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18.100C Recitation: Real Analysis (Peter Speh),
Problem Set 10

The Uncountability of the Reals

1 Audience: Child
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Consider, as shown above, a sidewalk that goes on forever in one direction, which is made up of
equal-sized square tiles. The sidewalk is two squares across. Consider a person who walks forever
on it, obeying the following rule: Each step the person takes must be to one of the two tiles
immediately in front of that person; no going backwards, no skipping tiles, no going sideways, no
standing in place forever. The following is the beginning of one possible path:

· · ·

· · ·

The statement that the reals are uncountable means that the number of different ways this
person can walk forever, the number of paths this person can take, is strictly larger than the number
of tiles that comprise the sidewalk. “Wait a minute,” you might say. “Both of them are infinite,
so one can’t be bigger than the other.” Indeed, normally, when you talk about sizes of numbers,
“infinity” is bigger than any number. Mathematics, however, has developed an “arithmetic of
infinity,” a way of talking about infinities as if they were normal numbers.

We say that two numbers, n and m, are the “same size” if, given a box (or set) of n things
and a box of m things, you can match them: you can pair each of your n things with exactly one
of your m things, in such a way that there is nothing left unpaired. For example, 3 = 3 because,
given two sets of three things, we may pair them. Figure 1 is an example of such a pairing1

You might think it obvious, then, that the number of paths our person can walk is bigger than
the number of tiles. We can match each tile with the path that starts on a tile the same color as
it, and changes to the other color after it hits this tile. For example, we would match the third red
tile with the path

· · ·

· · ·

1Images from http://www.faqs.org/photo-dict/phrase/348/cow.html, http://www.zcars.com.au/wrc/,
http://www.penziononyx.cz/, http://www.free-extras.com/tags/1/watermelon.htm, http://www.treehugger.

com/2010/04/18-week/, and http://www.sb.fsu.edu/~xray/Xrf/anaconda.html.

1 of 5

http://www.faqs.org/photo-dict/phrase/348/cow.html
http://www.zcars.com.au/wrc/
http://www.penziononyx.cz/
http://www.free-extras.com/tags/1/watermelon.htm
http://www.treehugger.com/2010/04/18-week/
http://www.treehugger.com/2010/04/18-week/
http://www.sb.fsu.edu/~xray/Xrf/anaconda.html


Jason Gross 18.100C Recitation P-Set 10 Saturday, Nov 27, 2010

←−−−−−−−−−−−−−−−−−−−−−−→

←−−−−−−−−−−−−−−−−−−−−−−→

←−−−−−−−−−−−−−−−−−−−−−−→

Figure 1: Example pairing showing that 3 = 3.

It is important to note, however, that it is not sufficient that we find some matching that leaves
things left over. We must show that every matching leaves things left over. For example, an infinite
sidewalk that is one tile across has just as many tiles as an infinite sidewalk that is two tiles across,
as we can see from the picture below by matching the 1R on top with the 1R on bottom, the 1B
on top with the 1B on bottom, the 2R on top with the 2R on bottom, and so on.
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In fact, if we were only to require that some matching leave extra tiles, then the number of
tiles in a sidewalk that is one tile wide would not be equal to itself, for we could match the first
tile with 1B (in the bottom picture above), the second tile with 2B, and so on, and we would leave
over half the tiles!

In fact, even if we had a field of tiles that is infinite in every direction, we would still have no
more tiles than if we had only a sidewalk that is one tile across. The following matching shows
this:
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You might wonder, given that there are so many different ways to match up infinitely many
things, how we can know that there is no matching that catches everything. I will now prove
that, no matter how you try to match paths (ways of walking) and tiles, you will miss some tiles.
Since we have already seen that the number of tiles in a sidewalk two tiles wide is the same as the
number of tiles in a sidewalk one tile wide, I will show that any matching between paths and tiles
in a sidewalk one tile wide misses some paths. I will do this by creating a path that does not match
the path we have chosen for any tile.

Suppose we are given a matching between tiles and paths. Since we have numbered the tiles
in a sidewalk one tile wide ( 1 2 3 4 5 6 7 8 · · ·), we also have a numbering of the paths in
our matching. Consider a new path that differs from the nth path in our matching on the nth tile.
For example, if our first eight paths are

1:
· · ·

· · · 2:
· · ·

· · ·

3:
· · ·

· · · 4:
· · ·

· · ·

5:
· · ·

· · · 6:
· · ·

· · ·

7:
· · ·

· · · 8:
· · ·

· · ·

then our new path is

· · ·

· · ·

Clearly, this path is not any of the ones in the matching, because it differs from every single
path on at some point (in particular, it differs from the nth path on the nth tile, the nth step you
take).

Thus, we see that the number of paths a person can take is strictly larger than the number of
tiles in the sidewalk.
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2 Audience: Adult

Recall that real numbers are numbers with a decimal expansion, for example 1, 2, 3.5, π =
3.14159265. . . Every real number has an infinite decimal expansion, for example 1 = 1.0000000000. . . ,
2 = 2.0000000000. . . , 3.5 = 3.5000000000. . . Recall that the rational numbers are fractions of in-
tegers, for example 1 = 1

1 , 3
2 , 100

101 , 22
7 . The positive integers are the integers greater than zero, 1,

2, 3, 4, . . . There is a theorem in math that states that the rational numbers are countable, that
is, that the set of rational numbers is the same size as the set of positive integers, and another
theorem which states that the real numbers are uncountable, that is, that the set of real numbers
is strictly bigger. By this (“same size” and “strictly bigger”) I mean that it is possible to match
every rational number with some positive integer in a way so that there are no rational numbers,
nor positive integers, left unmatched, but that any matching you make between real numbers and
positive integers leaves some real numbers not matched with anything.

If you imagine laying the rational numbers out on a two-dimensional grid, so that the number
p/q falls at (p, q), then we may match the positive integers with the rational numbers by walking
in a spiral pattern out from zero, skipping over numbers that we have already counted (or that are
undefined, such as zero divided by any number). The beginning of this sequence is 0

1 , 1
1 , 1

2 , −12 , −11 ,
. . . Graphically, this is:
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This shows that the rational numbers are countable.
The real numbers, however, cannot be matched with the positive integers. I show this by

contradiction; I show that if there is such a matching, then we can conclude nonsensical statements
(and if making a new assumption allows us to conclude nonsense, then the assumption itself must
be nonsense). Suppose we have such a matching. We can construct a new real number that differs
in its nth decimal digit from the real number matched with n. For example, if we were given a
matching that matched 1 with 1.8, 2 with 1.26, 3 with 5.758, 4 with 1, and 5 with π, then our
new number could be 0.11111, which differs from 1.8 in the first decimal place (the 0.1 place),
1.26 in the second decimal place (the 0.01 place), and so on. It is clear that this number cannot
be matched with any number under the matching we are given, because, if it were matched with
n, then it would differ from itself in the nth decimal digit, which is nonsense. Thus, there is no
matching between the real numbers and the positive integers.
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3 Audience: Mathematician

I will prove that the rational numbers are countable, and present a variant of Cantor’s diagonal-
ization argument to prove the real numbers are uncountable. This constructively proves that there
exist uncountable sets (the real numbers are such an example).

Definition 1. The set of rational numbers, Q, is the set of integer fractions p
q in reduced form; the

greatest common divisor of p and q is one.

Definition 2. The counting numbers are the set

N := {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, . . .} .

Definition 3. A set S is countable if there is some surjection from the counting numbers onto S.

Definition 4. A set S is uncountable if it is not countable.

Theorem. The rational numbers are countable.

The proof is, essentially, that N × N is isomorphic to N; we count in a roughly spiral pattern
centered at zero.

Proof. Define the height of a
b to be |a|+ |b|. We may count the rational numbers in order of height,

and ordering by a, and then b, when the heights are the same. The beginning of this counting
is 0/1, −1/1, 1/1, −2/1, −1/2, 1/2, 2/1, . . . Since there are at most (2d + 1)2 rational numbers
of height less than or equal to d, a rational number with height d is mapped on to by one of the
counting numbers up to (2d+ 1)2; every rational number is mapped onto by this counting. Thus,
the rational numbers are countable.

Note: It is not hard to extend this proof to show that Nn is countable for any finite n.
I use the decimal representation of the real numbers to prove the following theorem. I use

an overline ( ¯ ) to mean that the digit(s) under it are repeated forever. Note that a.bcd · · · z9 =
a.bcd · · · (z + 1)0 (if z < 9; otherwise, we need to continue carrying the one);

∑∞
i=k 10−k · 9 =

1 · 10−k+1 +
∑∞

i=k 10−k · 0. Furthermore, these are the only equivalences between decimal repre-
sentations; there are no other real numbers with multiple representations, and these real numbers
have only these two decimal representations.

Theorem. The real numbers are uncountable.

Proof. Suppose, for contradiction, that the real numbers are countable; suppose that f : N �
R is a surjection. Let rn denote the nth decimal digit of r, so that the fractional part of r is
r1r2r3r4r5. . . Then define a real number r′ with 0 ≤ r′ < 1 so that r′n is 5 if (f(n))n 6= 5, and 6
if (f(n))n = 5. Then there can be no n such that r′ = f(n) since r′n 6= (f(n))n. Thus f is not
surjective, contradicting our assumption, and R is uncountable.

Note that choosing 5 and 6 as our allowable digits for r′ side-steps the issue that 0.9 = 1.0.
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