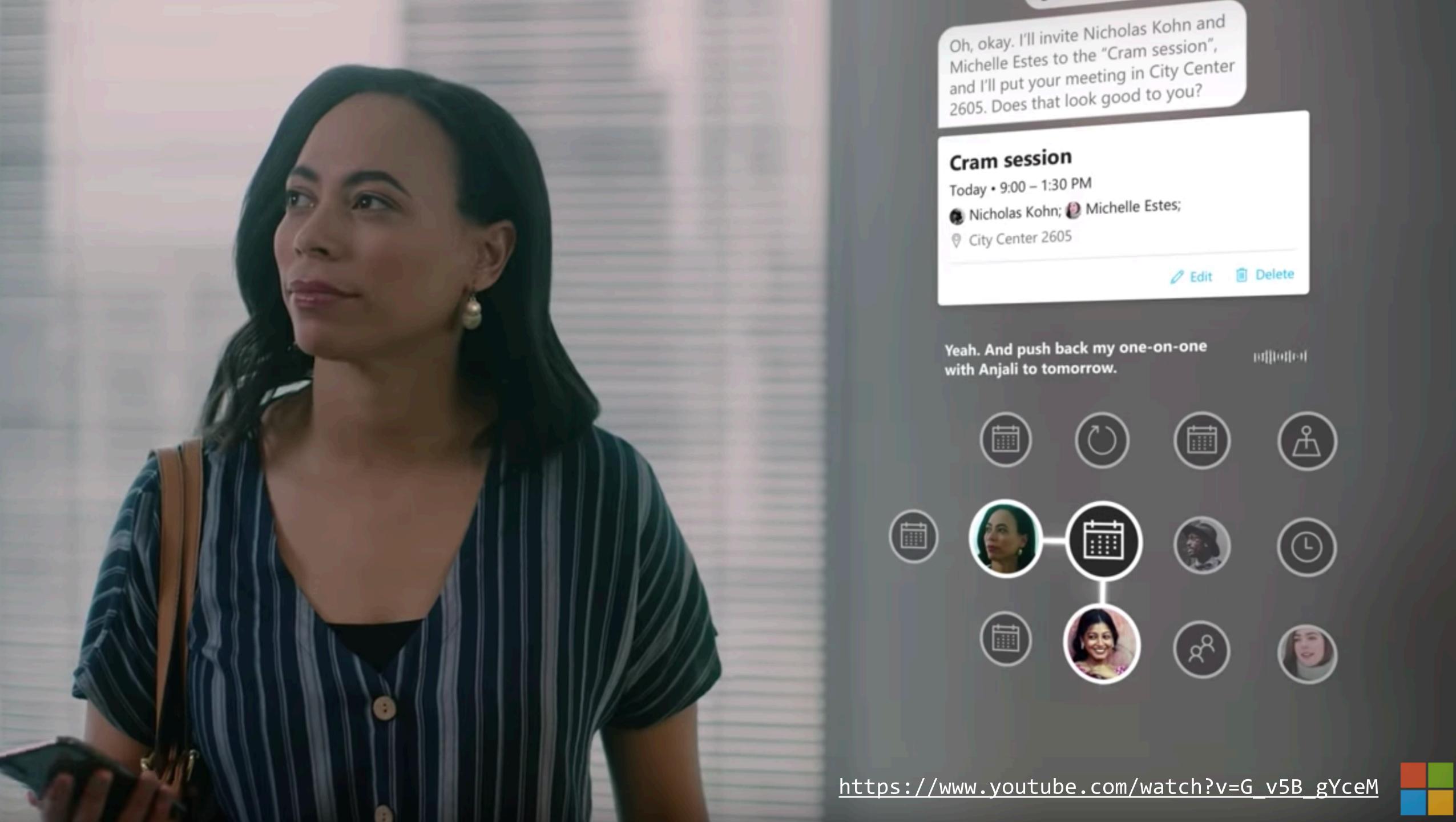
building intelligent agents that can interpret, generate and learn from natural language

Jacob Andreas, MIT / Microsoft web.mit.edu/jda/www / @jacobandreas

Following natural language instructions



https://www.youtube.com/watch?v=-3m-Zu3qgM4



https://www.freep.com/story/money/cars/general-motors/2019/07/24/gms-self-driving-car-robot-taxi

Following natural language instructions

Instruction following: ingredients

Context

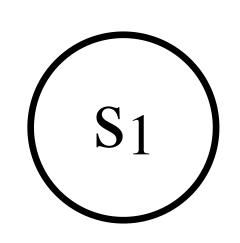
Data

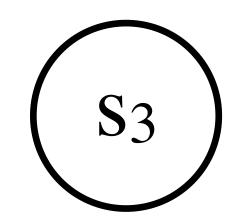
Environment

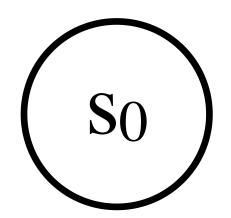
Instructions

Actions

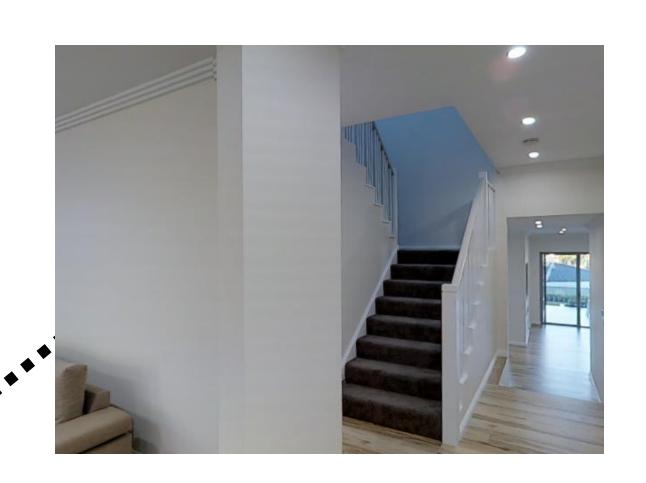
Supervision



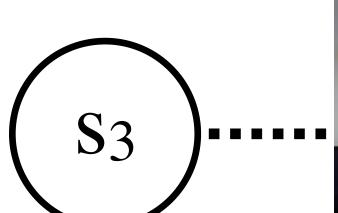


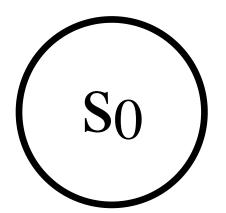


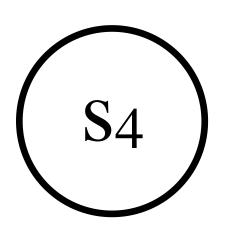


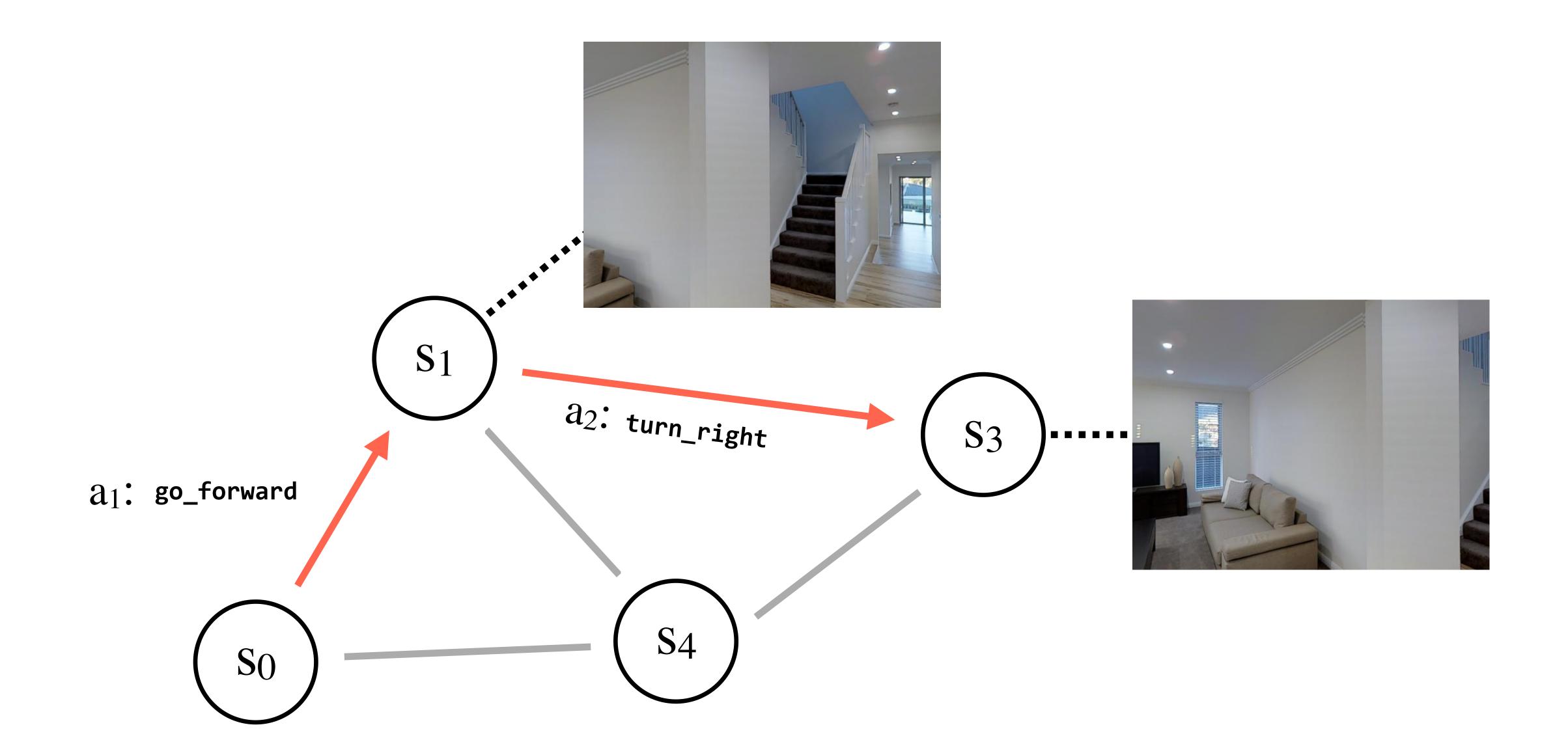


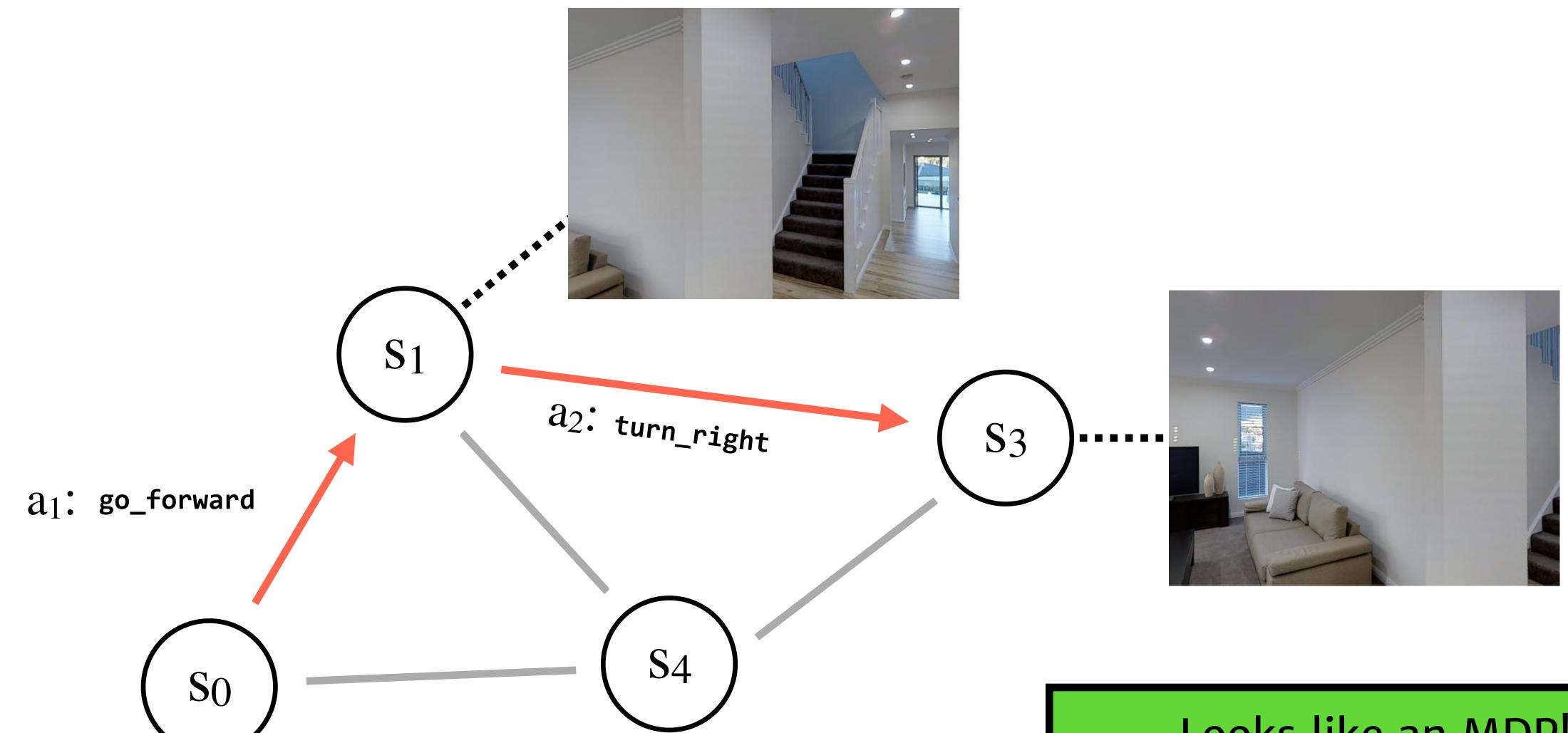
 $\left(\begin{array}{c} \mathbf{S}_1 \end{array}\right)$





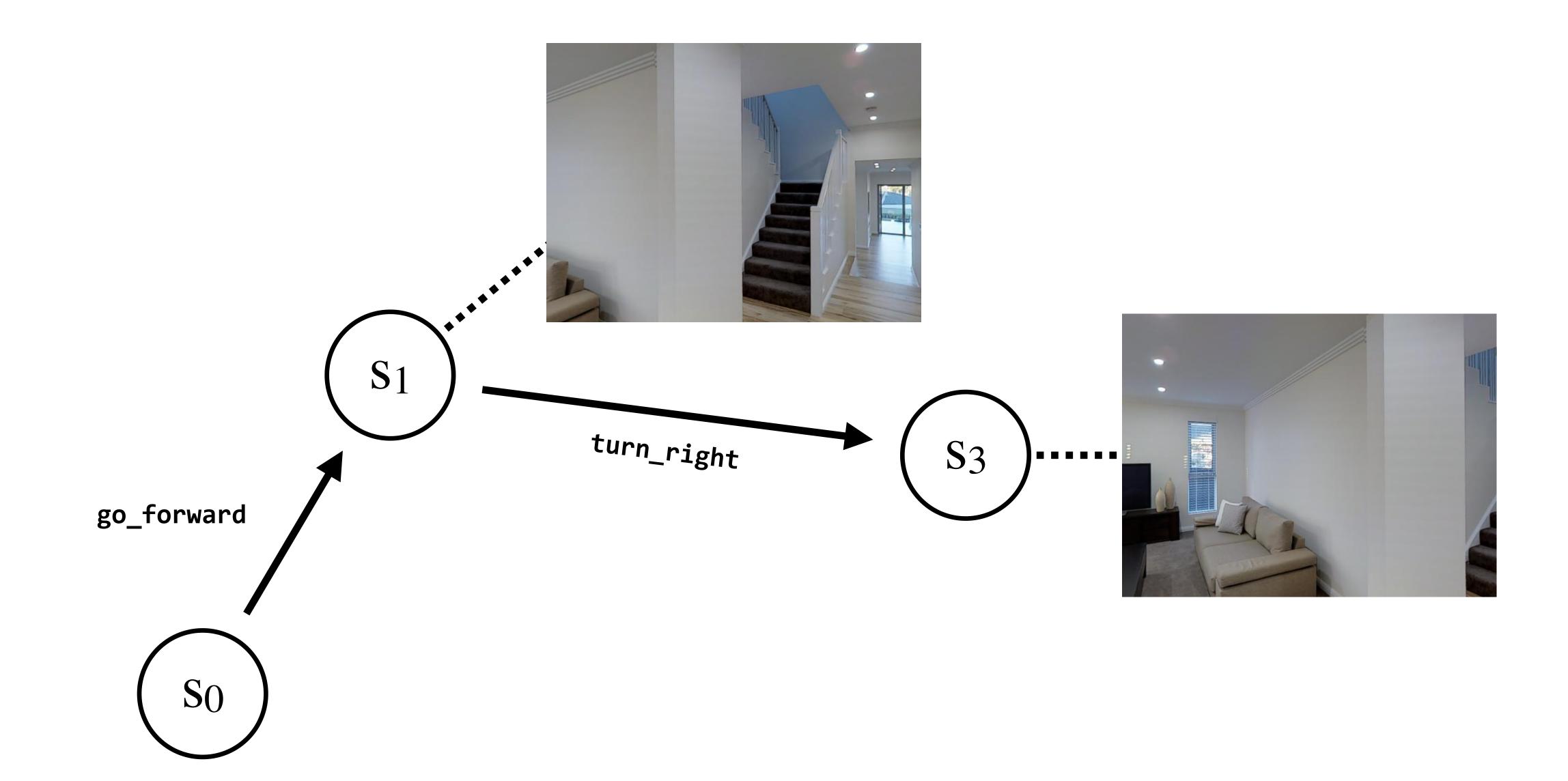


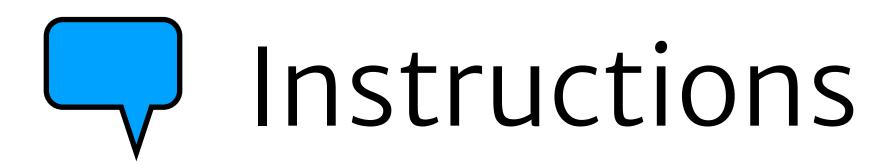


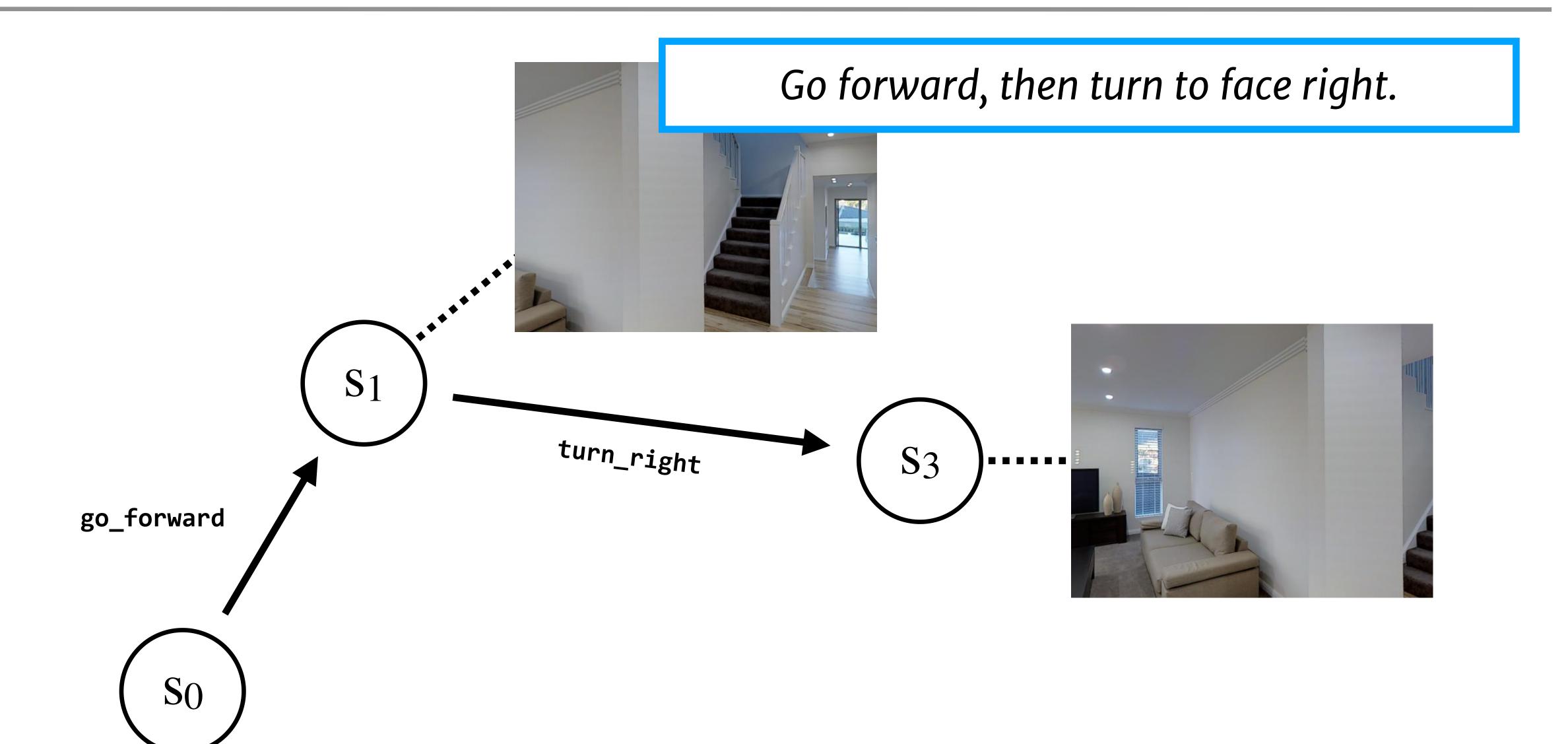


Looks like an MDP!

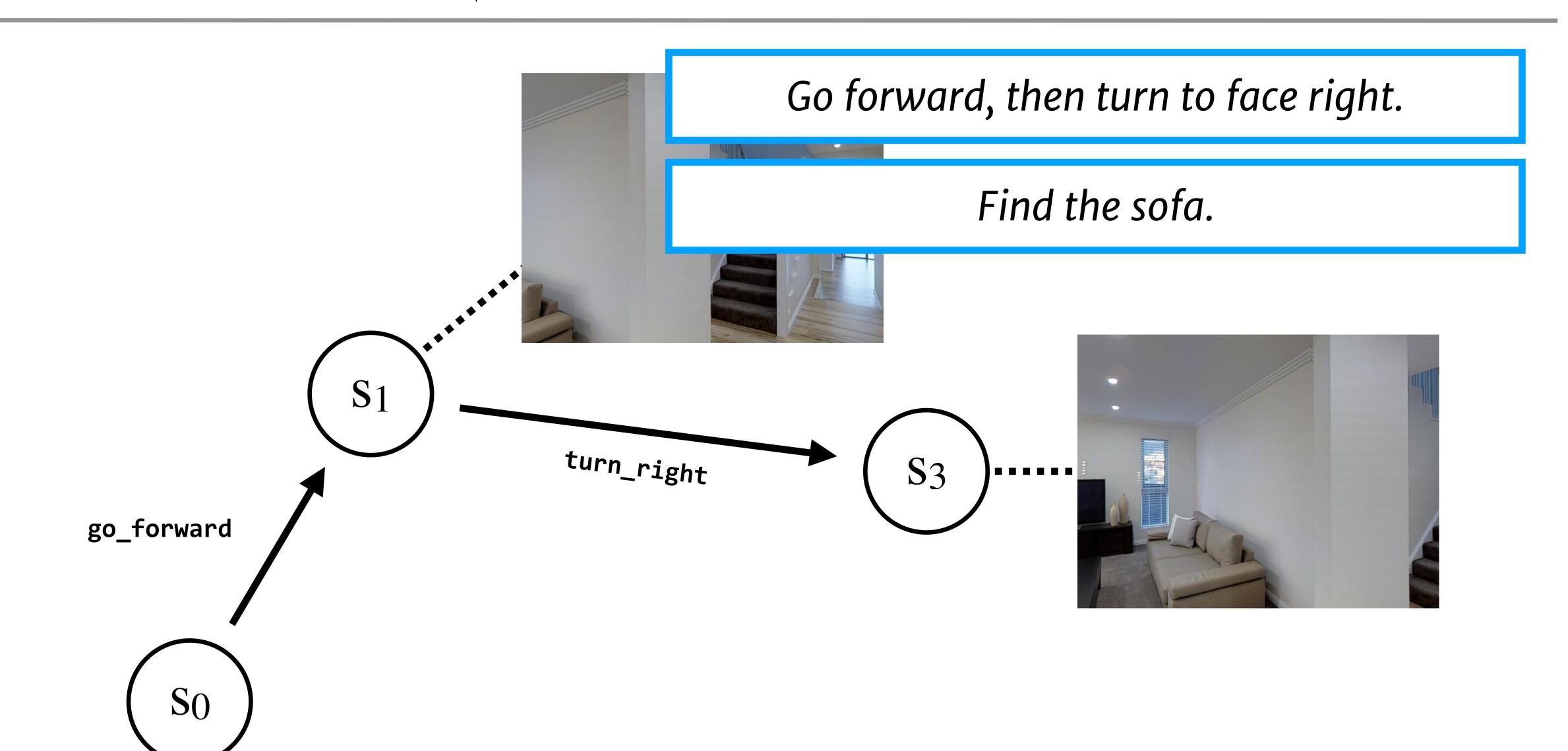
Instructions



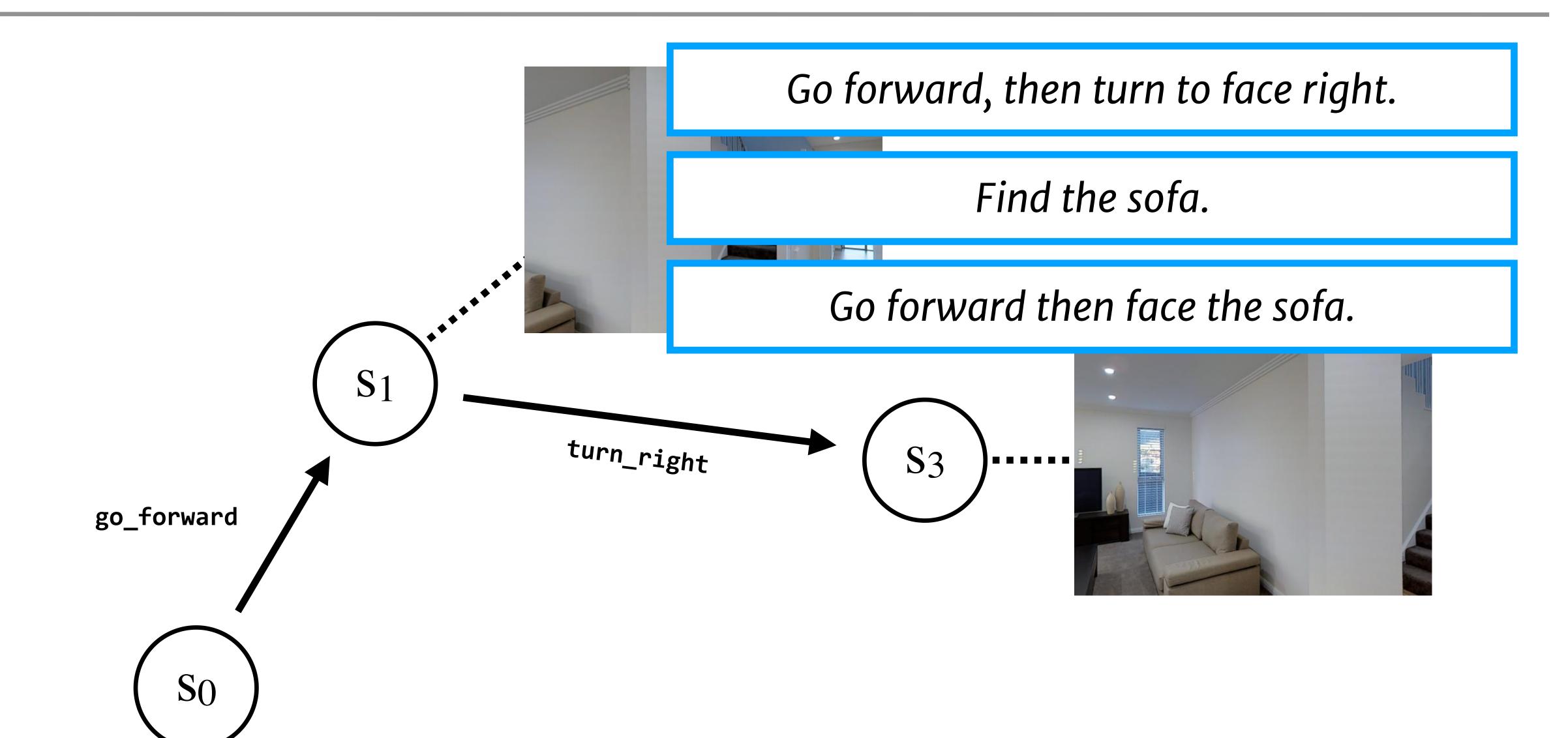


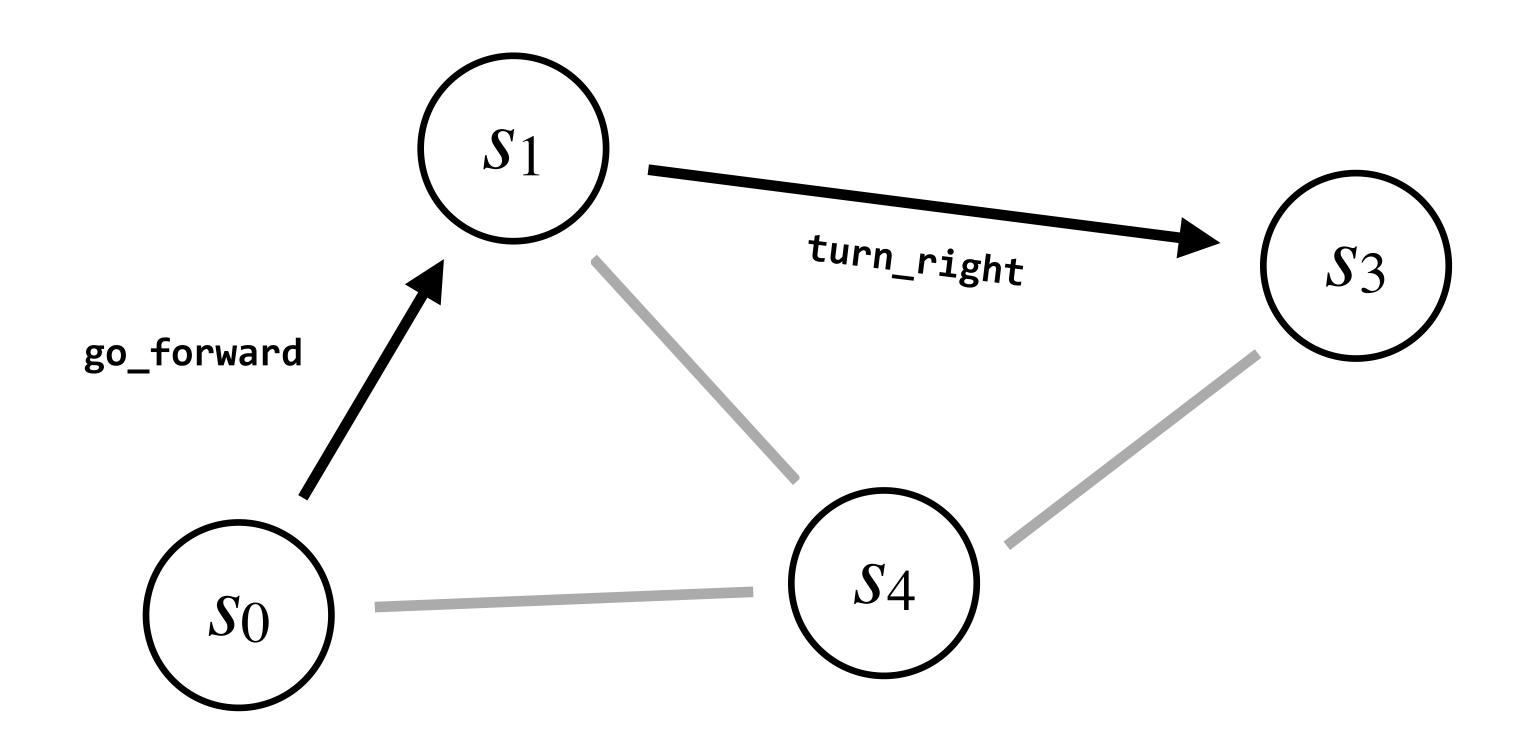


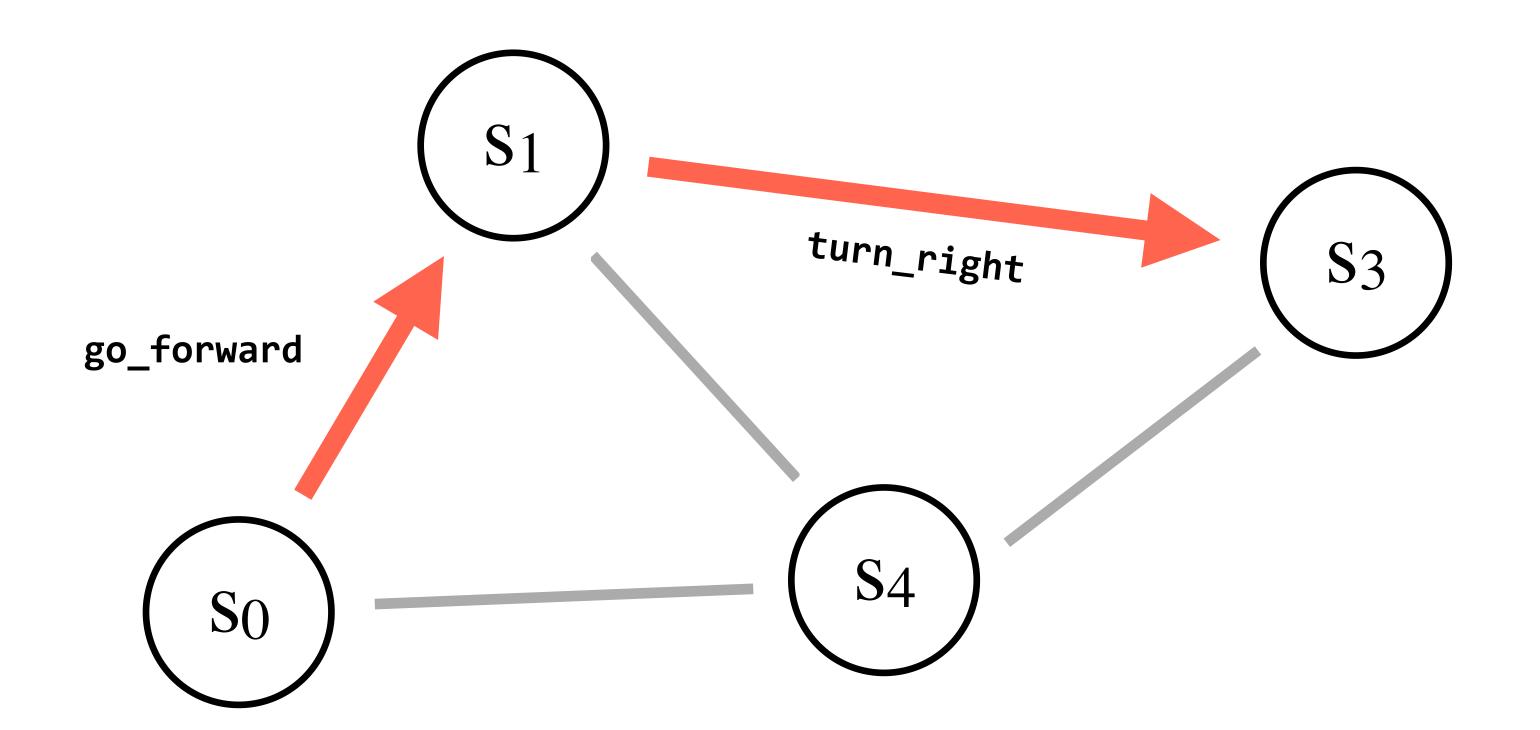
Instructions

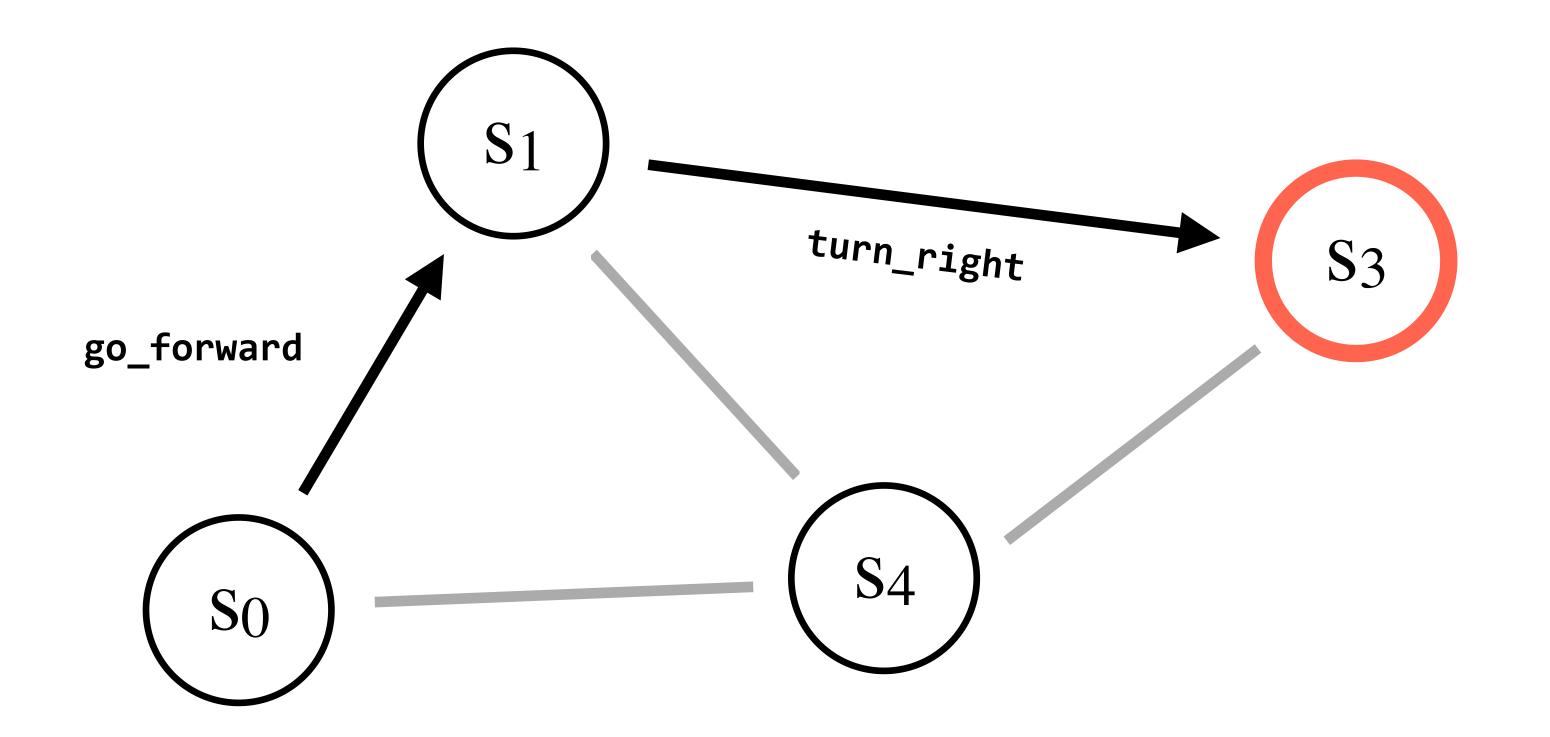


Instructions



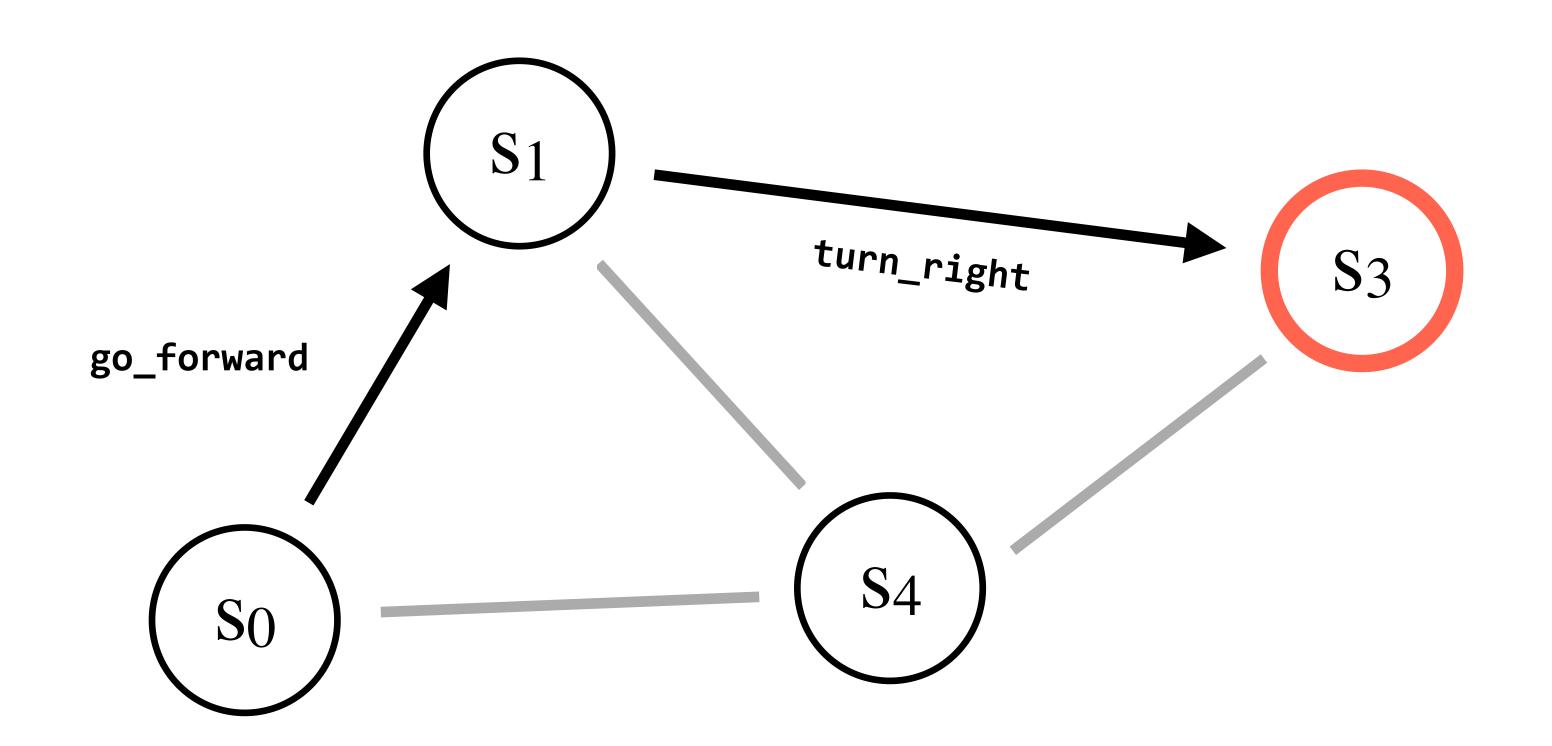






Supervision

Go forward, then turn to face right.



Instruction following: formally

Context

States S

Actions A

Transitions $T: S \times A \rightarrow S$

Data

Instruction $X \hookrightarrow$ Demo $Y \bowtie$ Reward $R \bowtie$

Goal: find a policy $S \times X \longrightarrow A$

As machine translation

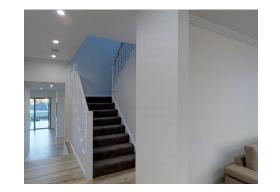
Move into the living room. Go forward then face the sofa.

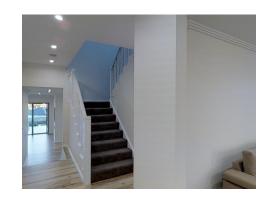
go_forward turn_left turn_left go_forward turn_right

As machine translation

Move into the living room. Go forward then face the sofa.

go_forward turn_left turn_left go_forward turn_right







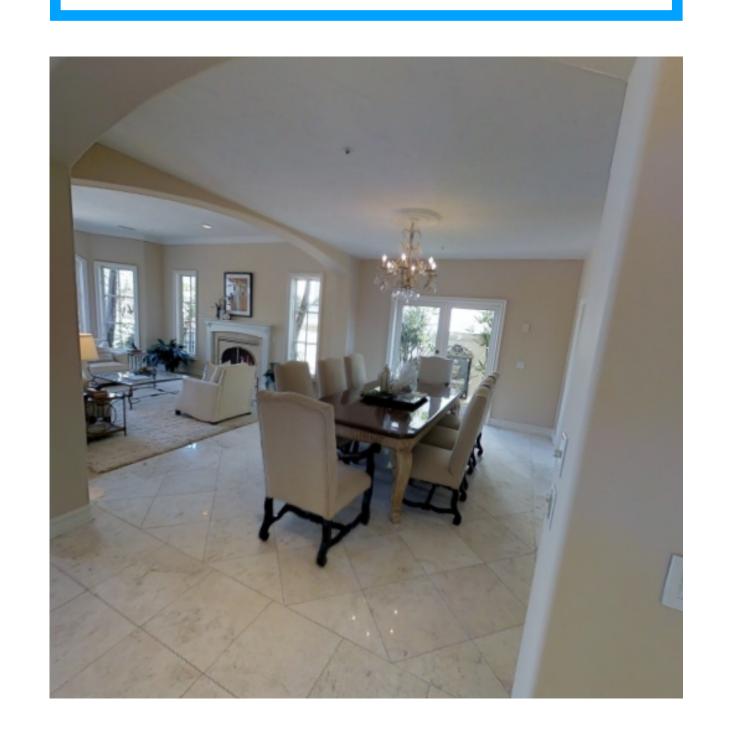
As machine translation

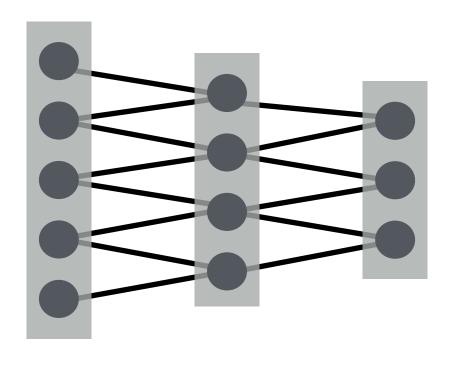
Move into the living room. Go forward then face the sofa.

go_forward turn_left turn_left go_forward turn_right

Approach 1: predicting action sequences

Go through the door and end facing into the next room.



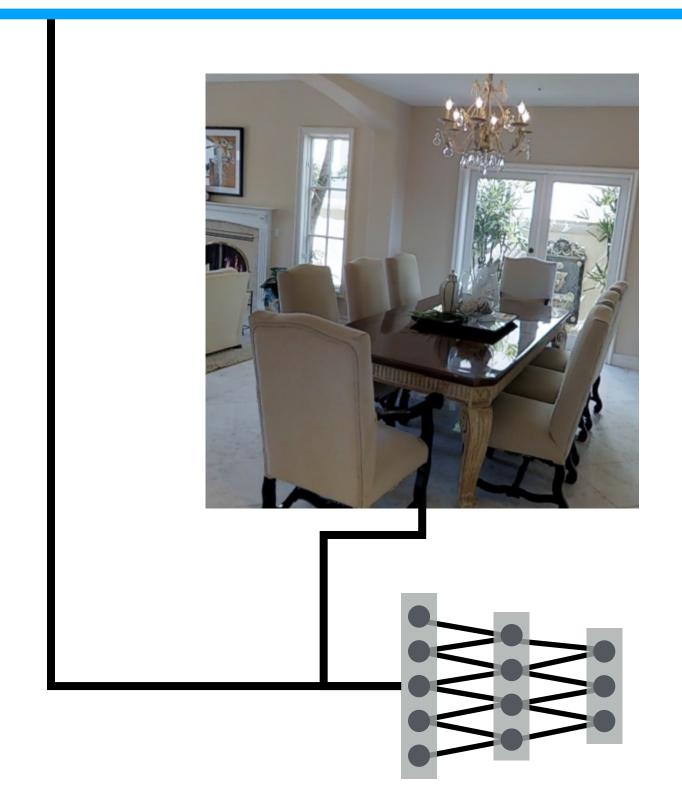


turn_right

turn_left

go_forward

Go through the door and end facing into the next room.



Key idea: solve this like a normal MDP, with the instruction as part of the state observation.

Training

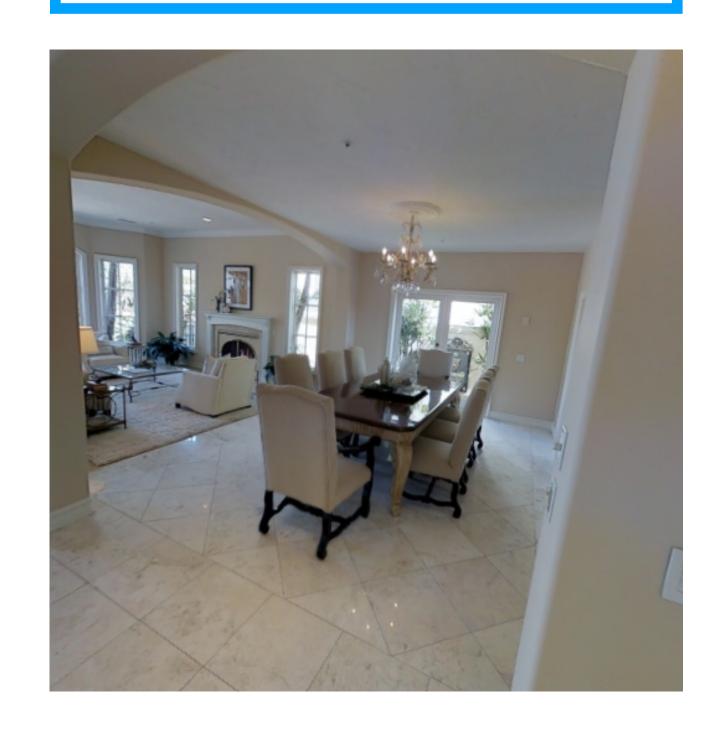
Evaluation

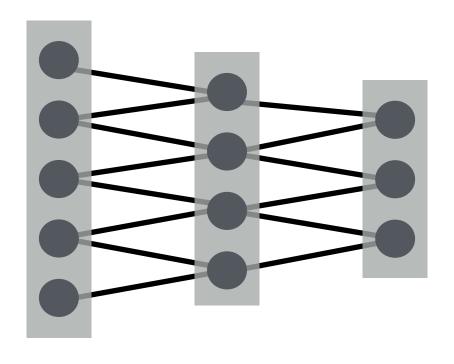
 $\max_{\theta} p(action \mid text, state; \theta)$

max $p(action \mid text, state; \theta)$

 $\max_{\theta} \mathbf{E}_{state \mid \theta} \mathbf{R}(action \mid state)$

Go through the door and end facing into the next room.



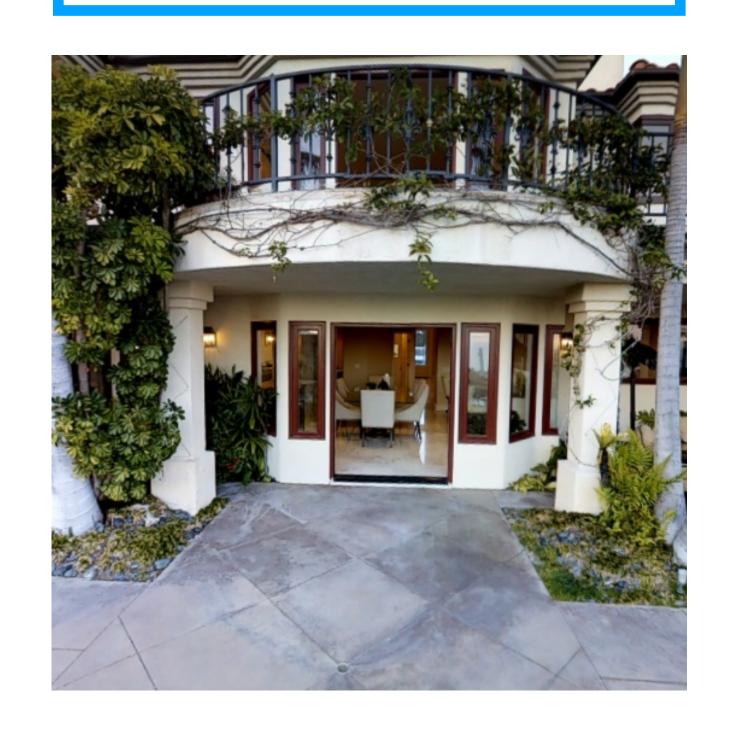


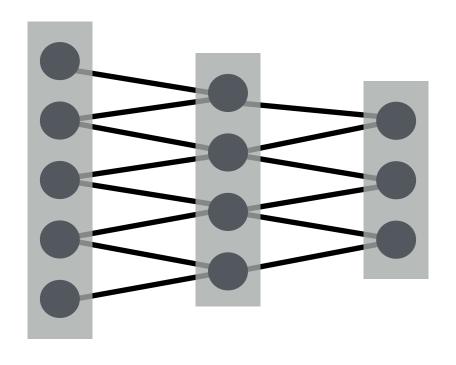
turn_right

turn_left

go_forward

Go through the door and end facing into the next room.



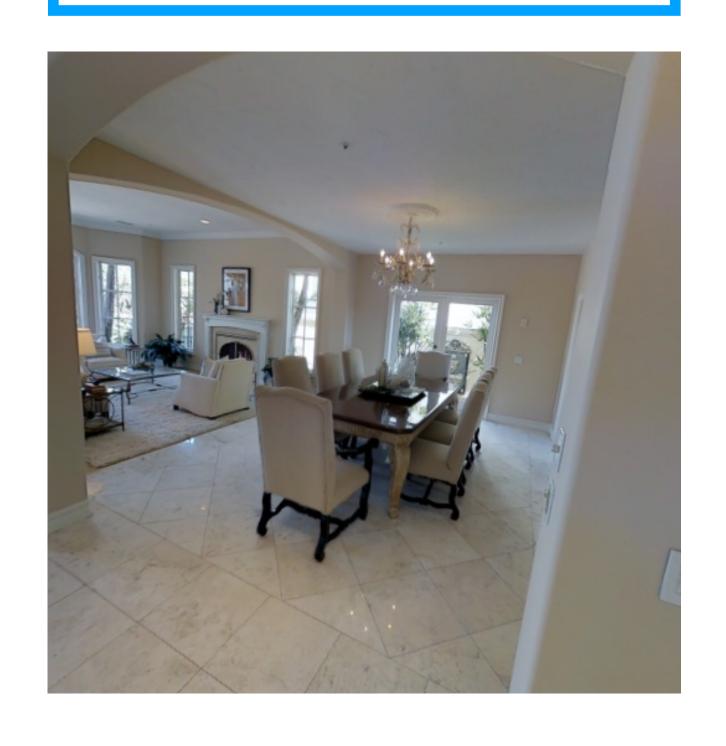


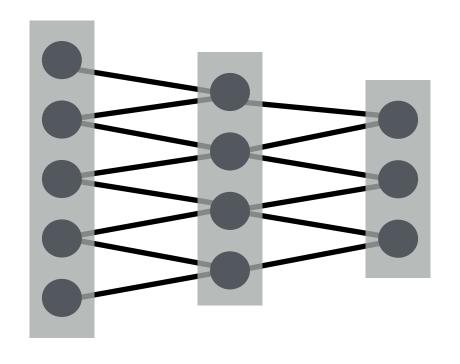
turn_right

turn_left

go_forward

Go through the door and end facing into the next room.





turn_right

turn_left

go_forward

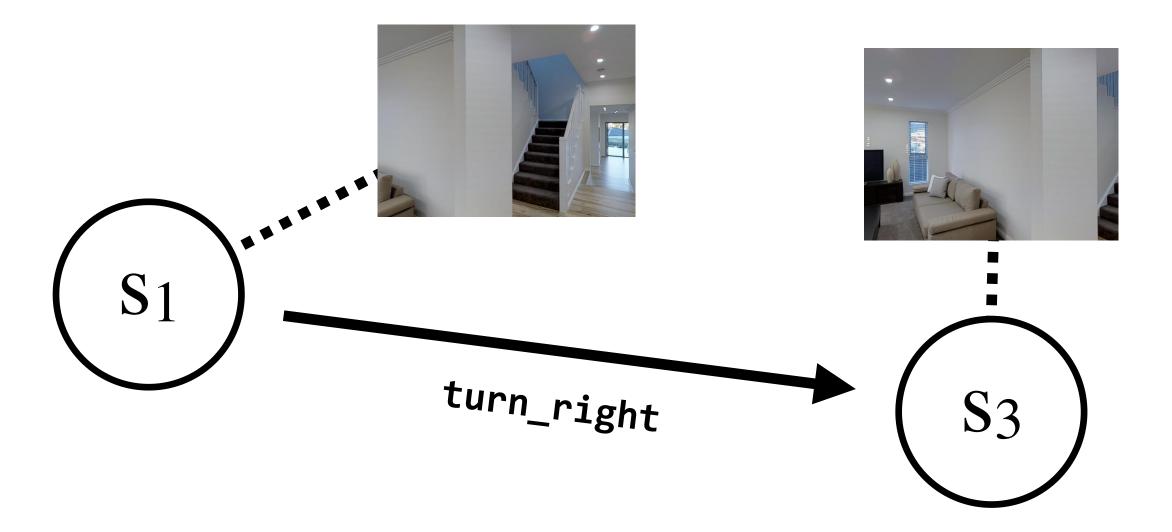
Key idea: make the state space track both "reading state" and physical state.

Augmented state spaces

Environment states S_e Environment actions A_e Reading states S_r Reading actions A_r

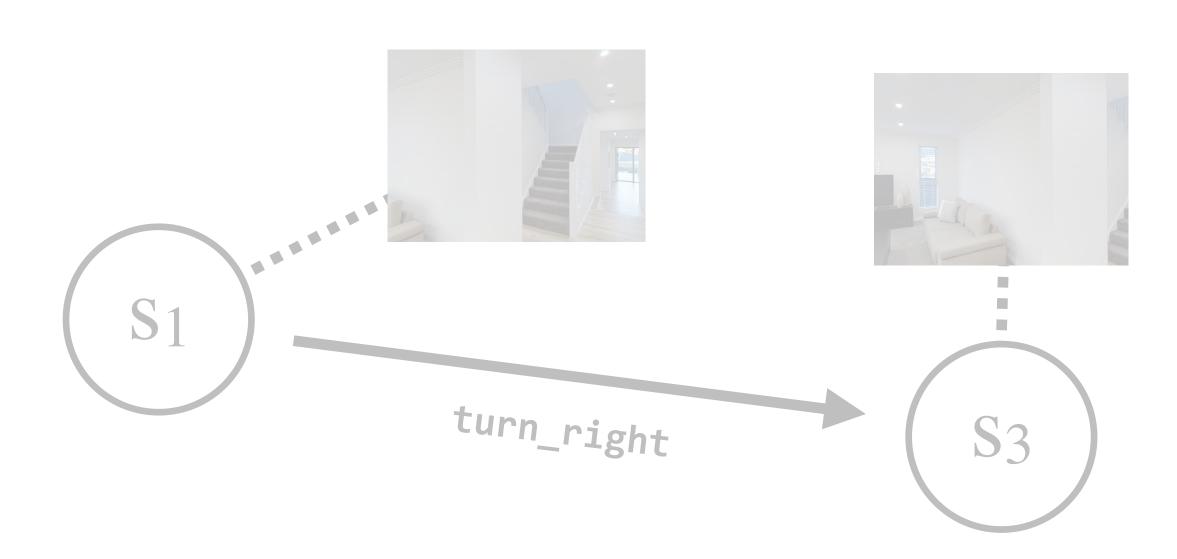
Augmented state spaces

Environment states S_e Environment actions A_e Reading states S_e Reading actions A_e

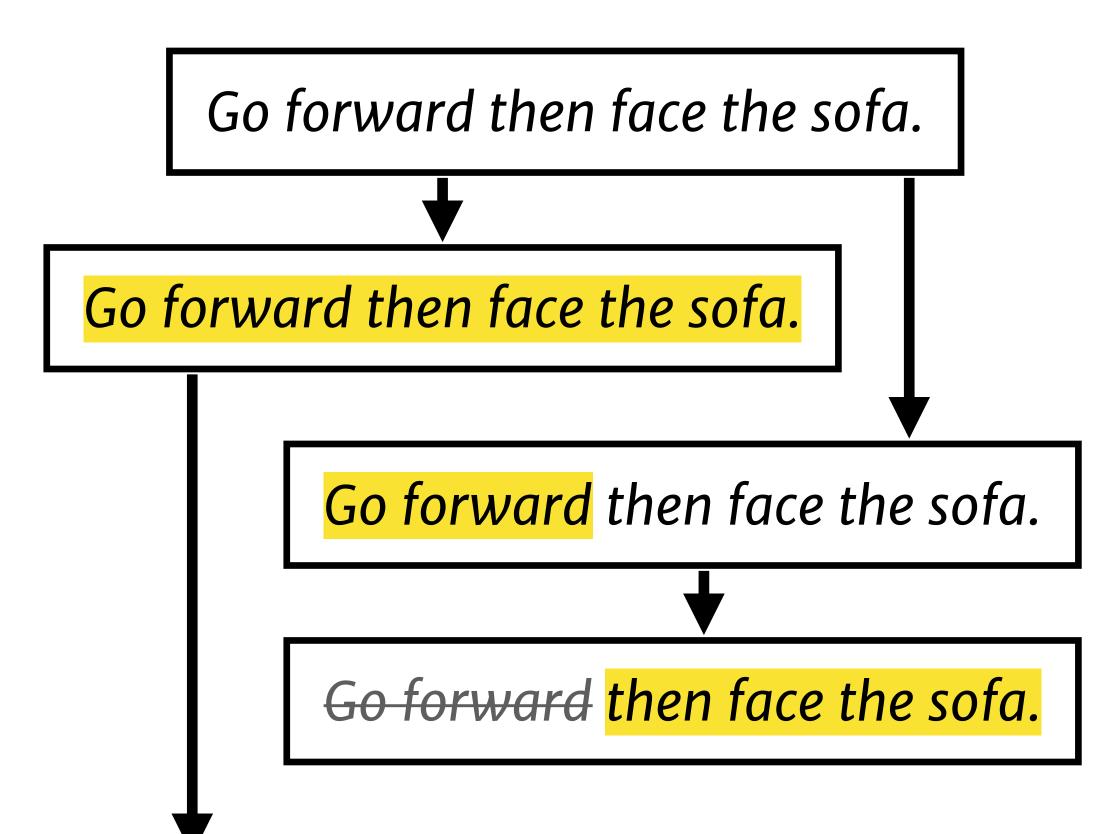


Augmented state spaces

Environment states S_e Environment actions A_e



Reading states S_e Reading actions A_e



Augmented state spaces

States
$$S = S_e \times S_r$$

Actions $A = A_e \cup A_r$
Transitions $T: S \times A \rightarrow S$

Goal: find a policy $S \times X \to A$

Augmented state spaces: training

Training

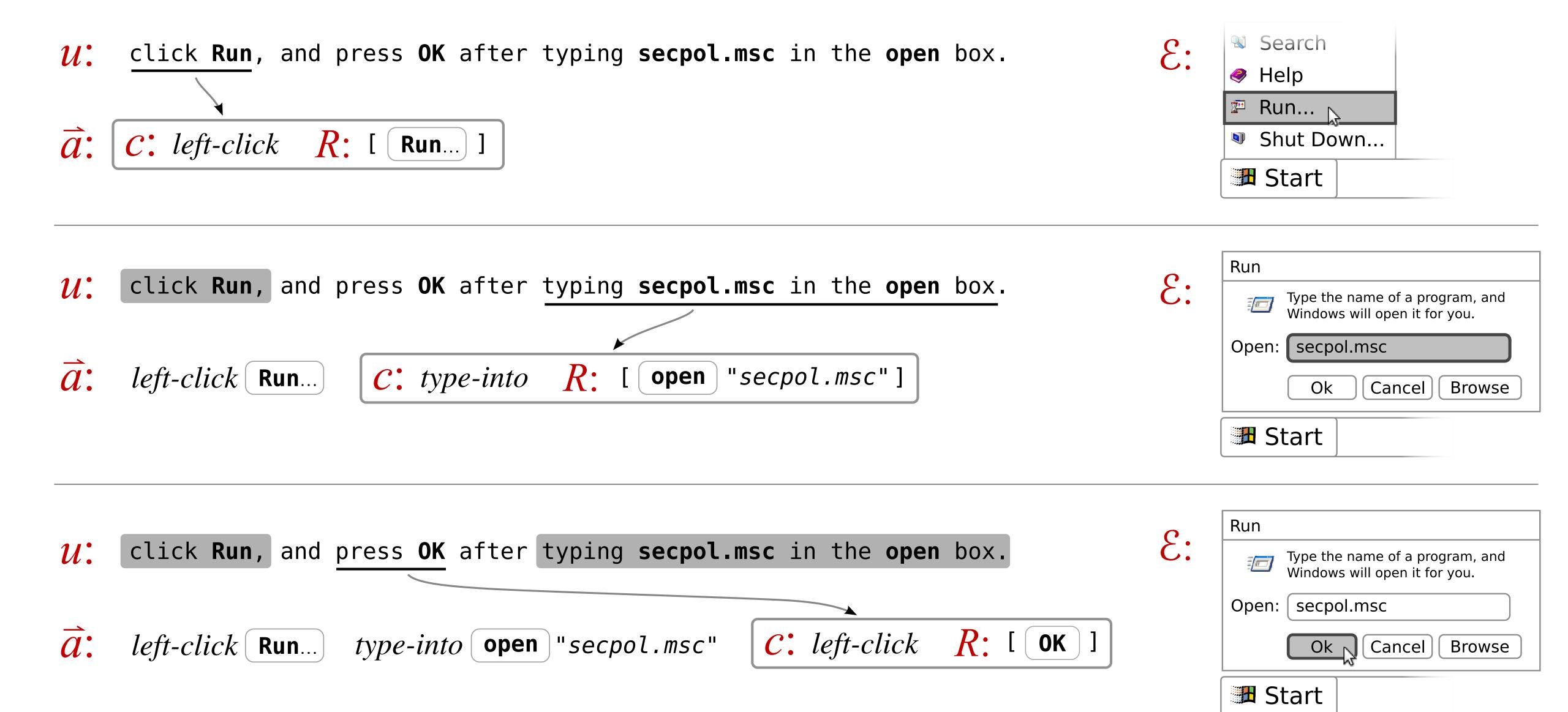
Evaluation

max p(action text, state; \theta)

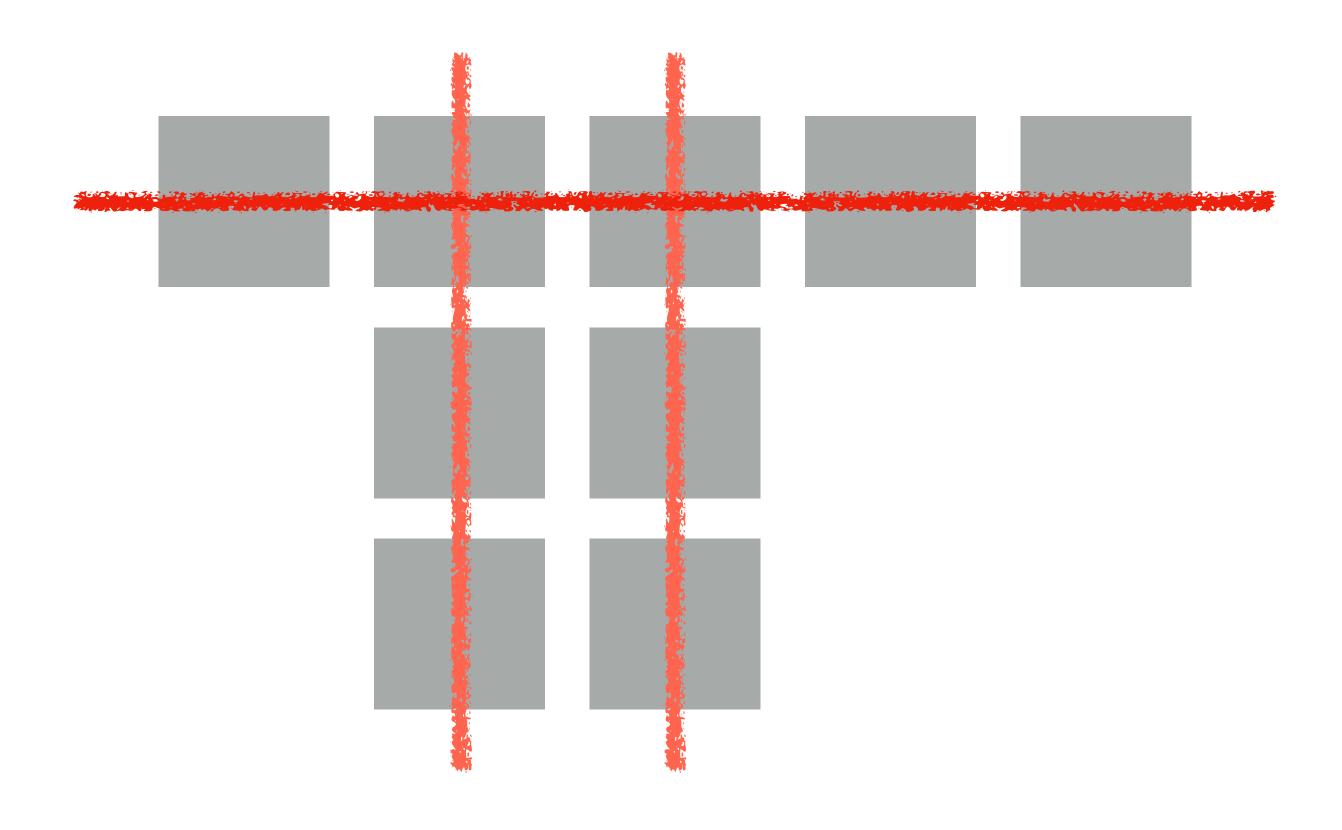
max $p(action | text, state; \theta)$

max $\mathbf{E}_{state \mid \theta} \mathbf{R}(action \mid state)$

[Branavan et al., ACL '09]



clear the two long columns, and then the row



Augmented state spaces: better training

Training

Evaluation

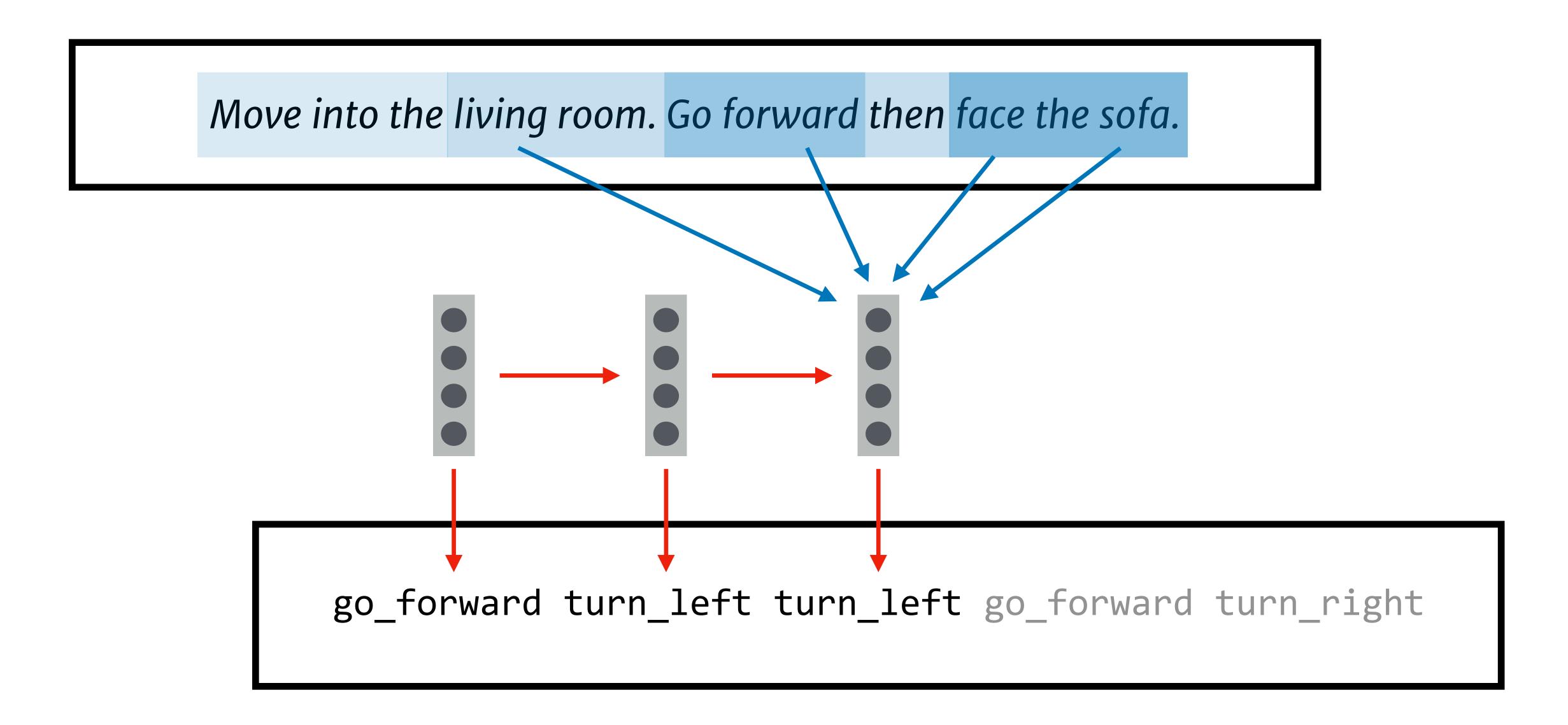
max p(action text, state; \theta)

max $p(action | text, state; \theta)$

max $\mathbf{E}_{state \mid \theta} \mathbf{R}(action \mid state)$

Move into the living room. Go forward then face the sofa.

go_forward turn_left turn_left go_forward turn_right



Key idea: move "reading state" into the hidden state of an RNN.

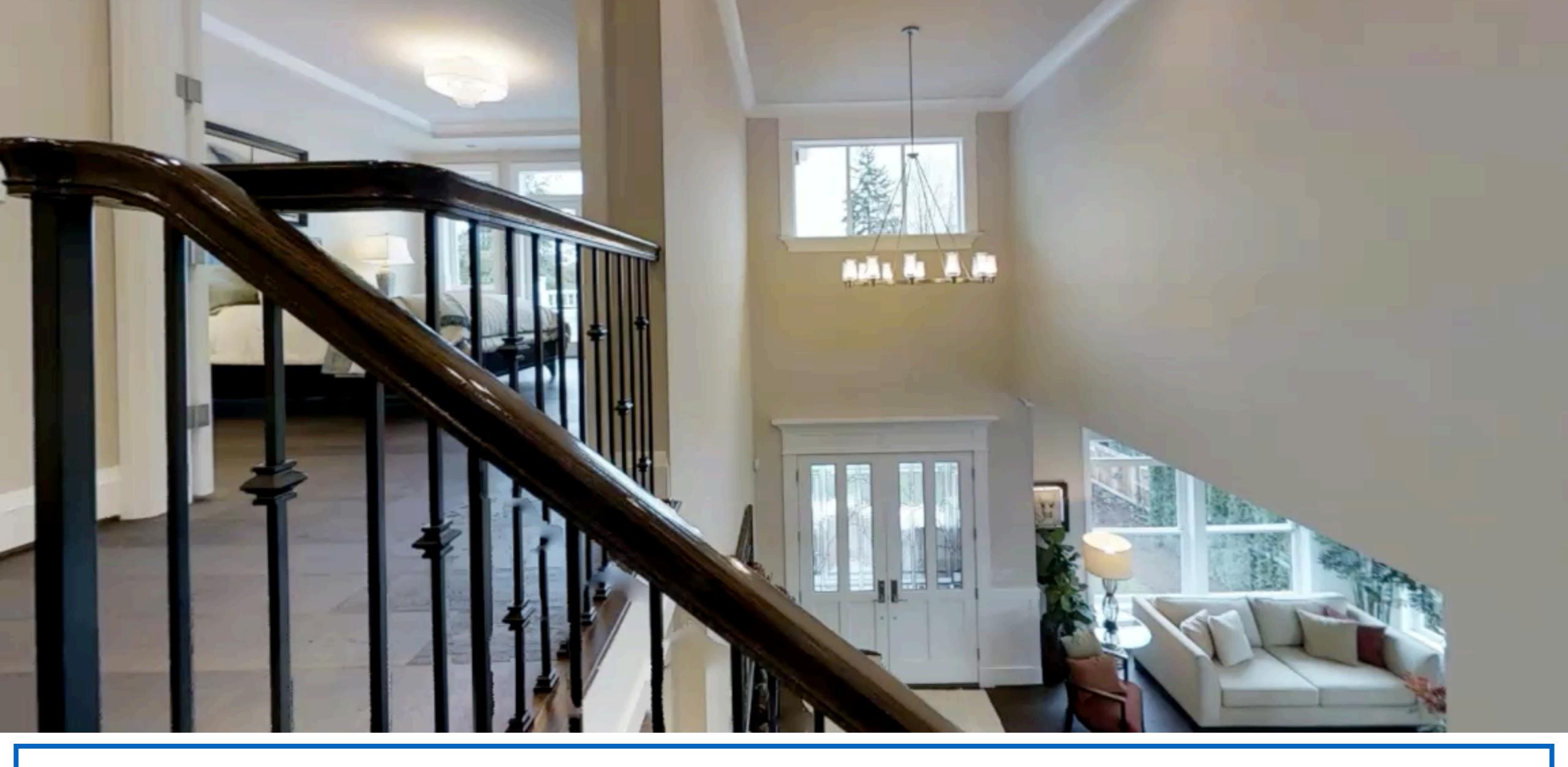
Training

Evaluation

max $p(action \mid text, state; \theta)$

max $p(action \mid text, state; \theta)$

max $\mathbf{E}_{state \mid \theta} \mathbf{R}(action \mid state)$

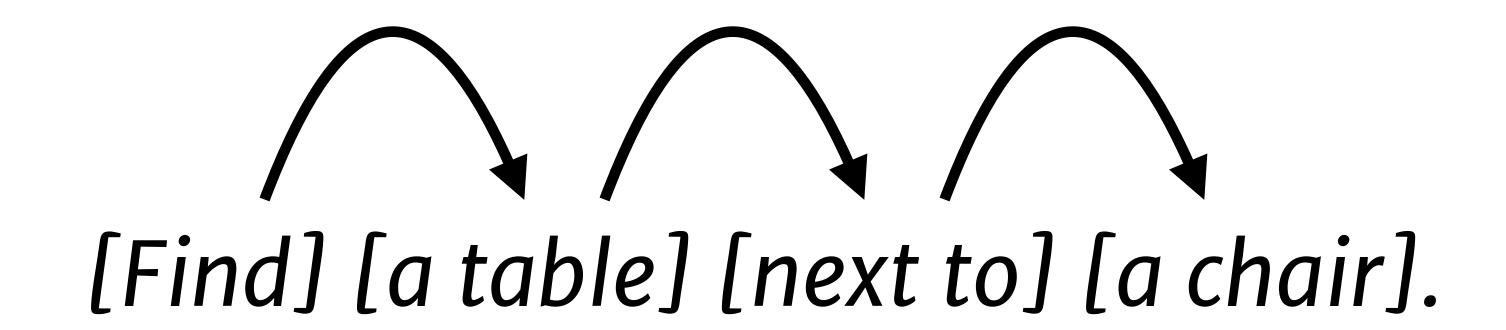


human: Walk past hall table. Walk into bedroom. Make left at table clock. Wait at bathroom door threshold.

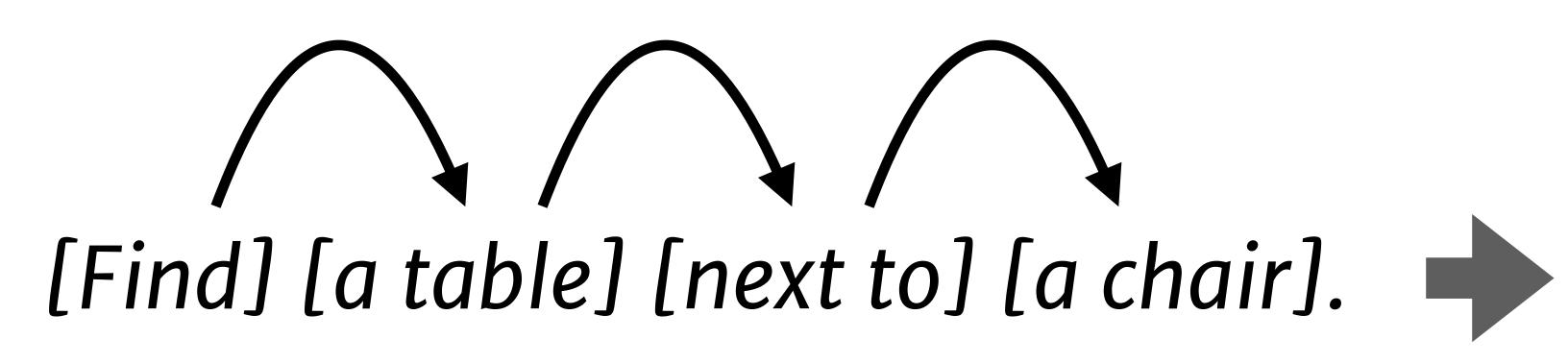
Approach 2: predicting constraints

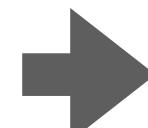
Find a table next to a chair.

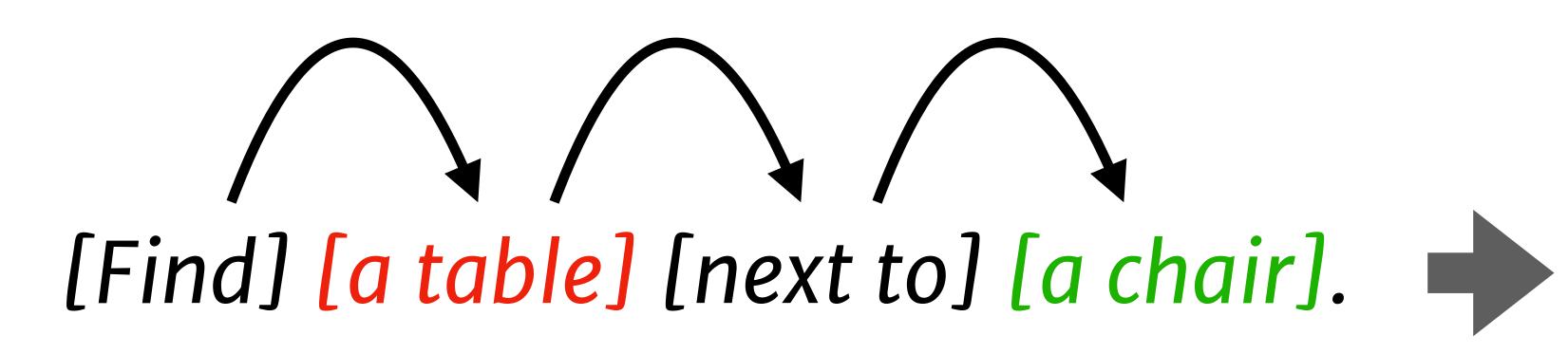
go_forward go_forward turn_left go_forward turn_left

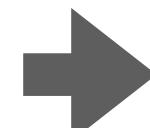


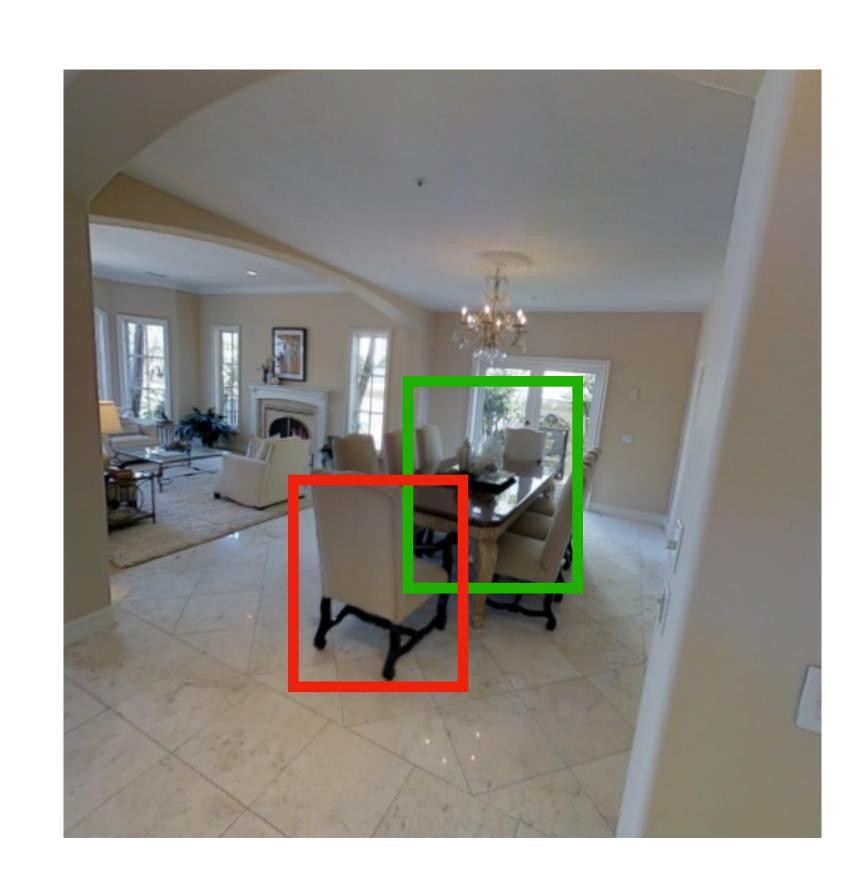
go_forward go_forward turn_left go_forward turn_left





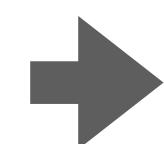


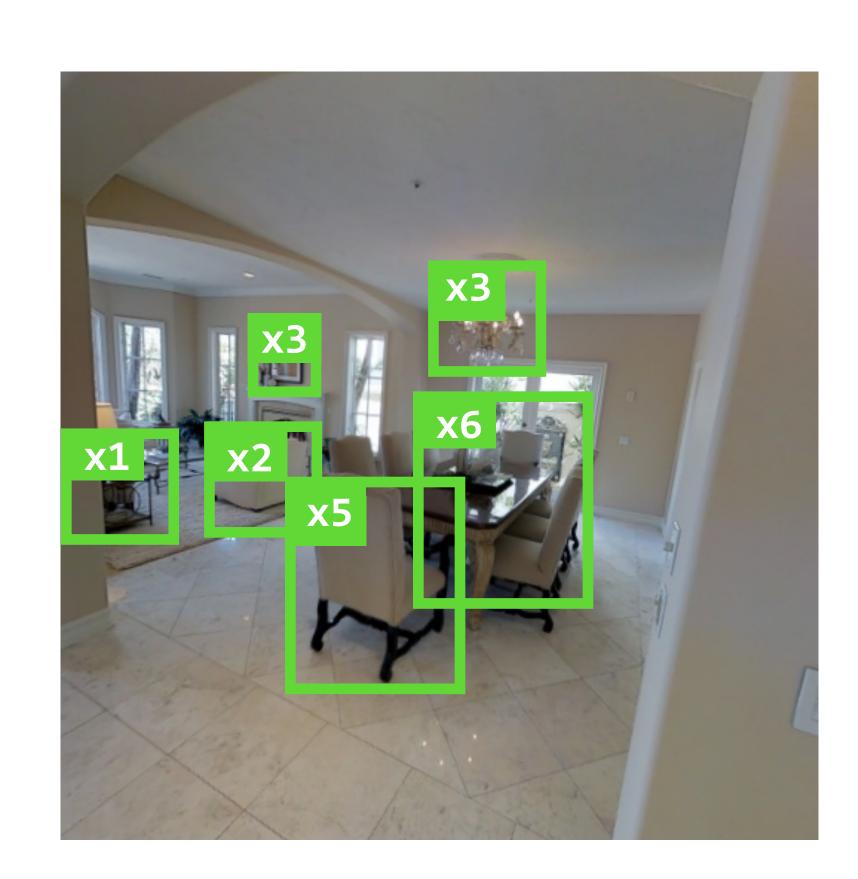




Key idea: predict constraints rather than action sequences, and let a planner do the rest of the work.

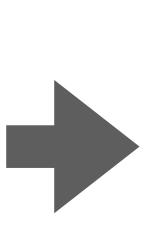
[Find] [a table] [next to] [a chair].

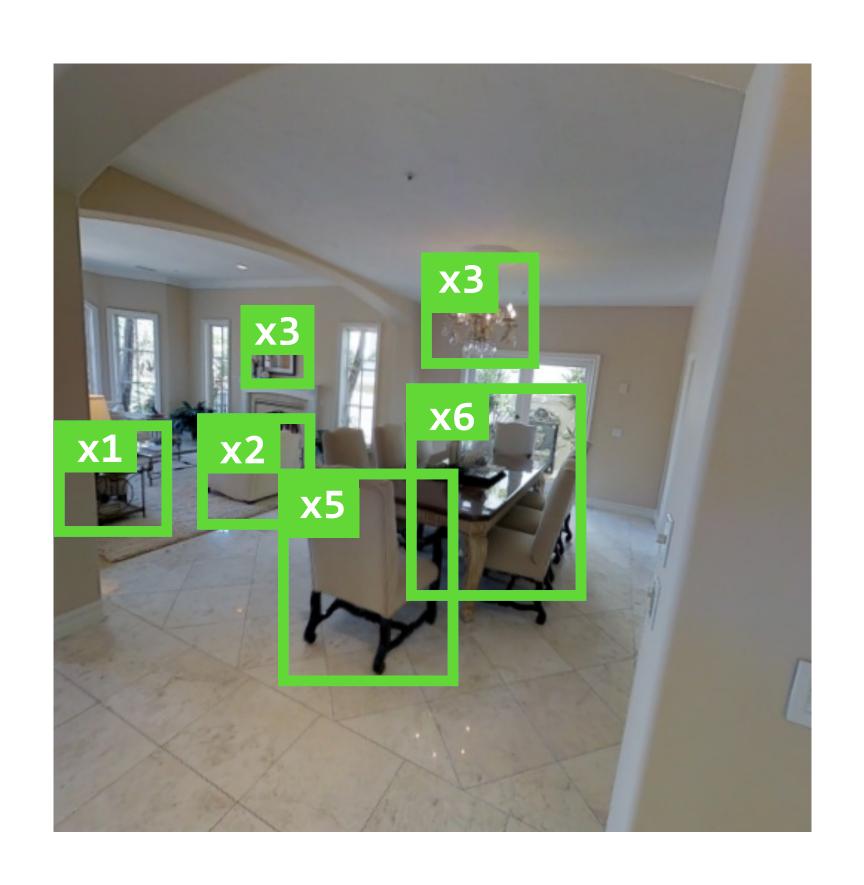




[Find] [a table] [next to] [a chair].

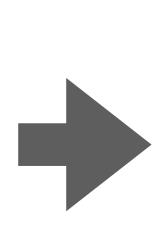
x3?

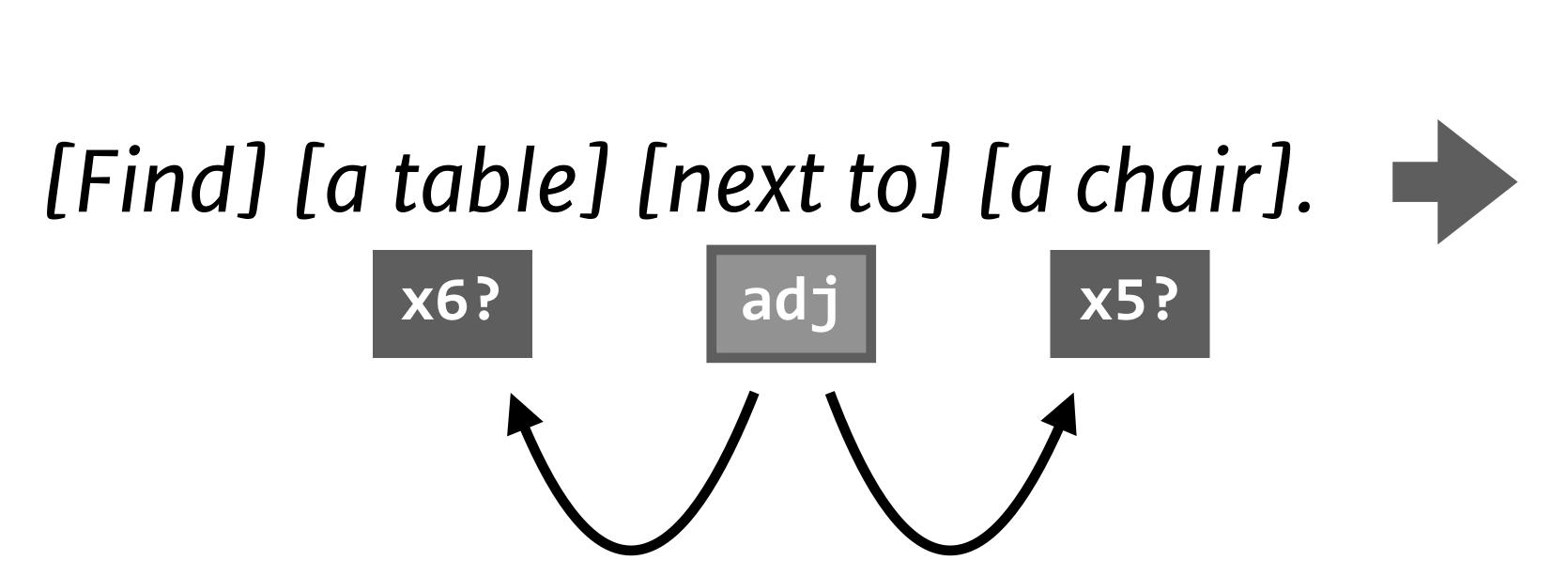


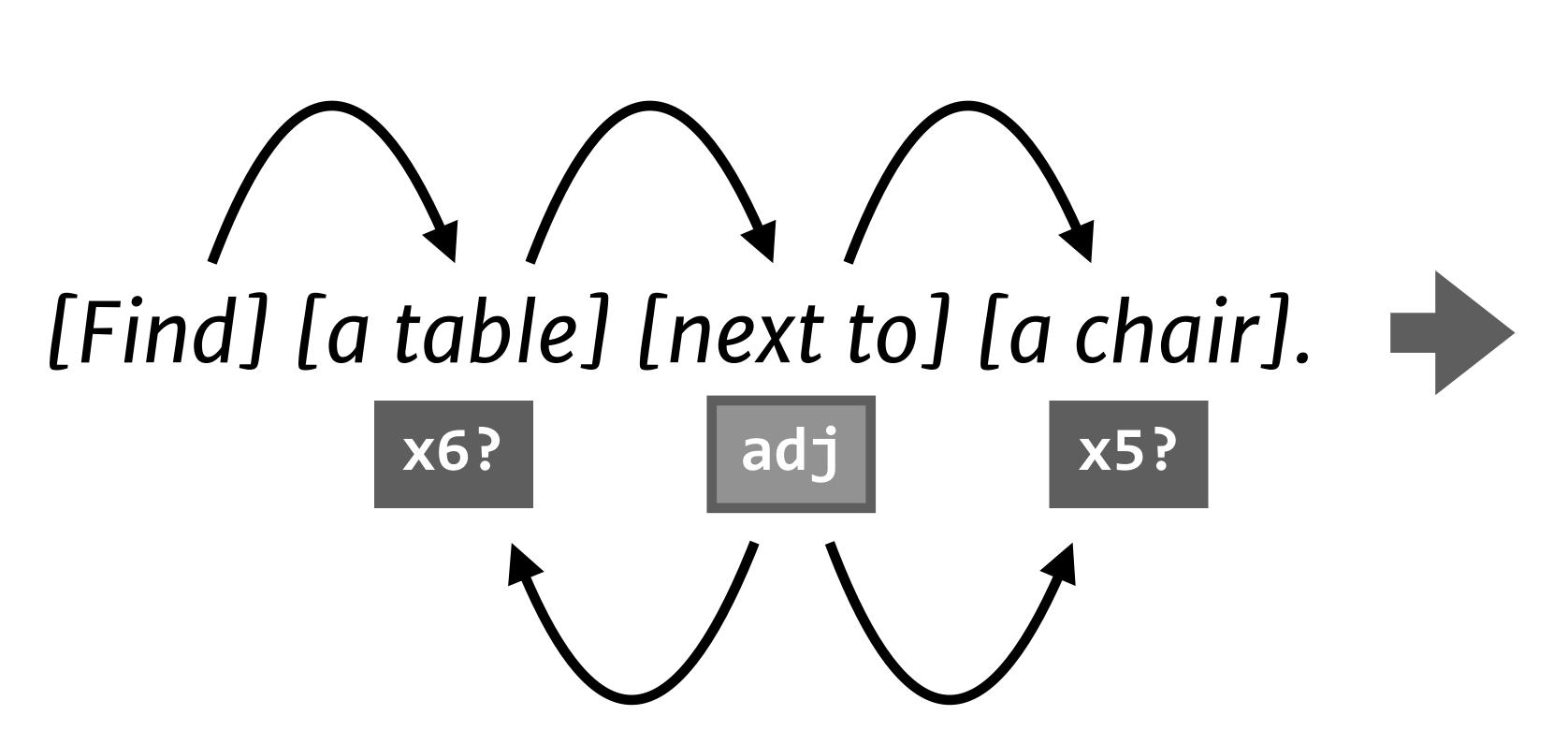


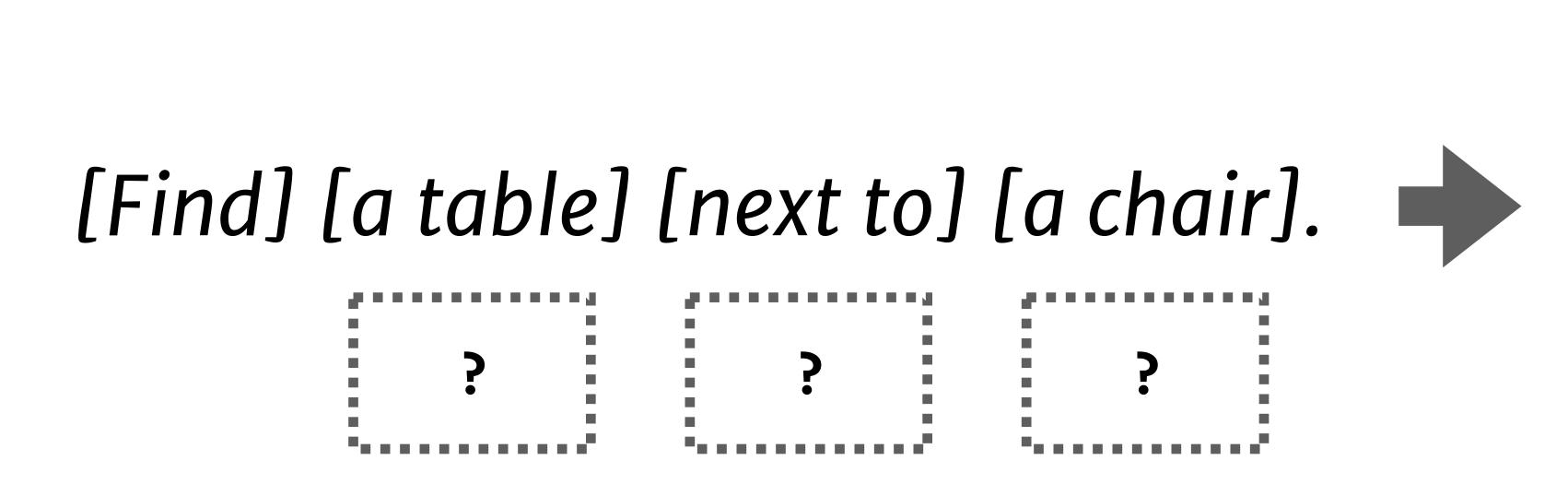
[Find] [a table] [next to] [a chair].

x5?

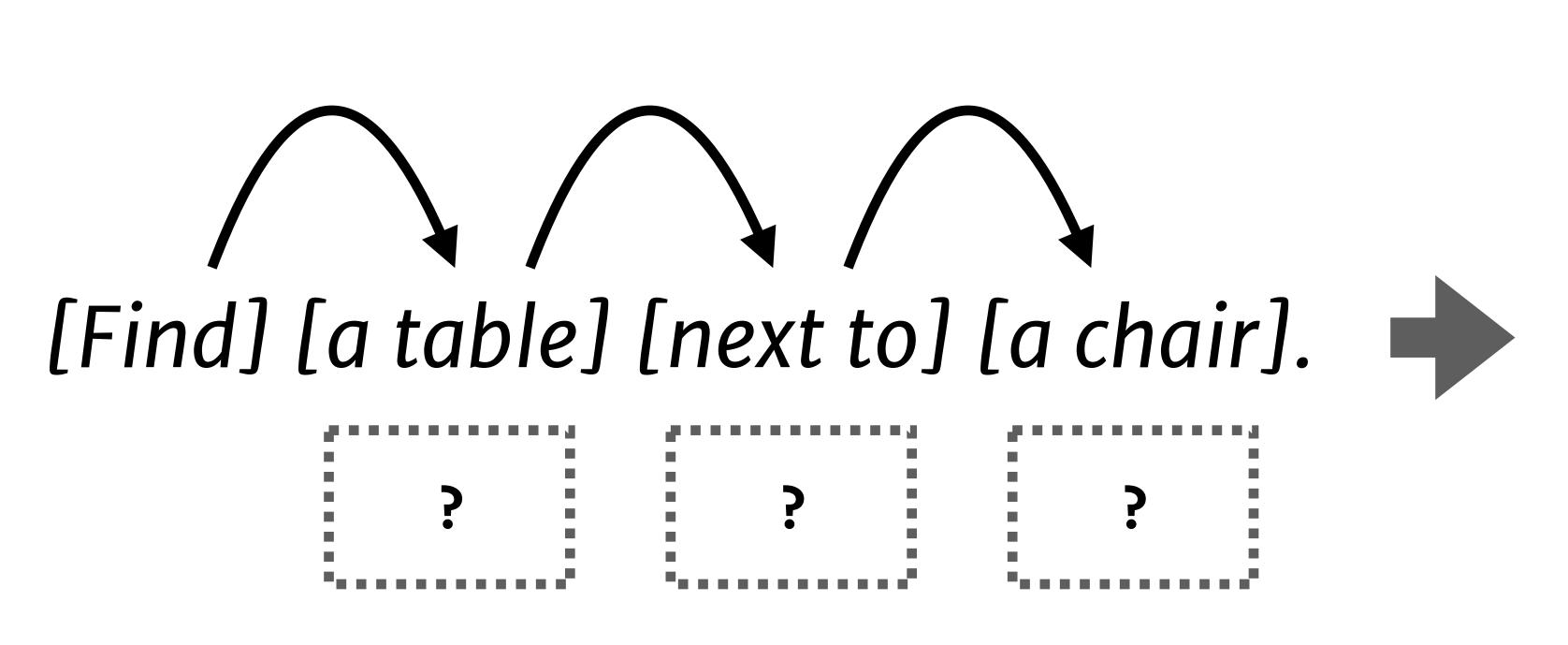


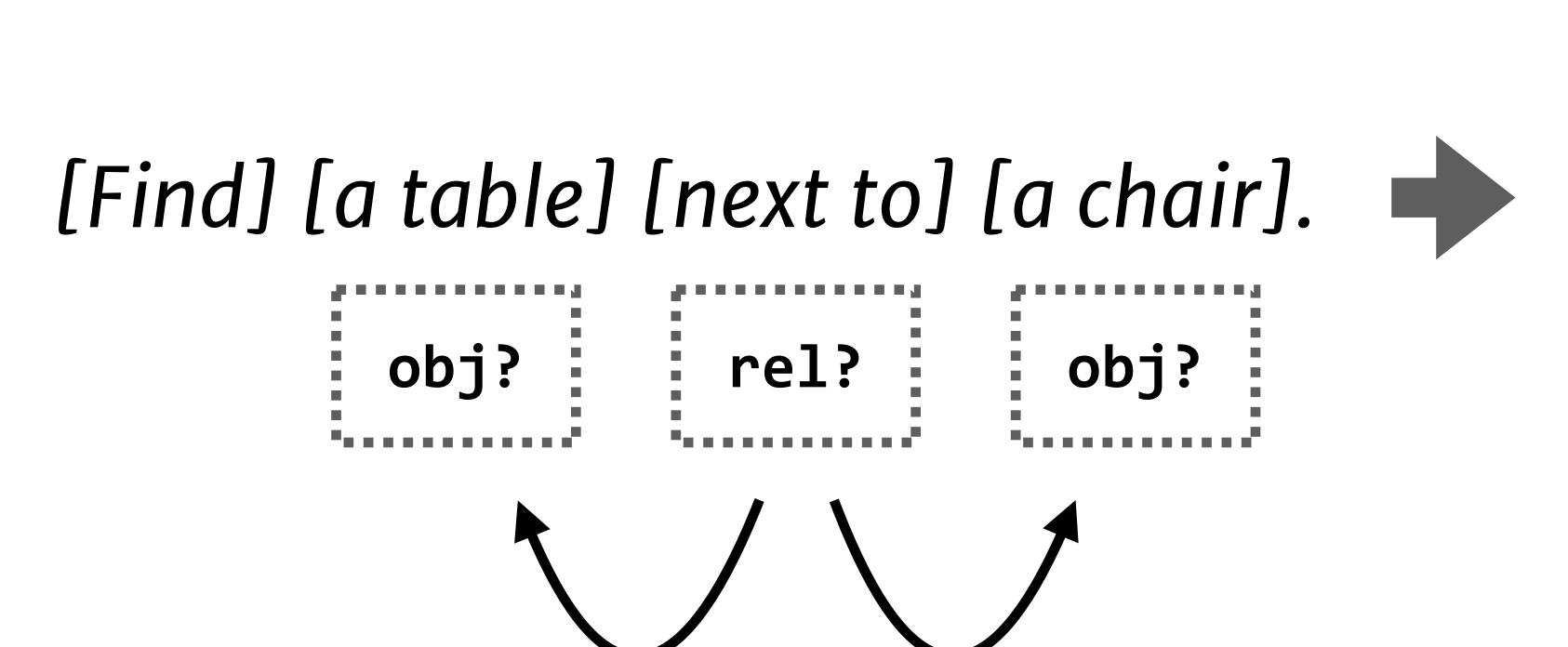








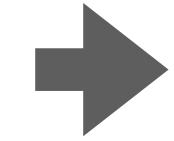


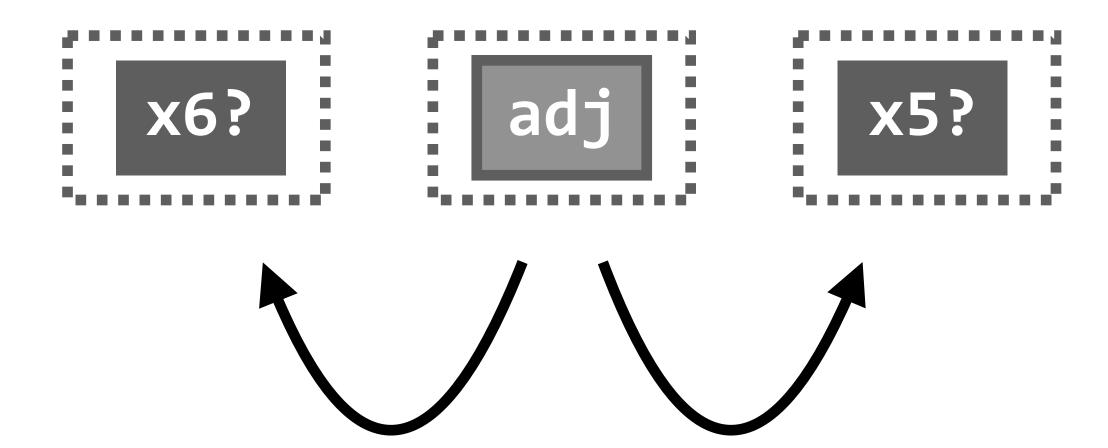


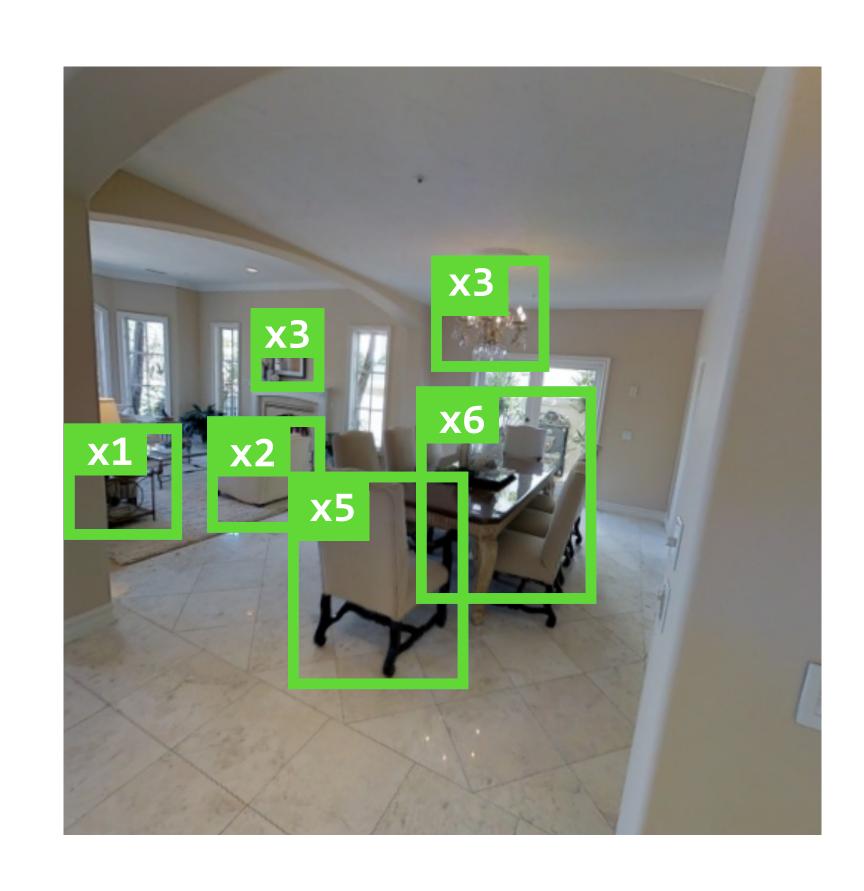
Learning a constraint parser

 $\max_{\theta} p(labels \mid text, graph; \theta)$

[Find] [a table] [next to] [a chair].



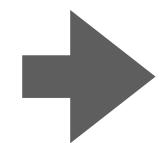


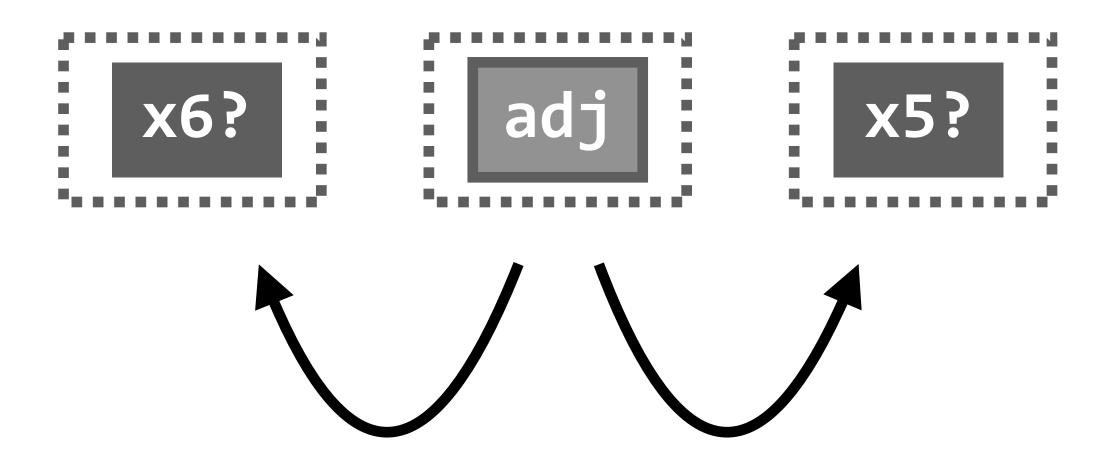


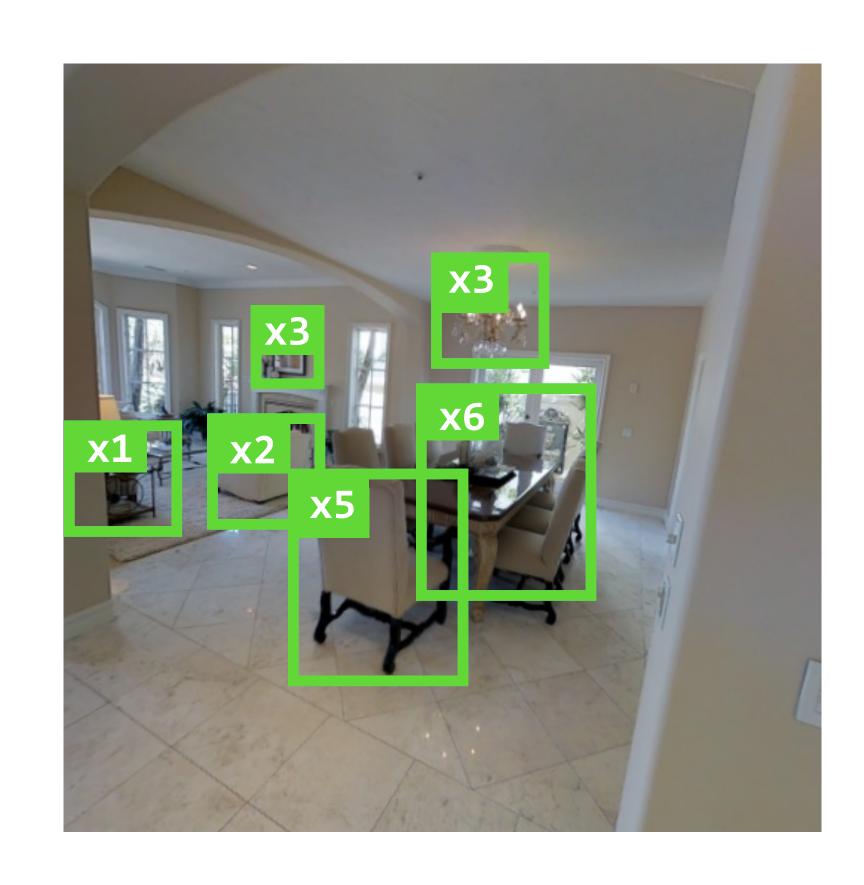
Inferring constraints

max $p(labels \mid text, graph; \theta)$ labels

[Find] [a table] [next to] [a chair].







Inferring constraints

max $p(labels \mid text, graph; \theta)$ labels

[Put] [the cup] [on] [the table].

[Tellex et al., NCAI '11]

Logical constraint languages

```
max p(constraint | text; θ) max p(constraint | text; θ) constraint
```

Find a table next to a chair.


```
at(x1) table(x1) next_to(x1,x2) chair(x2)
```

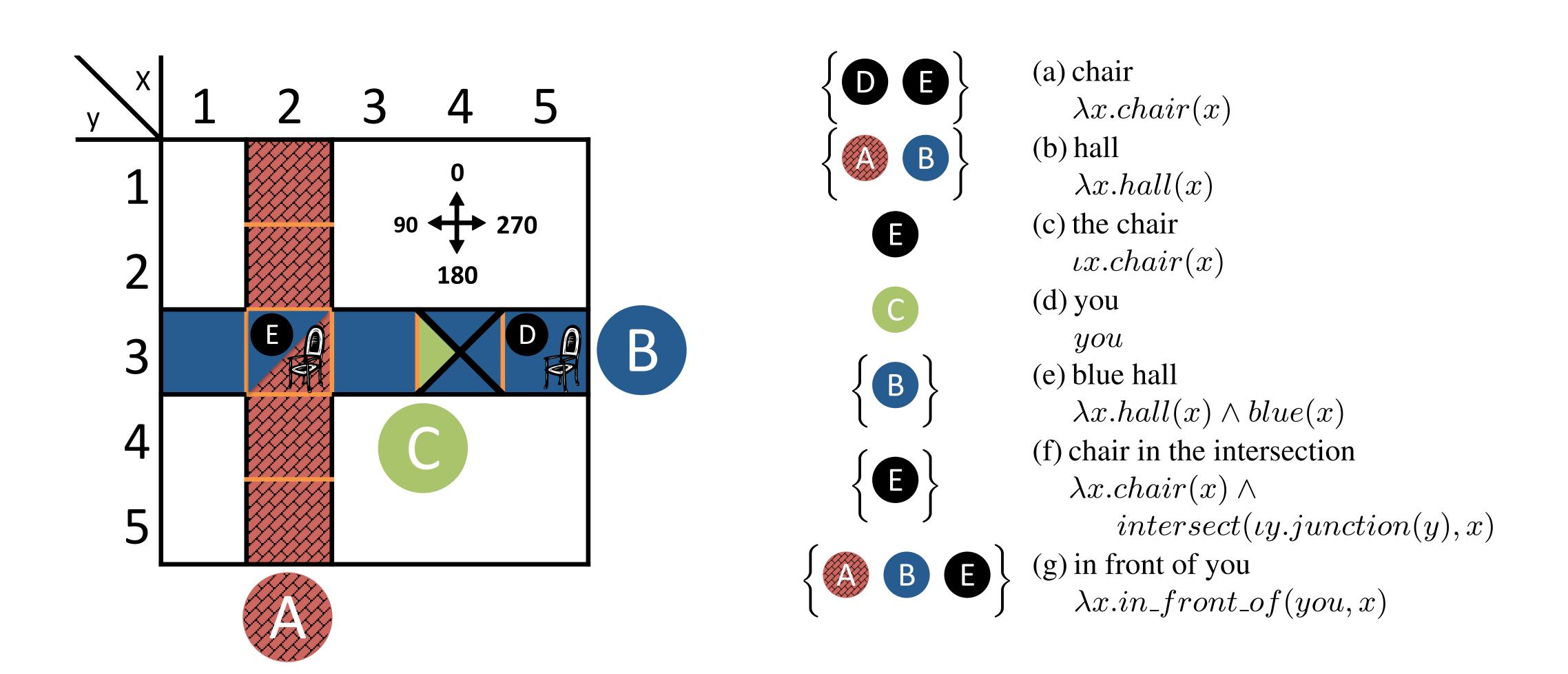

Logical constraint languages

```
max p(constraint | text; θ) max p(constraint | text; θ) constraint
```

Find a table next to a chair.

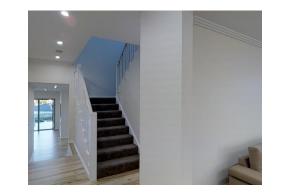

```
at(x1) table(x1) next_to(x1,x2) chair(x2)
```

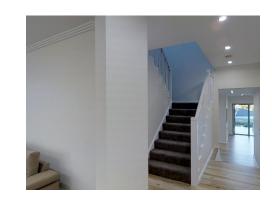
Logical constraint languages

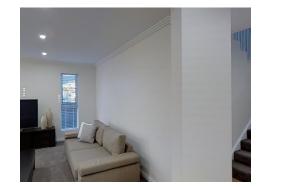


Find a table next to a chair.

go_forward turn_left turn_left go_forward turn_right

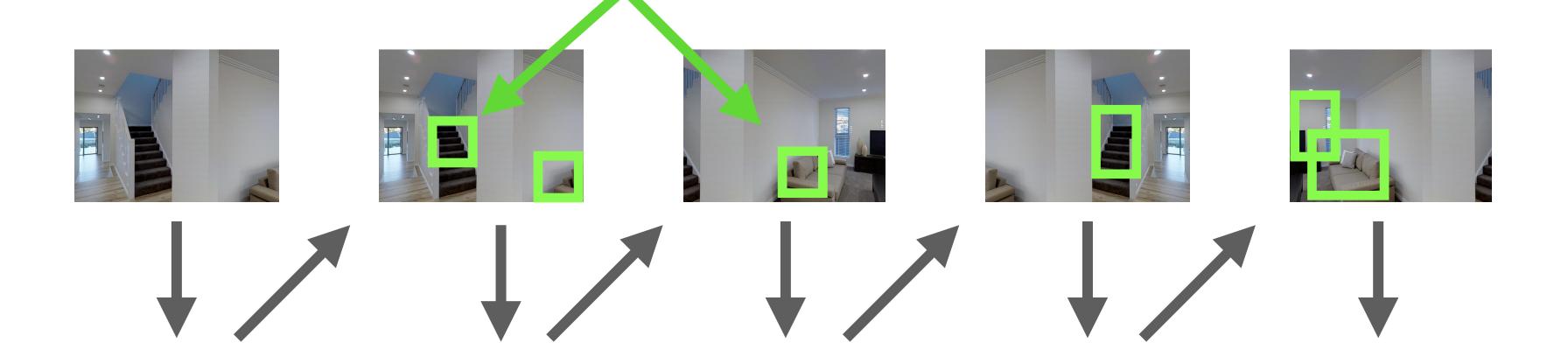






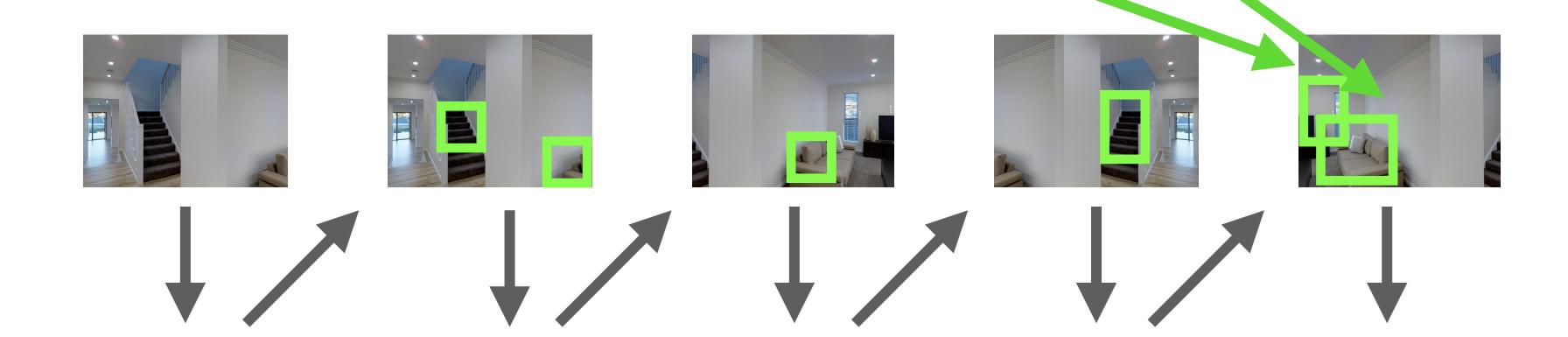
Key idea: use freeform learned potential functions rather than symbolic constraints

Find a table next to a chair.



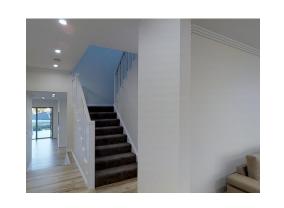
go_forward turn_left turn_left go_forward turn_right

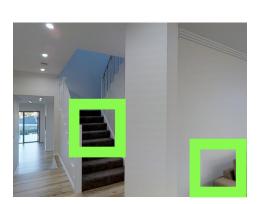
Find a table next to a chair.

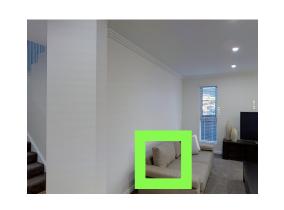


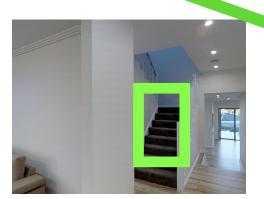
go_forward turn_left turn_left go_forward turn_right

Find a table next to a chair.









 $\max_{\theta, \, alignment}$

 $f(plan, alignment \mid text; \theta)$

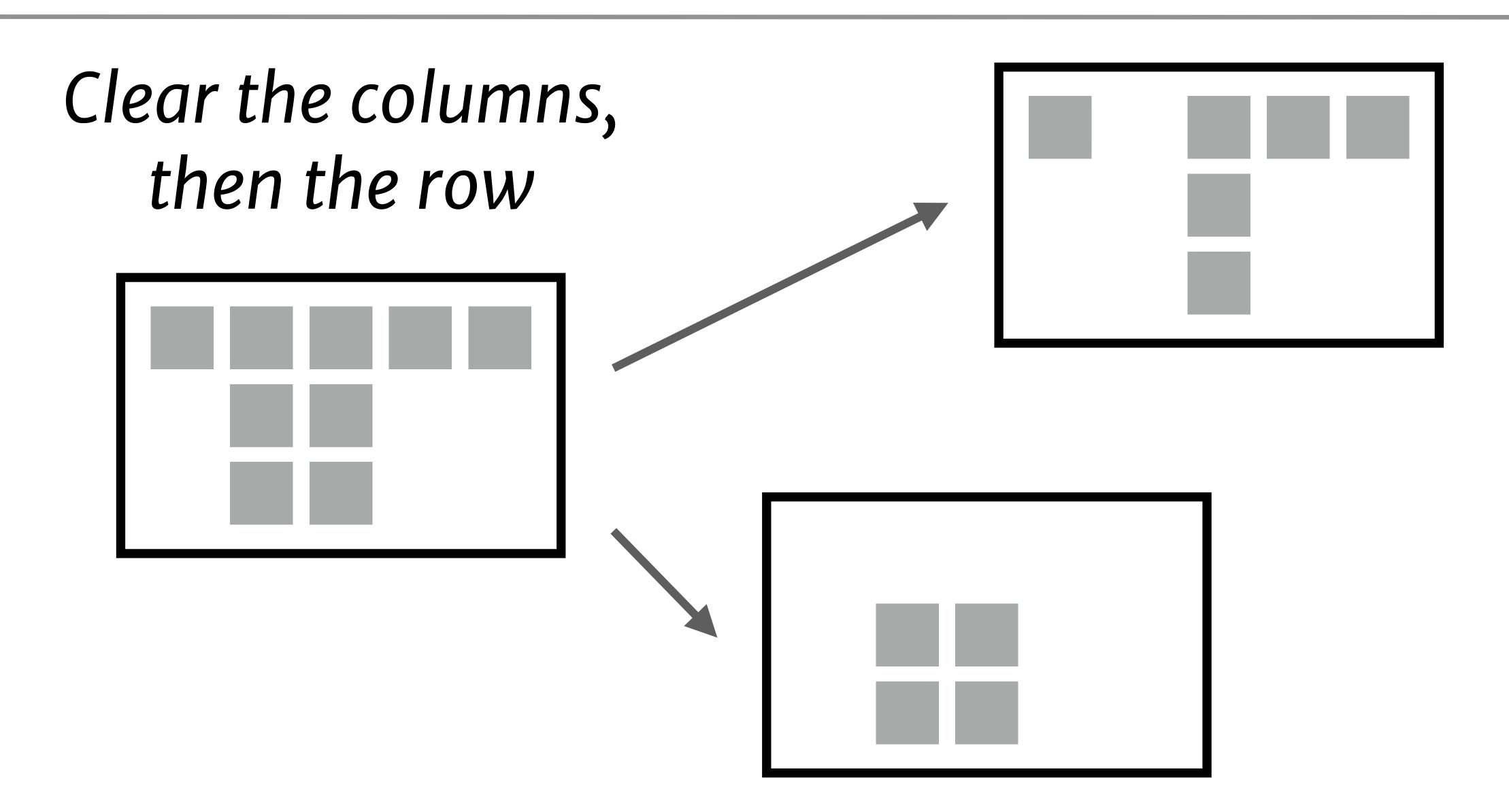
 $\sum f(plan', alignment' \mid text; \theta)$

 $\max f(plan, alignment \mid text; \theta)$

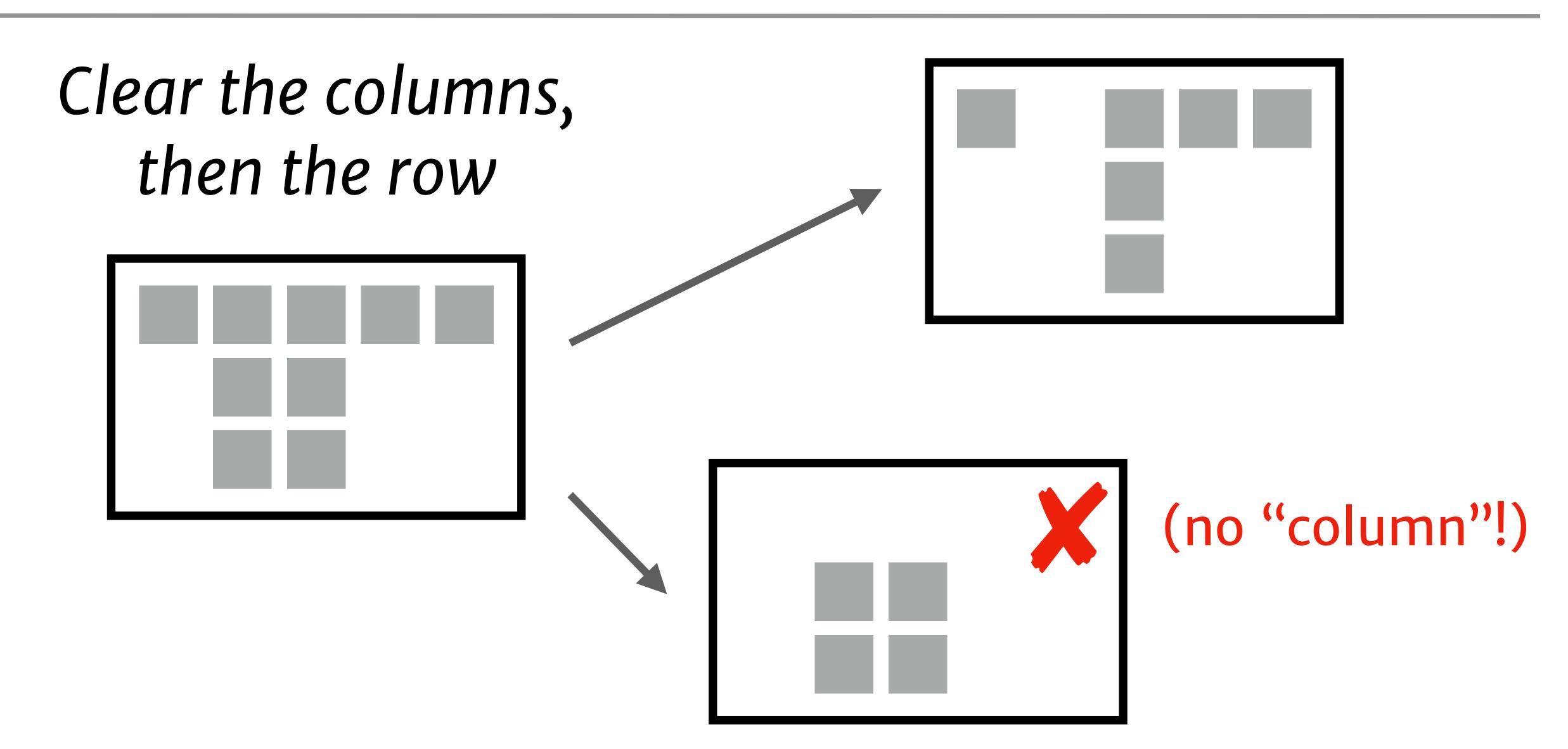
plan,

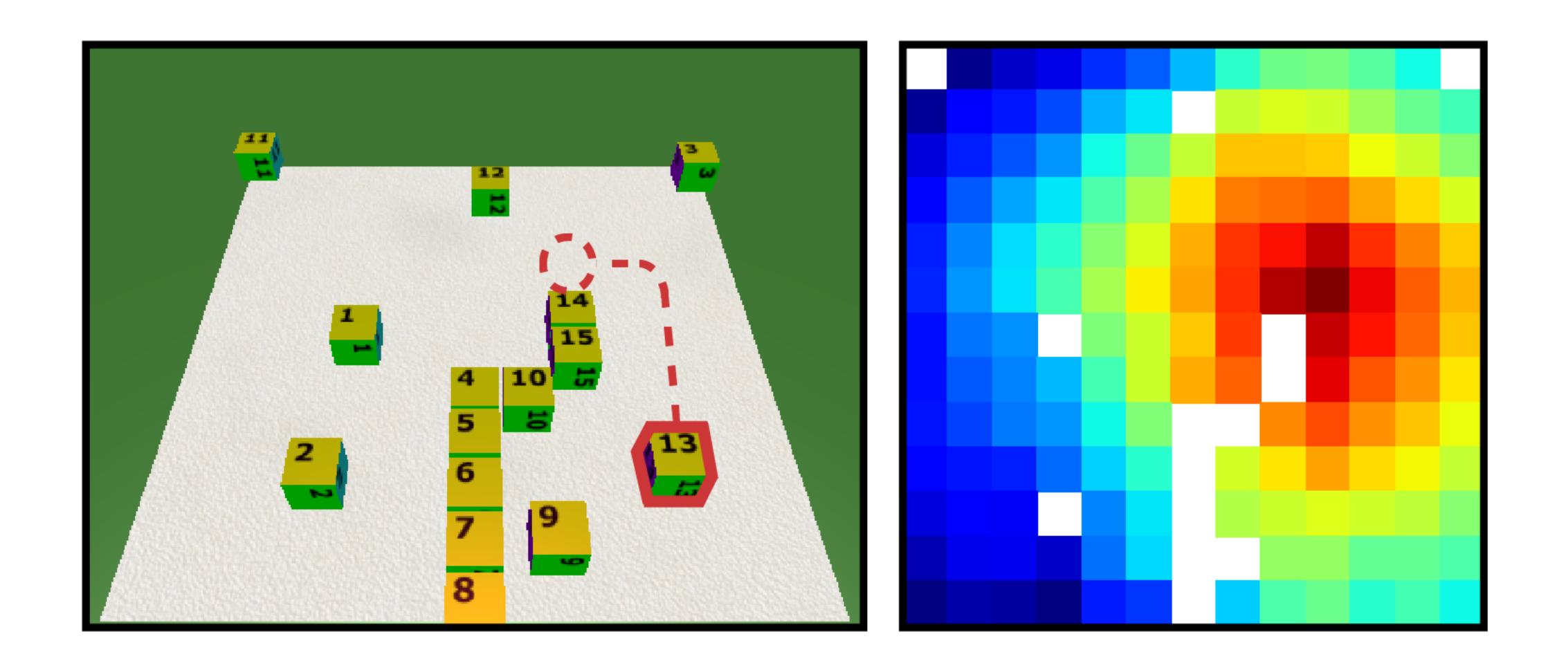
alignment

Constraints without logic



Constraints without logic





Take block 13 and place it directly above block 14 so they are almost touching.

Our toolkit so far

Instruction following

Act in complex environments

With expressive policies that condition on instructions and observations

Track progress over time

In the underlying state space or RNN state

Plan ahead and reason about outcomes

With a symbolic planner or learned cost function

What else can we do?

Application: instruction generation

Instruction following

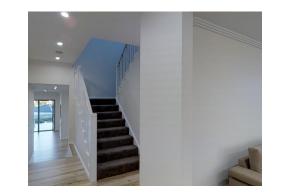
Move into the living room. Go forward then face the sofa.

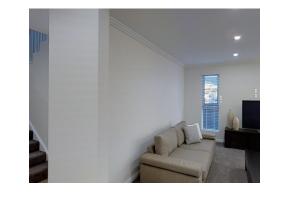
go_forward turn_left turn_left go_forward turn_right

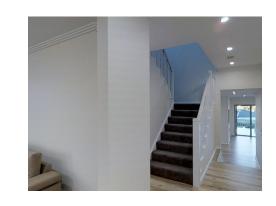
Instruction following generation

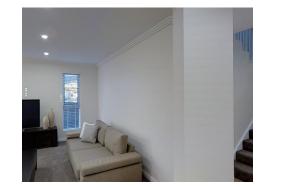
Move into the living room. Go forward then face the sofa.

go_forward turn_left turn_left go_forward turn_right



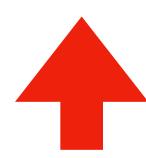




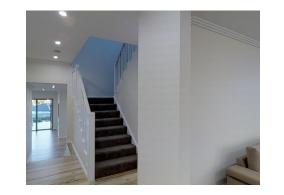


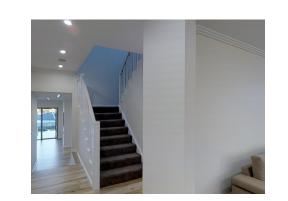
Prediction action sequences

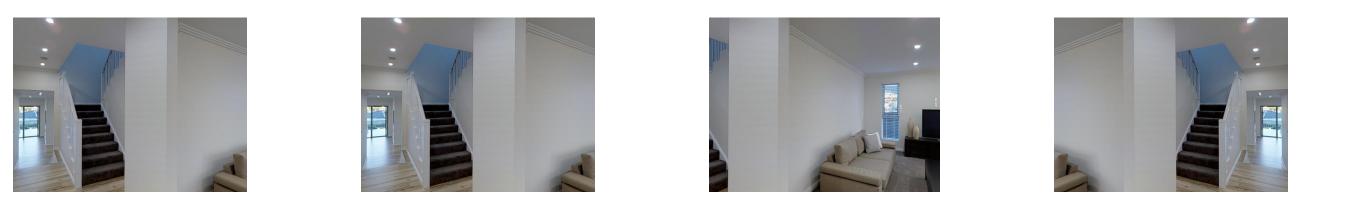
find a sofa

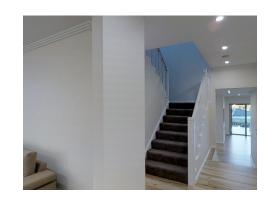


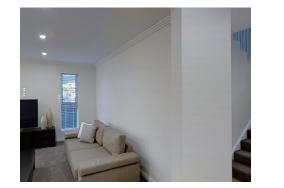
go_forward turn_left turn_left go_forward turn_right











Instruction generation

Key idea: a good instruction gets readers to their goal with high probability (whatever the training data says!)

Instruction generation

```
Max posterior probability
```

```
\max_{text} p(text | plan; \theta)
```

("how do people describe this?")

Instruction generation

Max posterior probability

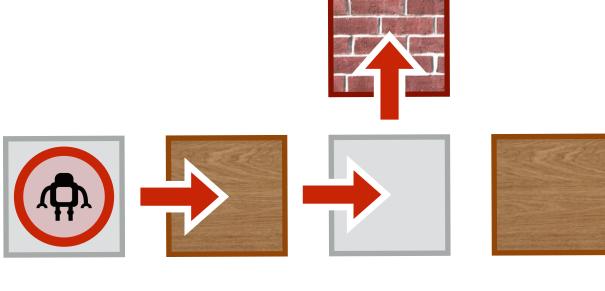
 $\max_{text} p(text | plan; \theta)$

("how do people describe this?")

min Bayes risk

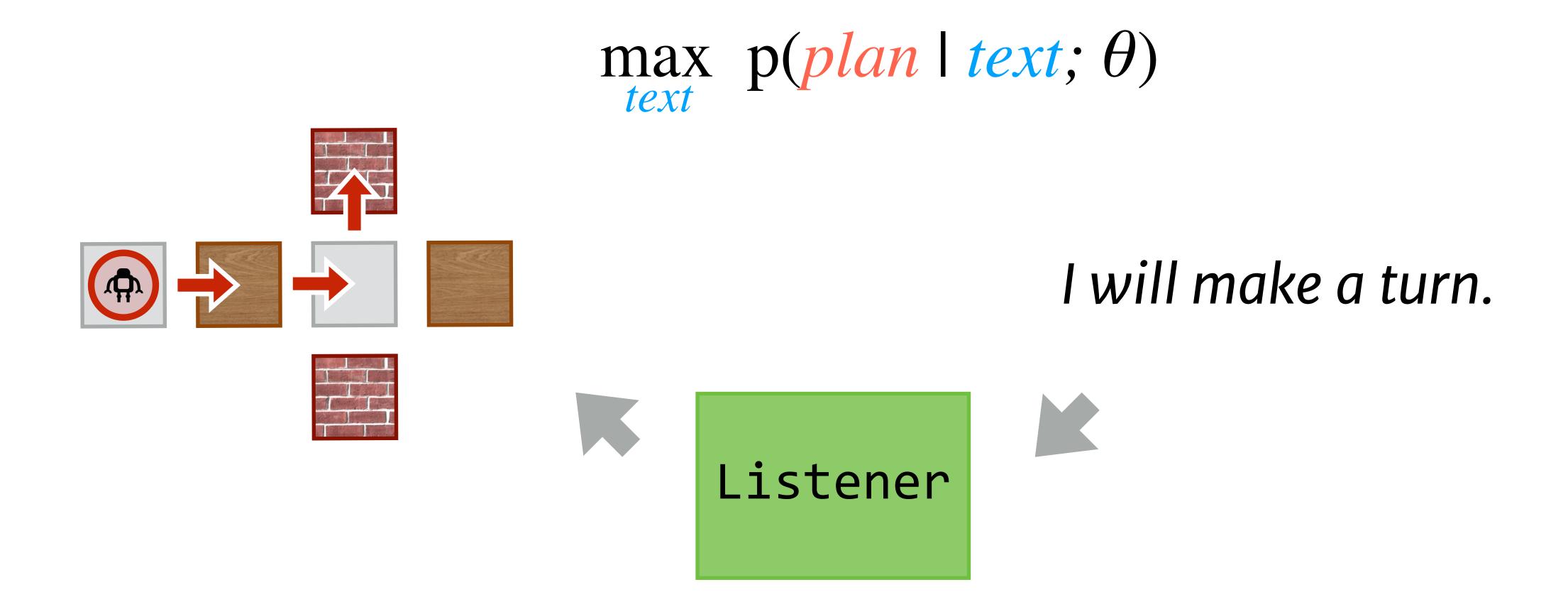
 $\max_{text} p(plan \mid text; \theta)$

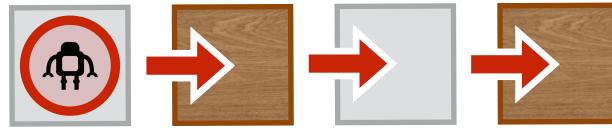
("how do I make people do this?")



I will make a turn.

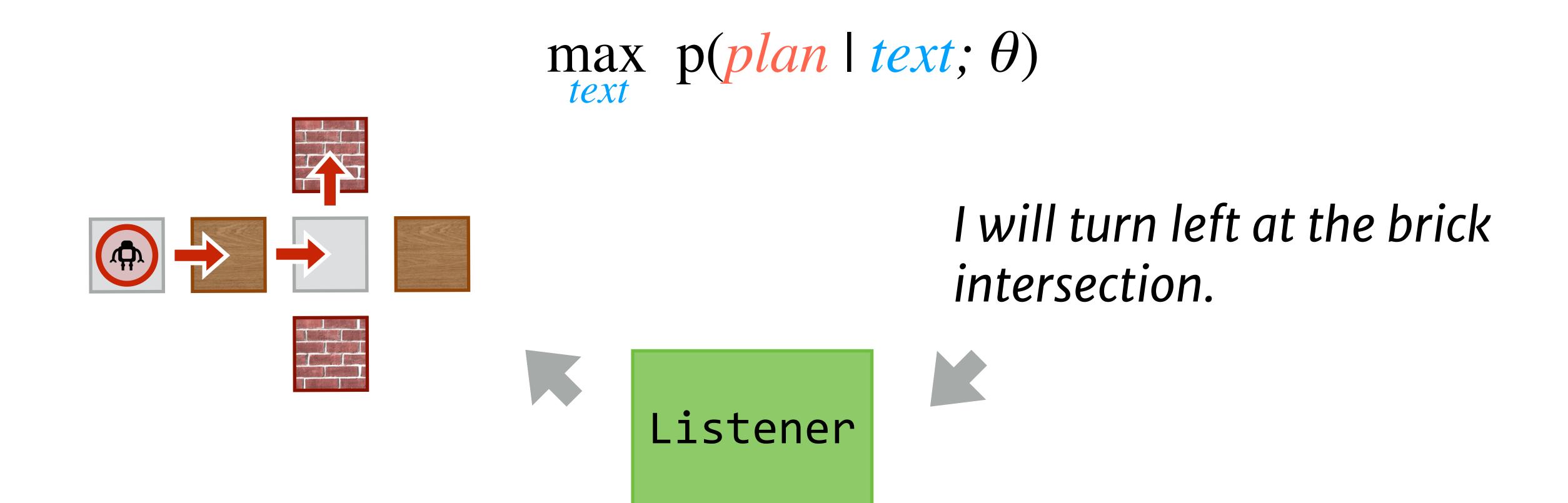
Instruction follower





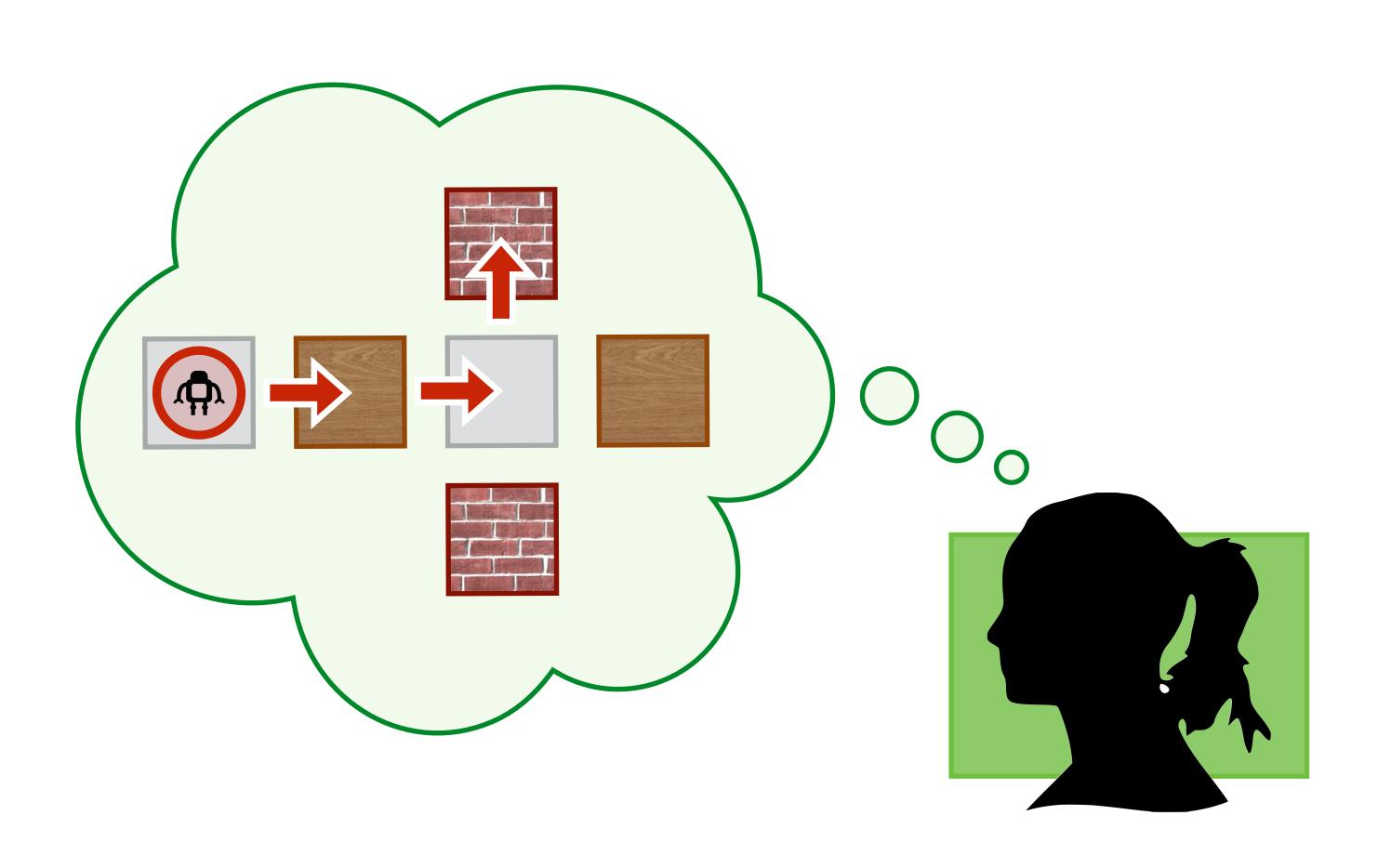
I will go straight through.

Listener



[Fried et al., NAACL '18]

Reasoning about belief



I will turn left at the brick intersection.

speaker: Walk past the dining room table and chairs and wait there.

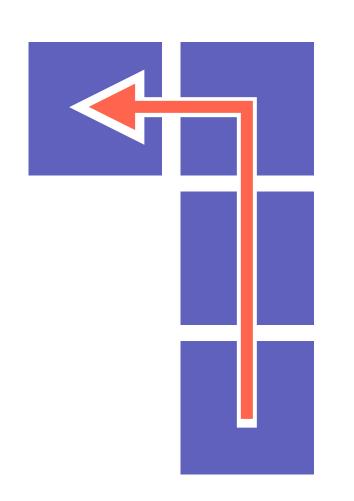
listener: Walk past the dining room table and chairs and take a right into the living room. Stop once you are on the rug.

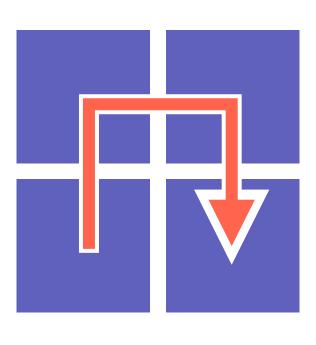
human: Turn right and walk through the kitchen. Go right into the living room and stop by the rug.

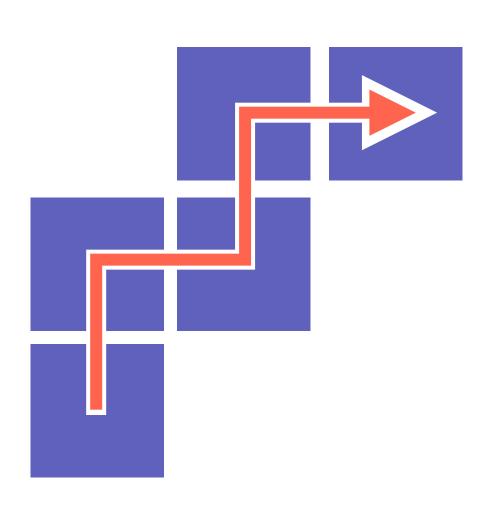
Application: machine teaching

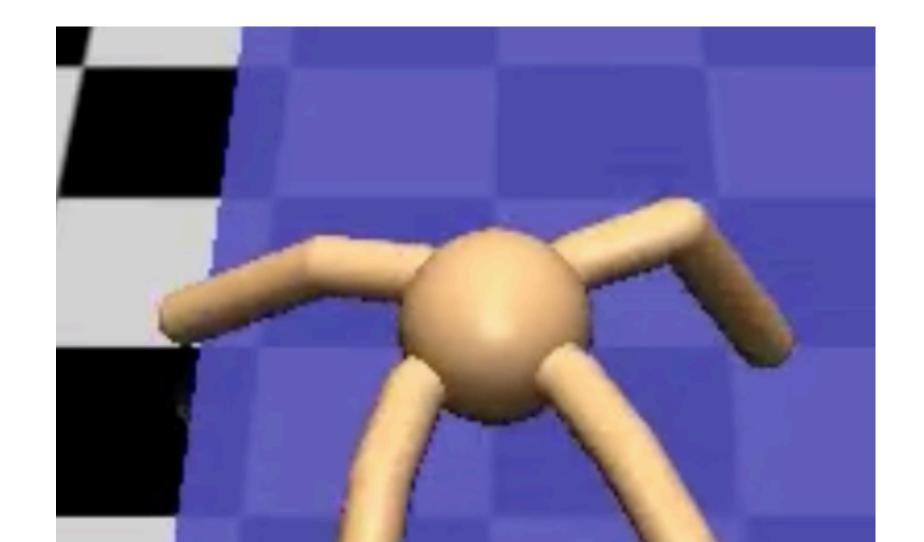
Instructions as scaffolds for RL

Instructions as parameter-tying schemes



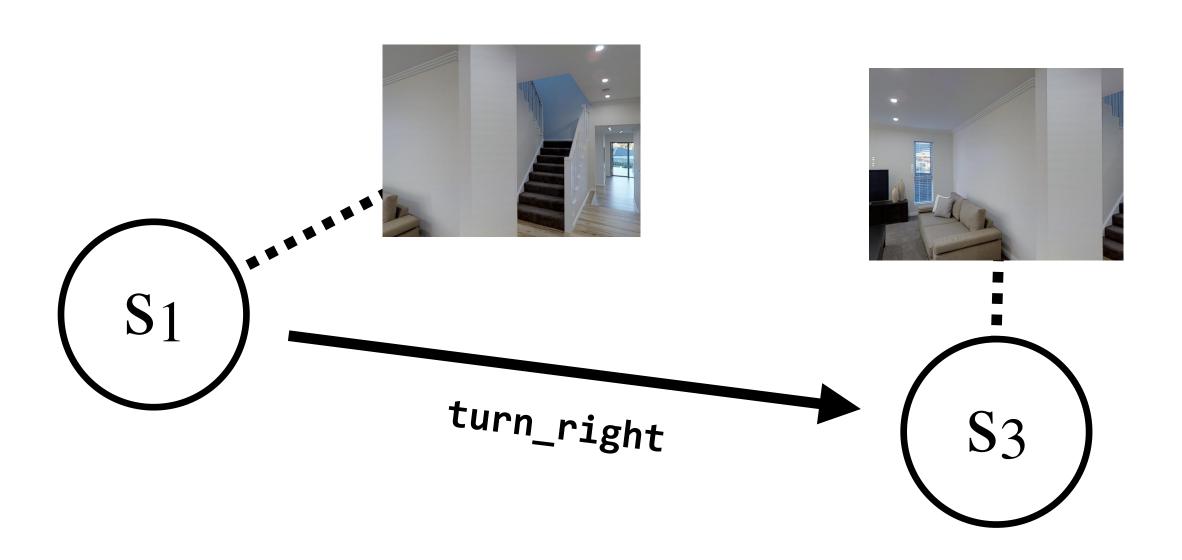




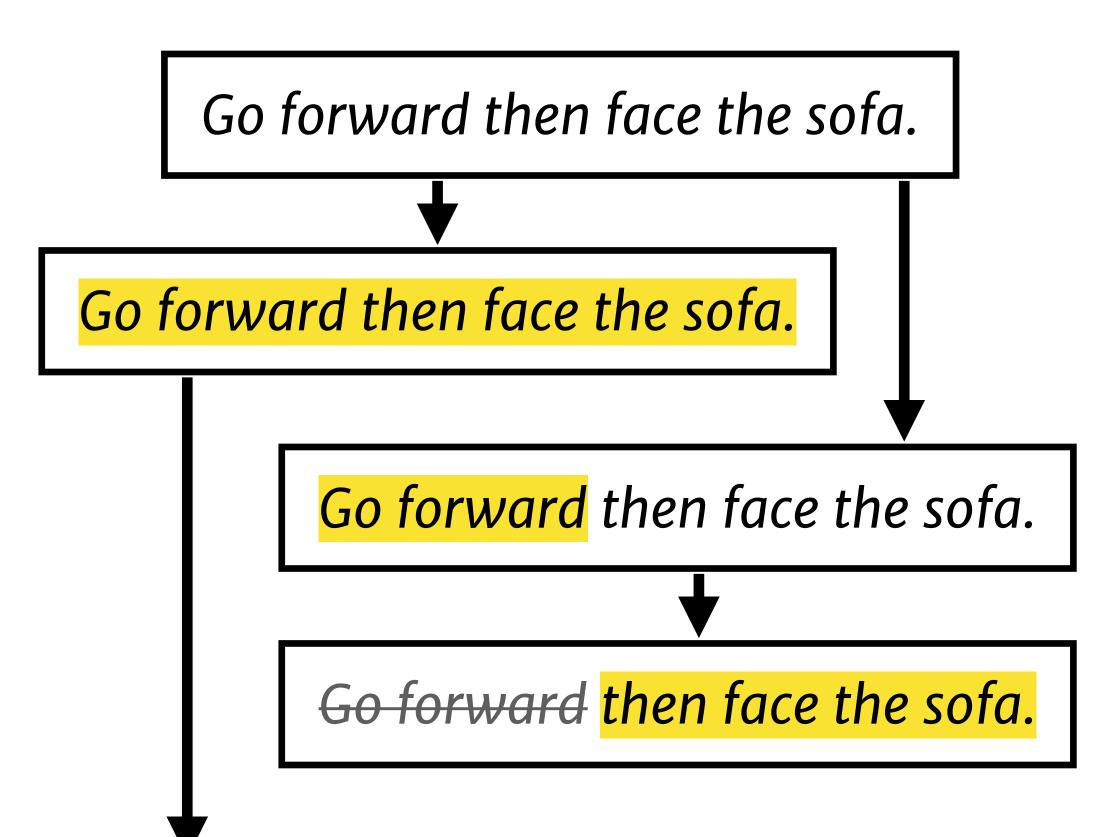


Instructions as parameter tying schemes

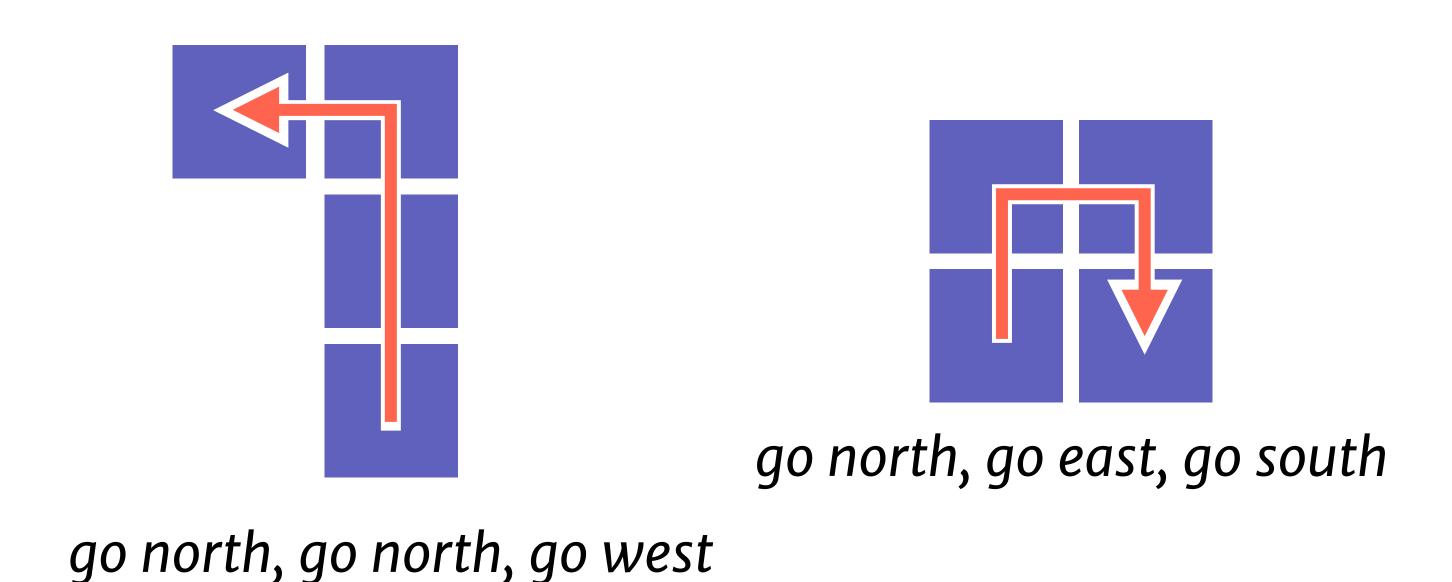
Environment states S_e Environment actions A_e

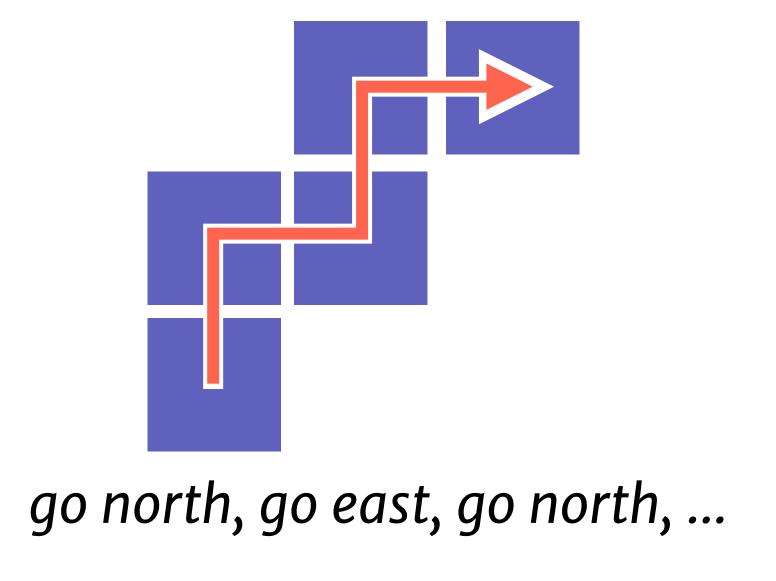


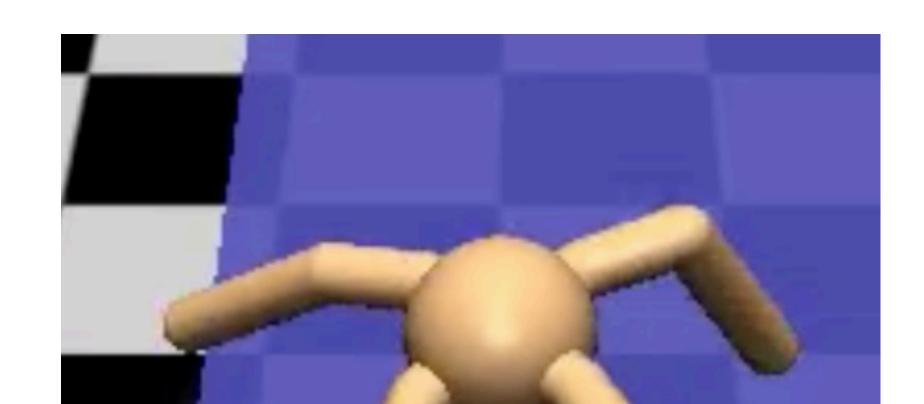
Reading states S_e Reading actions A_e



Instructions as parameter-tying schemes



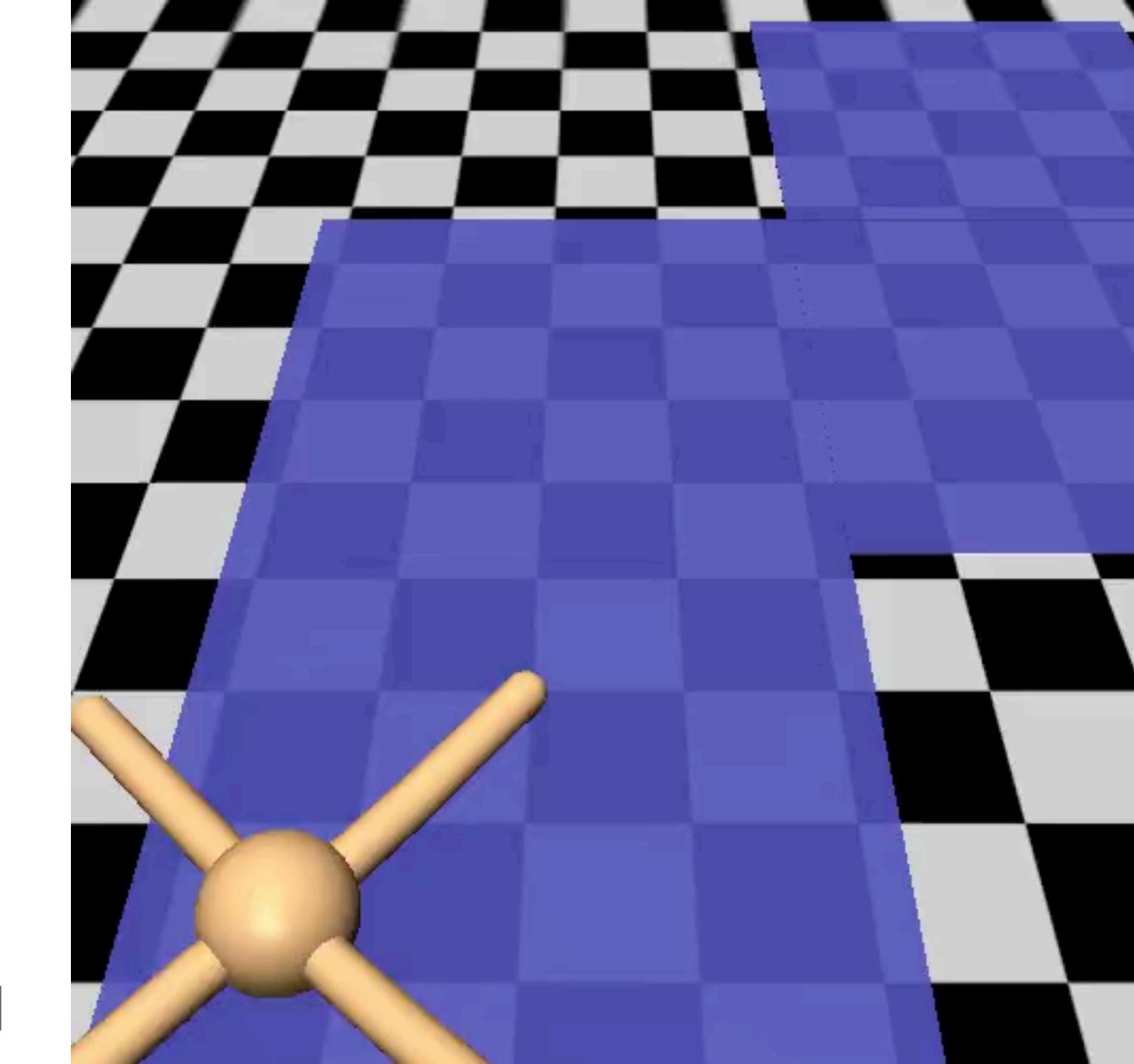




Go north.

Go east.

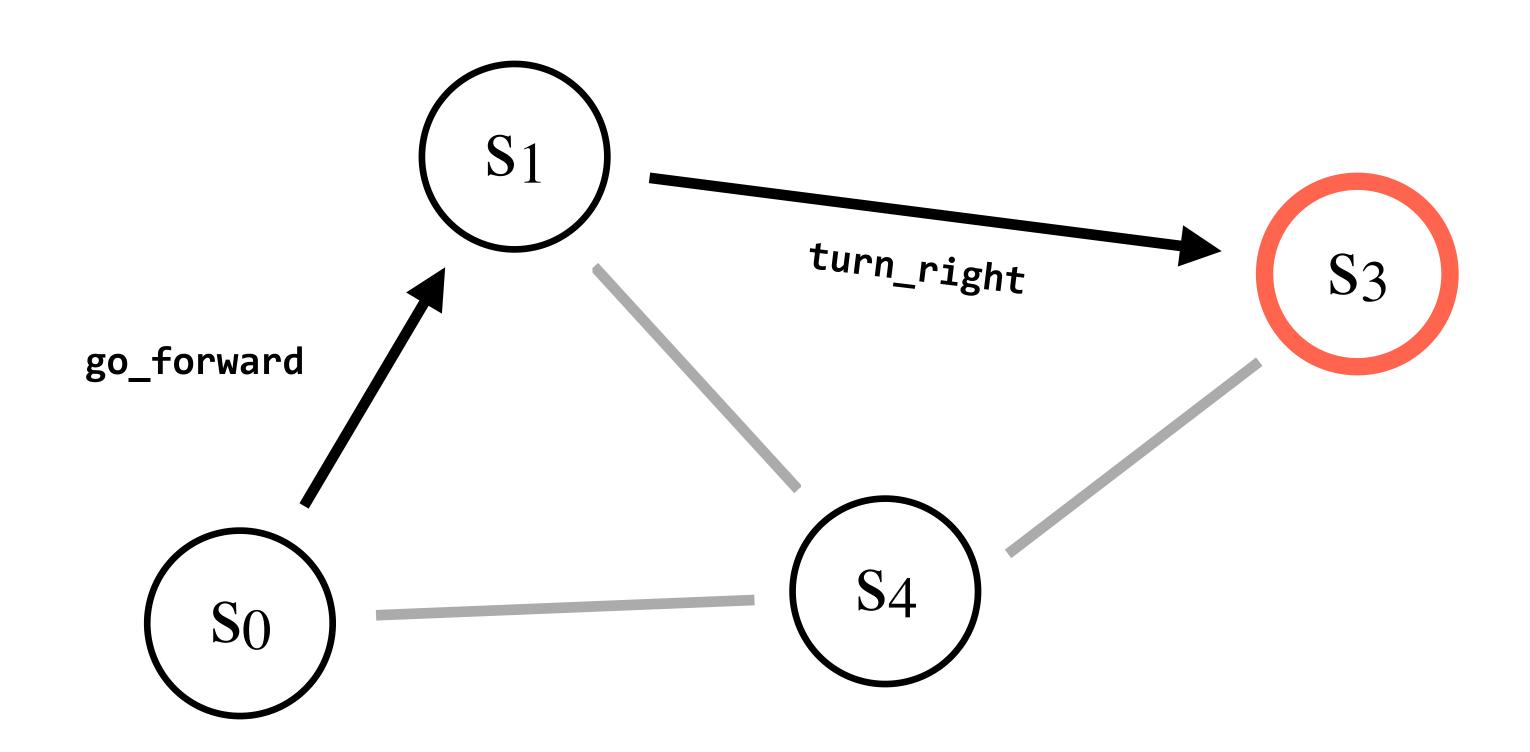
Go north.



[Andreas et al., ICML '17]

Learning interactively from corrections

Supervision



Push the chair against the wall.

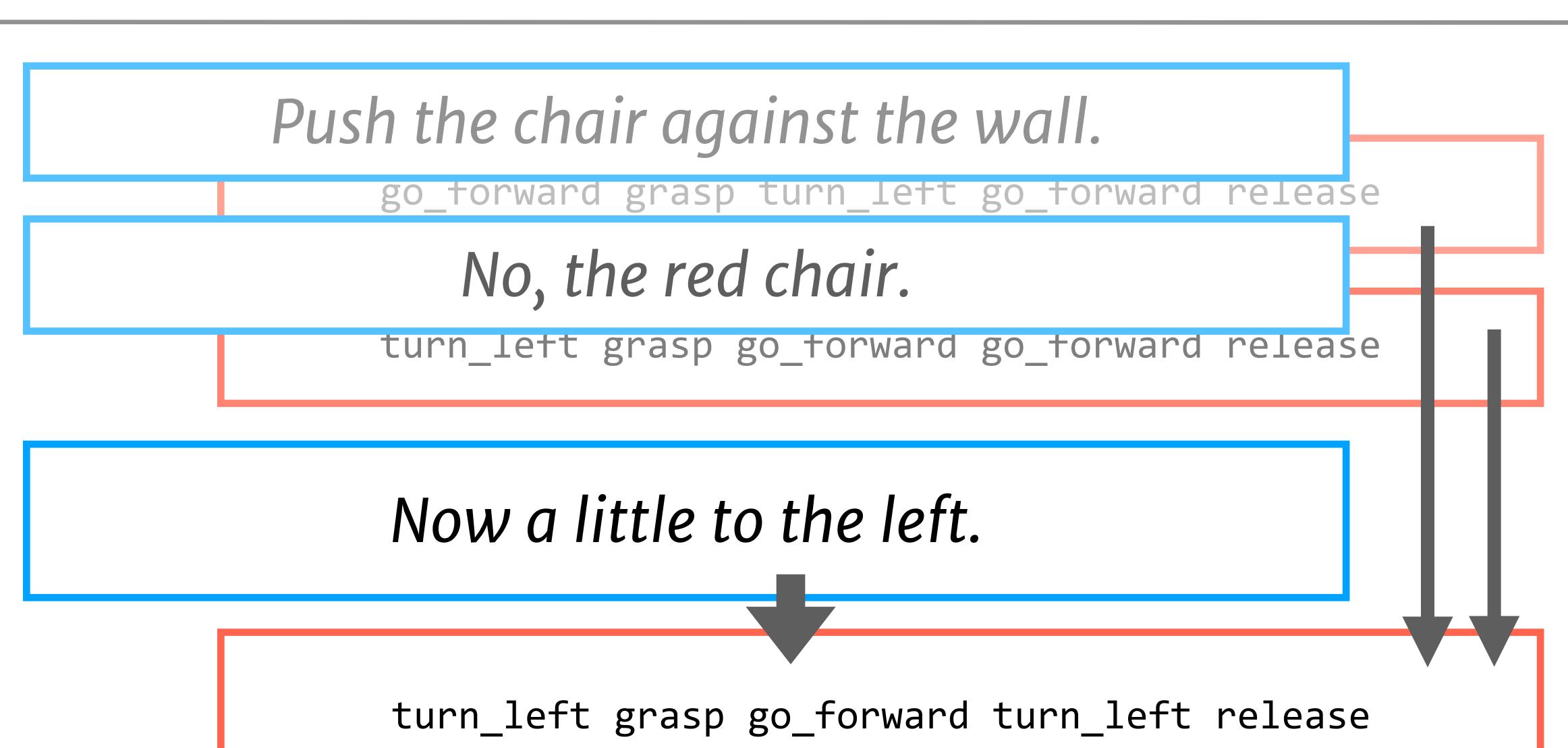
go_forward grasp turn_left go_forward release

Push the chair against the wall.

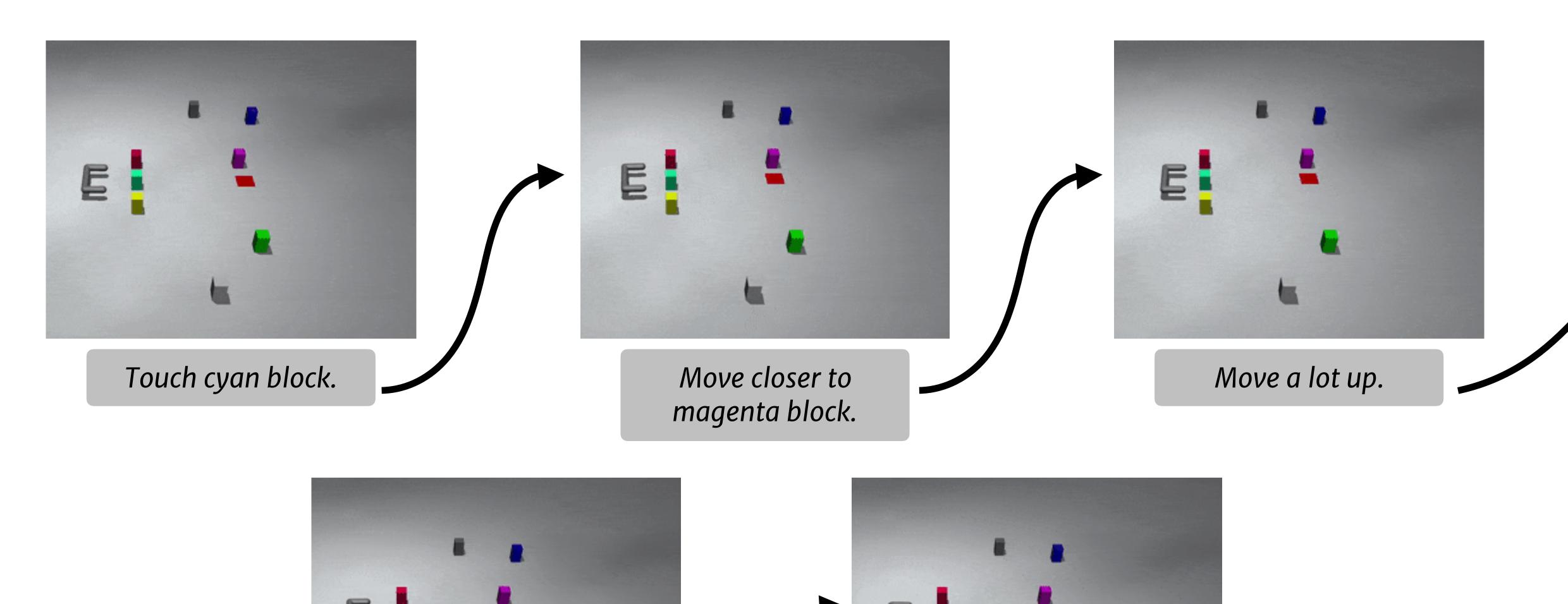
go_torward grasp turn_lett go_torward release

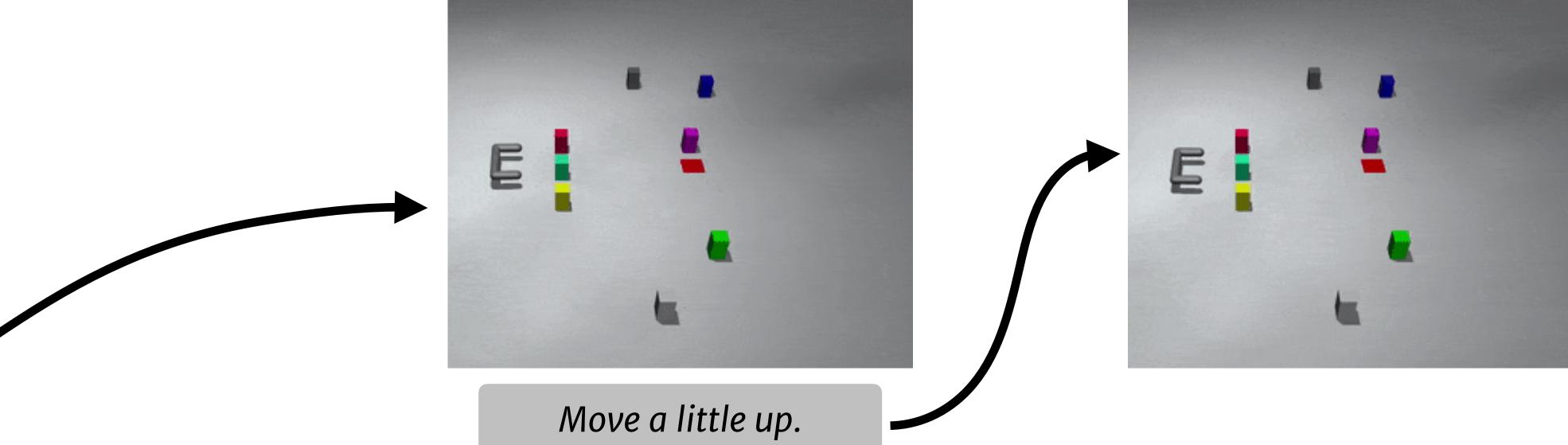
No, the red chair.

turn_left grasp go_forward go_forward release



Key idea: learn to solve problems interactively by conditioning on the whole history of instructions.

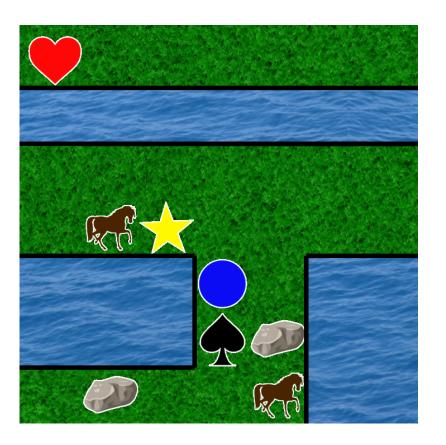




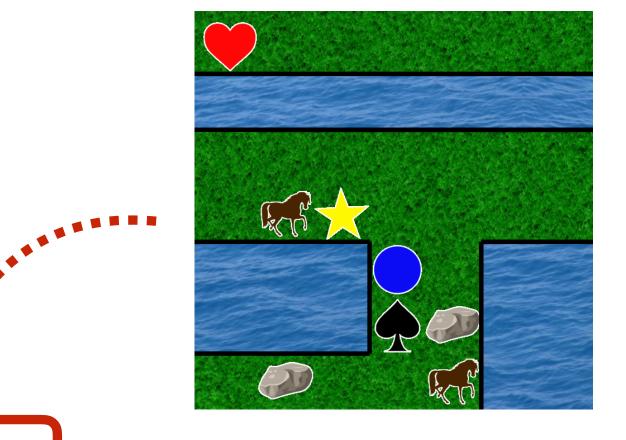
Learning with latent language

Language learning as pertaining

Structured exploration



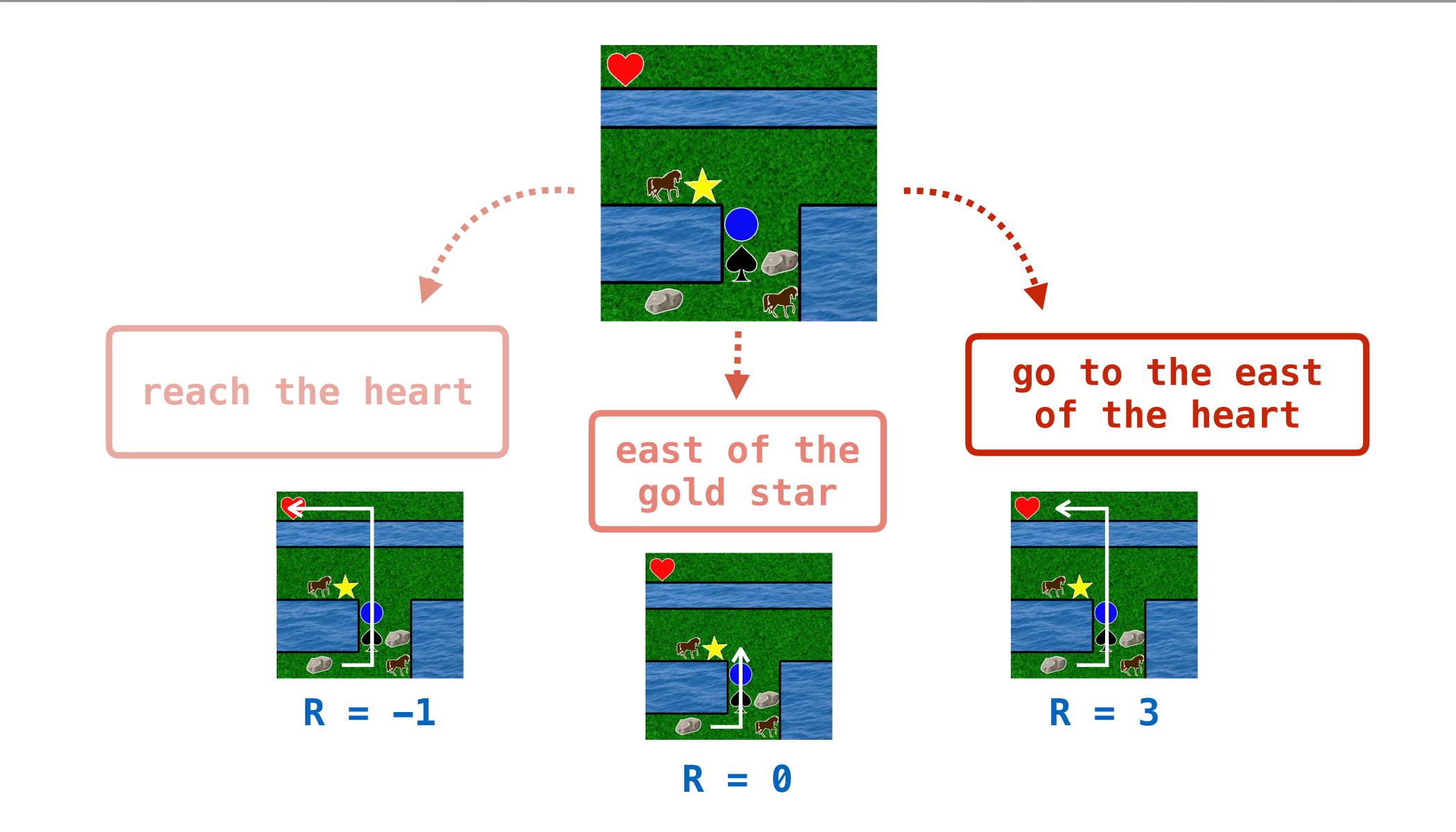
Structured exploration



reach the heart

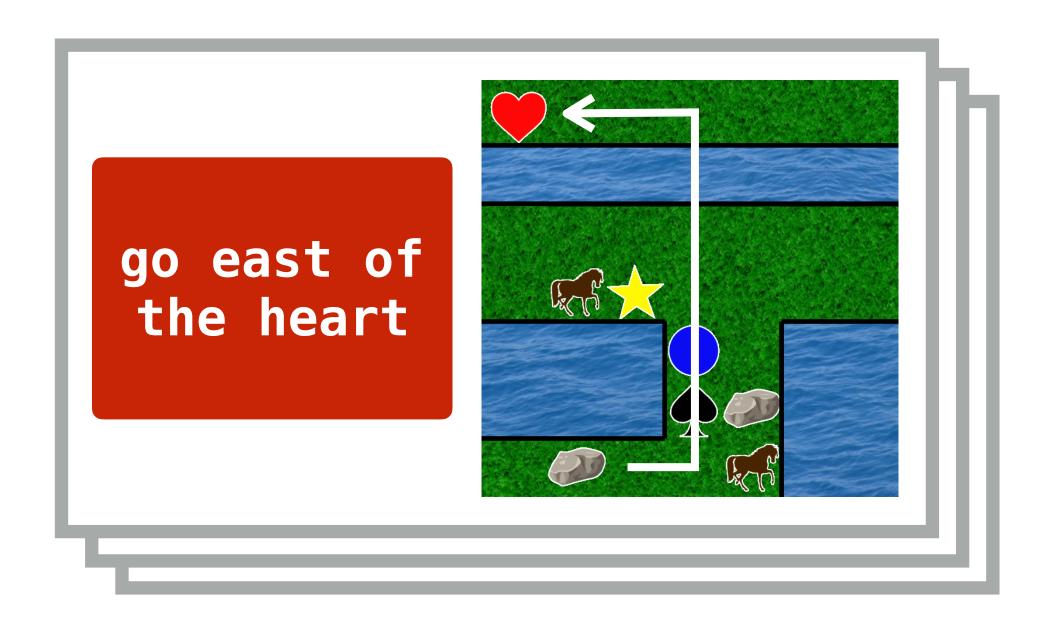
$$R = -1$$

Structured exploration

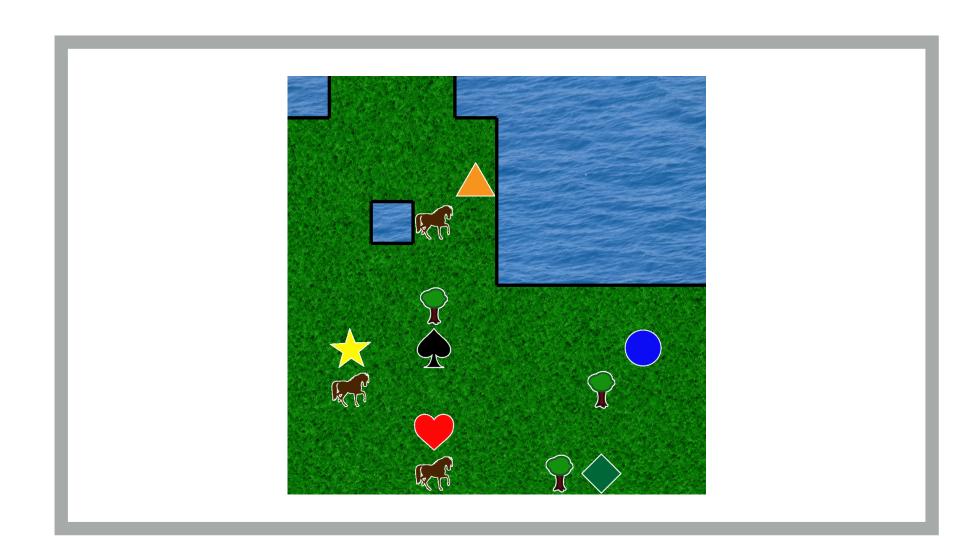


Structured exploration

Language learning



Reinforcement learning



Structured few-shot learning

examples

emboldens emboldecs

kisses kisses

loneliness → locelicess

vein veic

dogtrot dogtrot

change any n to a c

pred. description

Structured few-shot learning

examples

emboldens

kisses

loneliness →

vein

dogtrot

emboldecs

kisses

locelicess

veic

dogtrot

true description

replace all n s with c

change any n to a c

pred. description

true output

loocies

loonies

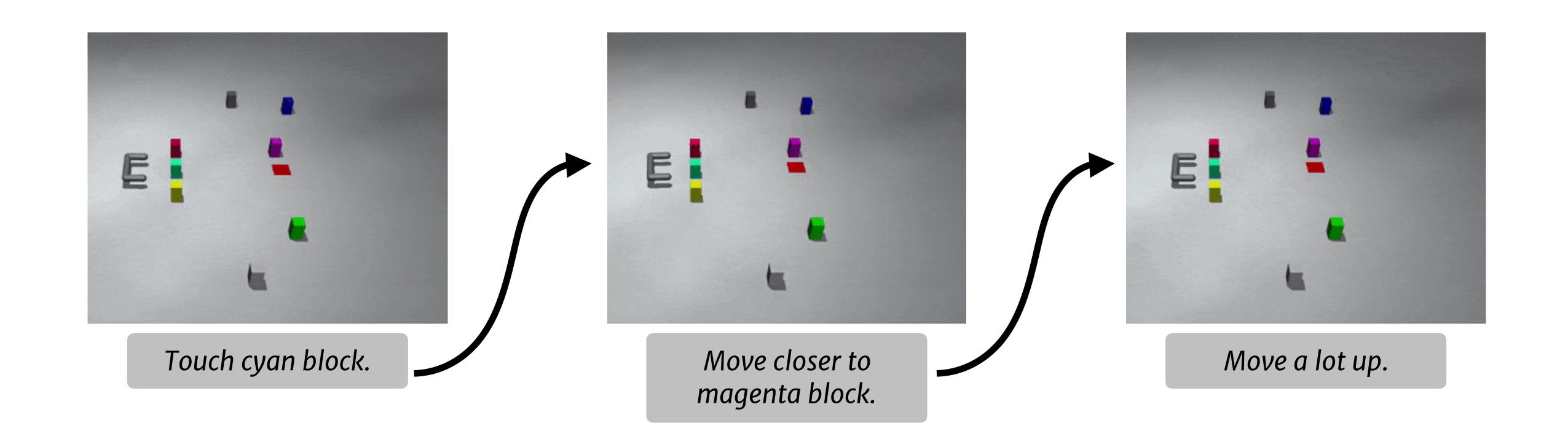
1

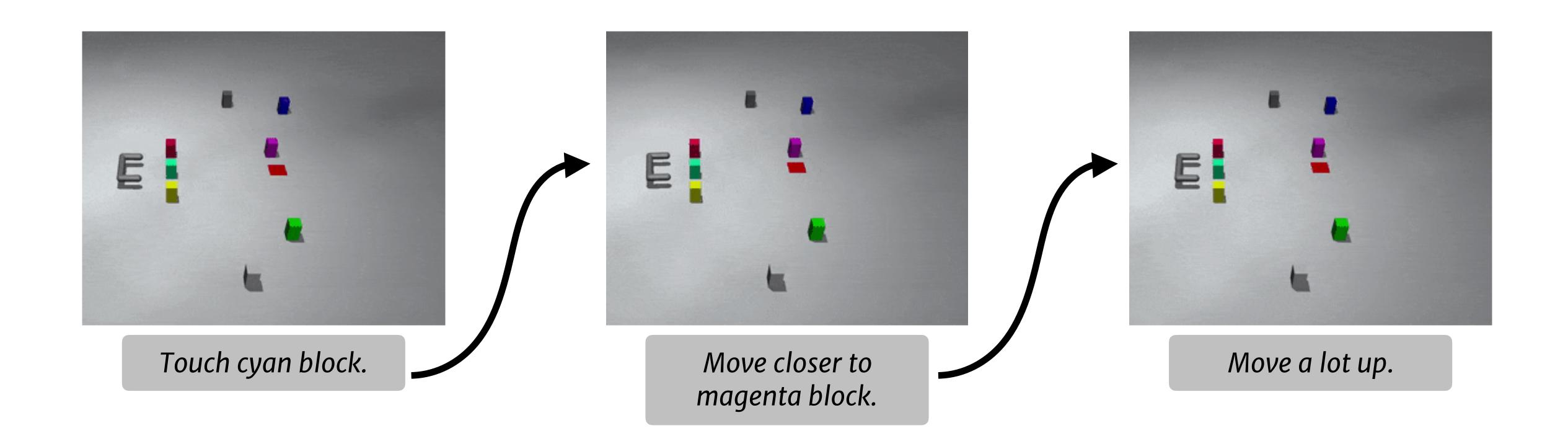
loocies

pred. output



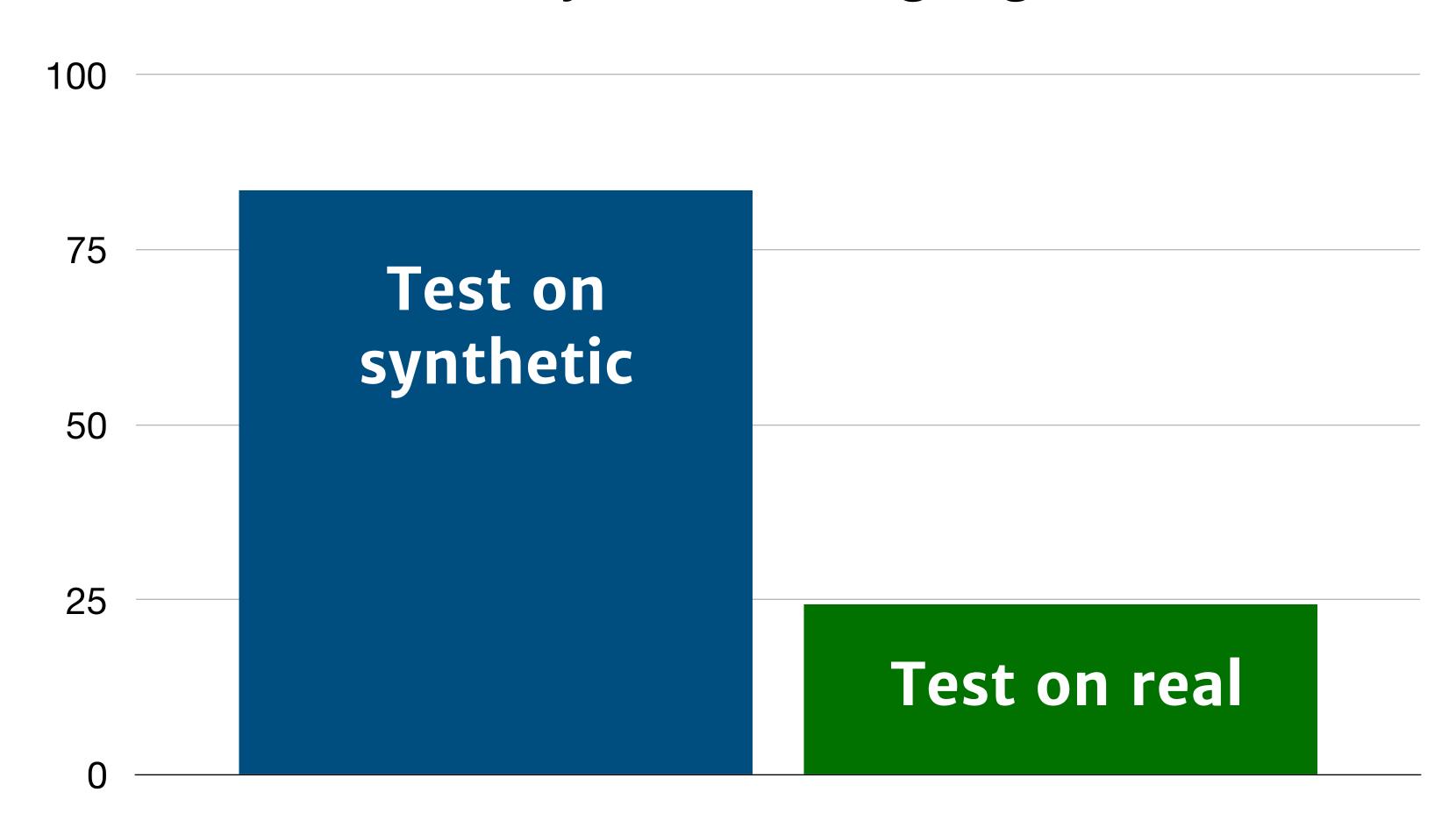
Future challenges





"Instructions" are synthesized from a grammar because of sample inefficiency!

Train on synthetic language and

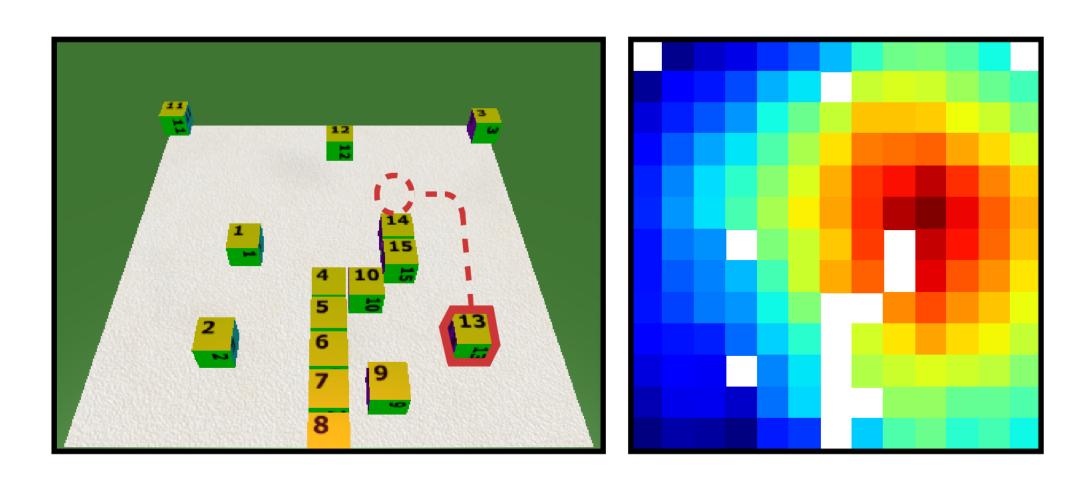


Start by eliciting real user utterances

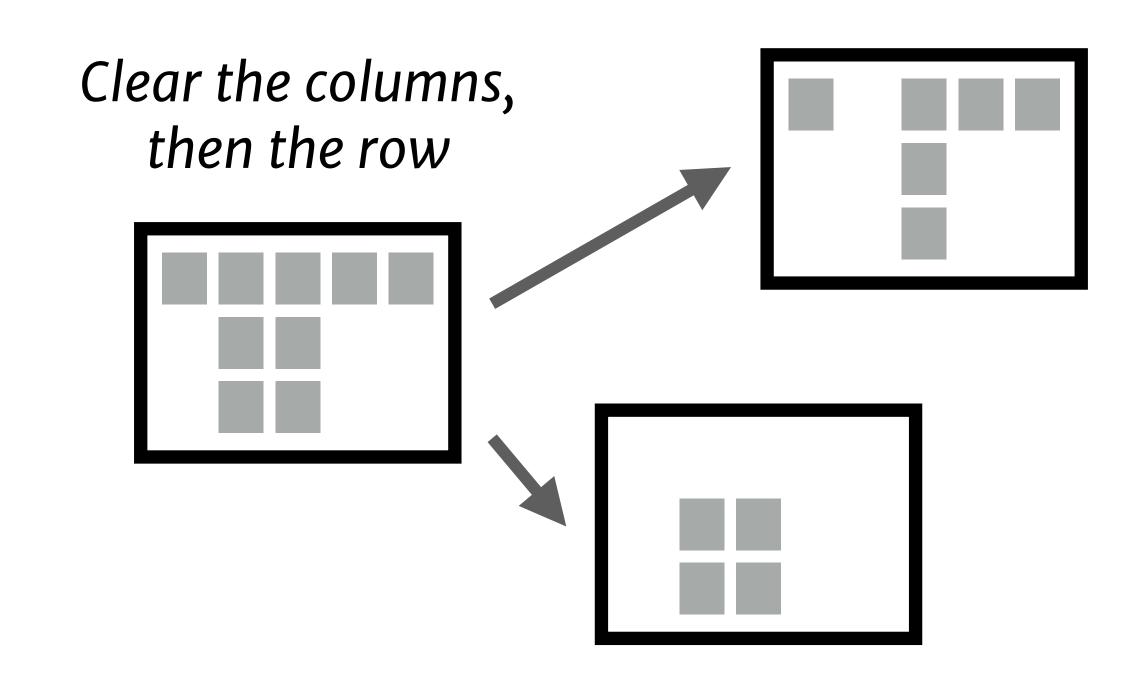
Use synthetic data to augment, not replace, natural language

Sim-to-real transfer?

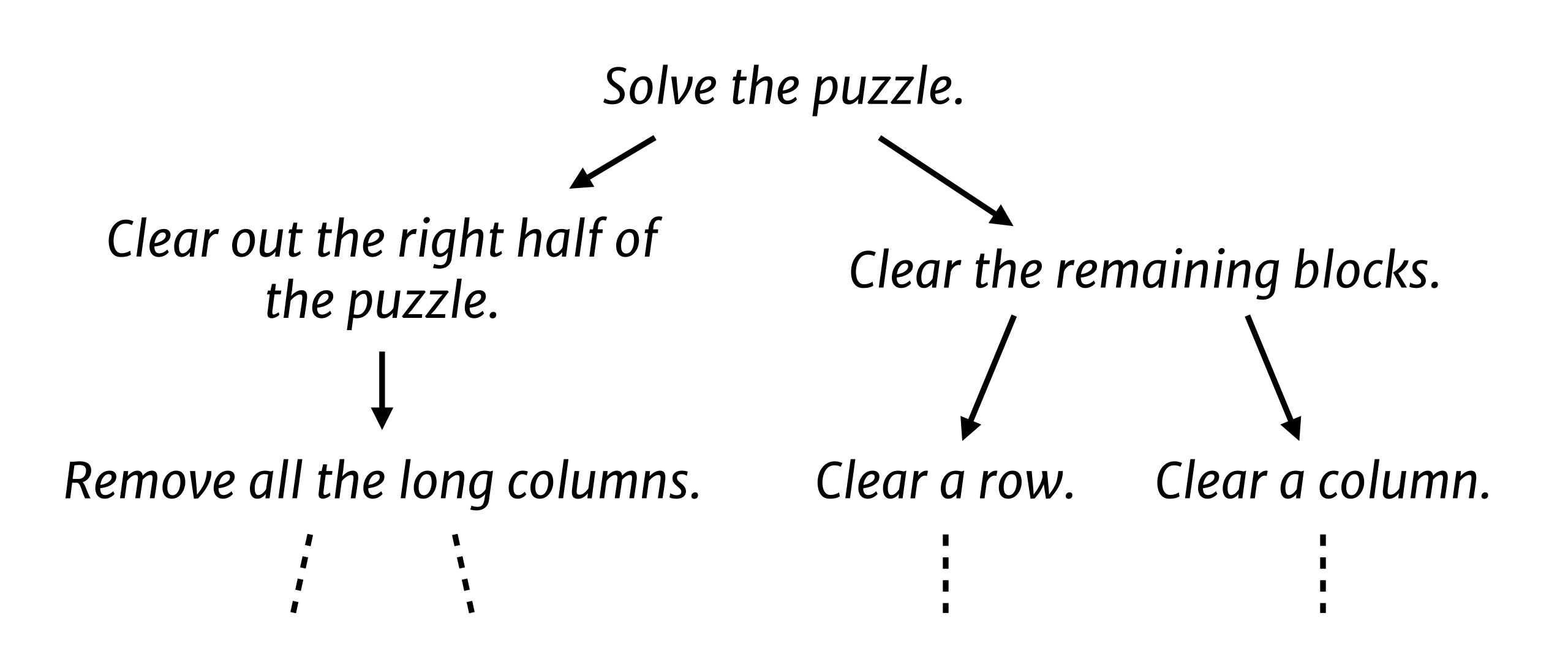
Neural planning



Take block 13 and place it directly above block 14 so they are almost touching.



Natural language subgoals



Conclusions

Instruction following ⇔ policy learning

But need to think carefully about state tracking, planning, compositionality

Instruction following ⇒ other tasks

Language generation, machine teaching, structured exploration

Challenges

Better data efficiency, smarter inference

References

Branavan et al. Reinforcement learning for mapping instructions to actions. ACL 2009.

Mei et al. Listen, attend, and walk: neural mapping of navigational instructions to action sequences. AAAI 2016.

Tellex et al. Understanding natural language commands for robotic navigation and mobile manipulation. NCAI 2011.

Andreas & Klein. Alignment-based compositional semantics for instruction following. EMNLP 2016.

Andreas et al. Modular multitask reinforcement learning with policy sketches. ICML 2017.

Fried et al. Unified pragmatic models for generating and following instructions. NAACL 2018.

Co-Reyes et al. Guiding policies with language via meta-learning. ICLR 2019.

Andreas et al. Learning with latent language. NAACL 2018.