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The description of the world given by quantum mechanics is at odds with our classical experience.
Most of this conflict resides in the concept of ``measurement"". After explaining the origins of
the controversy, and introducing and explaining some of the relevant mathematics behind density
matrices and partial trace, I will introduce decoherence as a way of describing classical measurements
from an entirely quantum perspective. I will discuss basis ambiguity and the problem of information
flow in a system + observer model, and explain how introducing the environment removes this
ambiguity via environmentally-induced superselection. I will use a controlled not gate as a toy model
of measurement; including a one-bit environment will provide an example of how interaction can
pick out a preferred basis, and included an N -bit environment will give a toy model of decoherence.

I. INTRODUCTION

For any physicist who learns classical mechanics before
quantum mechanics, the theory of quantum mechanics at
first appears to be a strange and counter-intuitive way to
describe the world. The correspondence between classical
experience and quantum theory is not obvious, and has
been at the core of debates about the interpretation of
quantum mechanics since its inception.

In this paper, I will begin by describing the measure-
ment and interpretation problems of quantum mechanics.
I will talk about interference, one of the essential charac-
teristics of quantum systems. After describing a criterion
for determining how close to classical a quantum system
is, I will introduce decoherence, the thermodynamically
irreversible transfer of information from a system to the
environment; it provides a description of how to recover
the illusion of classical mechanics from quantum mechan-
ics. I will present a toy model of decoherence---a one-bit
system with a one-bit measuring device, coupled to anN -
bit environment---and calculate decoherence time. I will
close with remarks about how close decoherence gets us
to solving the interpretation and measurement problems,
and what's left to be explained.

A. The Problem: Classicality

The so-called ``measurement problem"" is the problem
of determining the correspondence between quantum me-
chanical descriptions of a system and our classical expe-
rience with measurements. One of the essential problems
in finding such a correspondence is that there are far
more permissible quantum mechanical states of a system
than there are classical states. Classically, to specify the
state of a system, you give the values of some small set
of numbers, such as position, velocity, mass, charge, etc.
Quantum mechanically, you must pick out an element
of a vast Hilbert space, i.e., you must specify a complex
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function over each independent observable. Moreover,
the law of superposition, which states that any linear
combination of valid quantum states is also valid, gives
rise to states that do not seem to correspond to any clas-
sical system anyone has experienced. The most famous
example of such a state is that of Schr\"odinger's hypo-
thetical cat, which is in a superposition of being alive
and being dead.
As Zurek notes in [1], one might na\"{\i}vely assume that

the law of superposition should always be taken literally,
that fundamentally, reality consists of quantum wave-
functions. From this point of view, there is no a priori
reason to expect systems to have the well-defined local-
ized behavior that we observe (such as definite position
and momenta). Einstein noted in a 1954 letter to Born
that such localization is incompatible with quantum me-
chanics, because time evolution tends to smear localized
states. [1, 3] Additionally, such superpositions often in-
volve interference effects, where probabilities do not add
classically.

B. The Role of The Environment

Most systems in the world are open in the thermody-
namic sense; they interact with the environment, which
can be modeled as a ``bath"" with which a system can
exchange information and energy. Decoherence is a de-
scription of the thermodynamically irreversible exchange
of information with the environment. If we are largely
incapable of measuring the environment, then decoher-
ence quickly renders most quantum systems indistin-
guishable from classical ensembles of their possible (clas-
sical) states. We will see how quickly this happens by
developing a toy model for decoherence and calculating
the decoherence time in section VIC.
The environment is constantly interacting with most

systems, especially large ones, and most measuring de-
vices are rather large. The strength of that interaction
usually dominates the strength of the interaction between
the system being measured and the device being used to
measure it. This results in what is called environmentally
induced super-selection, or einselection for short. [1] The
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interaction between the observer and the environment
picks out a preferred basis of states that are not (sig-
nificantly) perturbed by further interactions; these are
the pointer states that remain correlated with the sys-
tem despite further interactions with the environment.
Other states don't make for good measuring devices; it
would be terribly inconvenient if your measurement re-
sults were scrambled every time a bit of light shined on
them, or every time a bit of air passed by. We will see
effect this more formally in section IVB and section VIB.

Though it is beyond the scope of this paper, Zurek
develops a complementary description of this process in
[1, 4], which he calls quantum Darwinism, in which the
classically observable, einselected states are the ones that
are best at propagating information about themselves
through the environment. Very roughly, the idea is that
we usually measure a system by interacting with a small
subset of the environment (e.g., by measuring some small
subset of all the photons that bounce off the system in
question). So the relative frequencies of states that we
observe are the relative ``fitnesses"" of those states in en-
coding their information in the environment. This de-
scription has the benefit that it does not necessarily re-
quire us to specify the measuring device as fundamental;
the intrinsic characteristics of a system should not de-
pend on how we measure that system.

II. ENVIRONMENT, SYSTEM, OBSERVERS

The formalism of decoherence relies on partitioning the
universe into three disjoint, interacting systems: the en-
vironment, which will generally be denoted \scrE , the system
we are studying, which will generally be denoted \scrS or \scrA ,
and the observer, or the measuring device, which will of-
ten be denoted \scrO . The environment and the system are
continuously interacting, and this forms the basis of de-
coherence. The measurement device interacts with the
system for some short period of time, after which it is
considered to have measured the system. We assume
that the observers are largely incapable of measuring the
environment. As we will see in section IVB and in our
toy model in section VIC, after a short time, parts of the
wave-function that project on to orthogonal elements of
the Hilbert space \scrE have little effect on each other; that
is, there is very little interference between different states
of the environment. Thus, from the point of view of the
observer, the outcome of any measurement will be equiv-
alent to the ensemble average of that measurement over
the states of the environment. This will be made more
rigorous in section IVB.

III. PRELIMINARY DEFINITIONS

This paper uses standard bra-ket notation (\langle \psi | and | \psi \rangle )
for states; an arrow | \psi 0\rangle  - \rightarrow | \psi t\rangle to denote the unitary
time evolution from the state | \psi 0\rangle at time 0 to the state

| \psi t\rangle at time t; and tensor product | \psi \rangle 1 \otimes | \phi \rangle 2 to denote
the entangled state of ``object 1 in a state \psi and object
2 in a state \phi "". Occasionally, the tensor product sym-
bol will be dropped and | \psi \rangle 1| \phi \rangle 2 will be used to save
space. Quantum systems are denoted by script letters
(e.g., \scrS ), and sets of states by subscripted Latin letters
in curly braces (e.g., \{ | si\rangle \} ). Unless otherwise specified,
the states in these sets are assumed to be orthonormal.

IV. THE HALLMARK OF THE QUANTUM:
INTERFERENCE AND RELATIVE PHASES

The primary difference between quantum mechanical
states and classical states is the quantum mechanical law
of superposition. It states that if | \psi 1\rangle and | \psi 2\rangle are valid
states, then so is (up to normalization) \alpha | \psi 1\rangle +\beta | \psi 2\rangle for
arbitrary complex \alpha and \beta . This is most easily seen in
relative phases between terms and in interference exper-
iments. [5]

A. Interference Terms

Classically, if there is a system \scrS which has possible
states \psi i, we can suppose that we have an ensemble of
such systems, in which the probability of one such system
being in state \psi i is P (\psi i). If we make a measurement of
a physical observable \phi which can take on values \phi j , then
the probability of measuring it to be \phi j is the sum of the
products of conditional probabilities:

P\mathrm{C}(\phi j) =
\sum 
i

P (\phi j | \psi i)P (\psi i). (1)

Quantum mechanically, we may suppose that there is
a system \scrS which has possible states spanned by an or-
thonormal basis of (classically) observable states \{ | \psi i\rangle \} .
Consider an ensemble of identically prepared systems,
each in state

| \psi \rangle \equiv 
\sum 
i

\alpha i| \psi i\rangle . (2)

If we measure the observable with eigenvectors | \phi j\rangle , then
the probability of measuring a system to be in a state | \phi j\rangle 
is

P\mathrm{Q}\mathrm{M}(\phi j) \equiv | \langle \phi j | \psi \rangle | 2 = \langle \phi j | \psi \rangle \langle \psi | \phi j\rangle 

=
\sum 
i

| \alpha i\langle \phi j | \psi i\rangle | 2 +
\sum 
i,k
i \not =k

\alpha i\alpha 
\ast 
k\langle \phi j | \psi i\rangle \langle \psi k| \phi j\rangle .

(3)

Define P (\psi i) \equiv | \langle \psi i| \psi \rangle | 2 = | \alpha i| 2 to be the probability
of measuring a system to be in state | \psi i\rangle (when mea-
suring the observable with eigenvectors | \psi i\rangle ). Define
P (\phi j | \psi i) \equiv | \langle \phi j | \psi i\rangle | 2 to be the probability of measur-
ing a system initially in state | \psi i\rangle to be in state | \phi j\rangle .
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Then Equation 3 becomes

P\mathrm{Q}\mathrm{M}(\phi j) =
\sum 
i

P (\phi j | \psi i)P (\psi i) +
\sum 
i,k
i \not =k

\alpha i\alpha 
\ast 
k\langle \phi j | \psi i\rangle \langle \psi k| \phi j\rangle 

= P\mathrm{C}(\phi j) +

\Biggl\langle 
\phi j

\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| \bigm| \bigm| 
\sum 
i,k
i \not =k

\alpha i\alpha 
\ast 
k| \psi i\rangle \langle \psi k| 

\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| \bigm| \bigm| \phi j
\Biggr\rangle 
. (4)

Note that for every term appearing in the sum over i
and k on the first line, the conjugate of that term also
appears, and so the sum is purely real.

Thus, the quantum mechanical probability of measur-
ing a particular outcome is, in some sense, the classical
probability of measuring that outcome, plus the expec-
tation value of the sum of the cross-terms, the interfer-
ence terms, when we have picked a basis of classically
observable states; which terms are considered ``interfer-
ence terms"" depends on which states we consider to be
classically observable.

B. Ensemble Averages

Suppose now that the states of our system \scrS live in the
tensor product of the Hilbert spaces \scrA and \scrE , which have
orthonormal bases \{ | \psi \scrA ,i\rangle \} and \{ | \psi \scrE ,k\rangle \} of (classically)
observable states of \scrA and \scrE , respectively. If we have
the ability to measure states of \scrA , but are incapable of
distinguishing states of \scrE , so that the states | \phi j\rangle that we
are measuring are elements of \scrA , then we can define the
environment-agnostic overlap of a state | \psi \rangle with a vector
| \psi \scrA ,i\rangle \in \scrA to be

P\scrE (\psi \scrA ,i) \equiv 
\sum 
k

\langle \psi \scrA i | \otimes \langle \psi \scrE ,k| | \psi \rangle \langle \psi | | \psi \scrE ,k\rangle \otimes | \psi \scrA i\rangle 

=
\sum 
k

| \langle \psi \scrA i | \otimes \langle \psi \scrE ,k| | \psi \rangle | 2 (5)

which is a sum over an orthonormal basis of \scrE .1 This
is the norm squared of the overlap of the wave-function
with | \psi \scrA ,i\rangle . If we assume that all basis states | \psi \scrE ,k\rangle of \scrE 
are equally likely, then we are simply adding up the joint
probabilities P (\psi \scrA ,i and \psi \scrE ,k).
If we express | \psi \rangle in the tensor basis, then we can say

| \psi \rangle =
\sum 
m

\alpha m| \psi \scrA ,im\rangle \otimes | \psi \scrE ,km
\rangle (6)

1 I have tacitly assumed in this presentation that the environment
is equally likely to be found in any classically observable pure
state, and that this is a good representation of the environment.
The more accurate way to model this is to construct a density
matrix of combined \scrA \otimes \scrE system, and then take the partial trace
over the environment. See, for example, [6, \S 2.4] and [7, \S 2.1.8],
for a good introduction to density matrices. Equation 5 is the
appropriate matrix element of the partial trace over \scrE of the
density matrix | \psi \rangle \langle \psi | , denoted Tr\scrE (| \psi \rangle \langle \psi | ). In this language,
Equation 5 becomes P\scrE (\psi \scrA ,i) =

\bigl\langle 
\psi \scrA ,i

\bigm| \bigm| Tr\scrE (| \psi \rangle \langle \psi | )\bigm| \bigm| \psi \scrA ,i

\bigr\rangle 
.

Then the probability of measuring the system \scrS to be in
a state | \phi j\rangle \in \scrA is

P\scrE (\phi j) \equiv 
\sum 
k

\langle \phi j | \otimes \langle \psi \scrE ,k| | \psi \rangle \langle \psi | | \psi \scrE ,k\rangle \otimes | \phi j\rangle 

=
\sum 
m

| \alpha m\langle \phi j | \psi \scrA ,im\rangle | 2 (7)

+
\sum 
m,m\prime 

m \not =m\prime 

\alpha m\alpha 
\ast 
m\prime \langle \phi j | \psi \scrA ,im\rangle 

\bigl\langle 
\psi \scrA ,im\prime 

\bigm| \bigm| \phi j\bigr\rangle \delta km,km\prime 

If we again define P (\phi j | \psi \scrA ,i) \equiv | \alpha m\langle \phi j | \psi \scrA ,i\rangle | 2, then
the first term is just the classical probability of measuring
\phi j , and so Equation 7 becomes

P\scrE (\phi j) = P\mathrm{C}(\phi j) +
\sum 
m,m\prime 

m \not =m\prime 

km=km\prime 

\alpha m\alpha 
\ast 
m\prime \langle \phi j | \psi \scrA ,im\rangle 

\bigl\langle 
\psi \scrA ,im\prime 

\bigm| \bigm| \phi j\bigr\rangle 

(8)
We again see that the quantum mechanical probabil-

ity is the classical probability, plus an interference term.
Note, again, that the interference term is dependent on
our choice of basis for \scrE . (The overall value, however, is
basis independent. This is due to a general property of
the operation that we are doing, better known as a par-
tial trace.) This time, the interference term dependent
on how many terms of | \phi j\rangle project on to the same vector
in \scrE (i.e., for how many m \not = m\prime we have km = km\prime ).
If, by and large, when considering only the terms in \psi 
with non-vanishing coefficients, there is a one-to-one cor-
respondence between basis elements | \psi \scrA ,i\rangle of \scrA and basis
elements | \psi \scrE ,k\rangle of \scrE , then we see that the probability of
any particular outcome is the same as it is classically,
and we cannot distinguish this quantum system from the
corresponding ensemble of classical ones.
This treatment, and the result that the relevant quan-

tities to determining how far a system is from being clas-
sical are the terms that couple different basis elements of
the environment, will be important for section VIC.

V. MEASUREMENT

A. Premeasurement

Consider a quantum system \scrS initially in a state

| \psi \rangle =
\sum 
i

ai| si\rangle (9)

and a measuring apparatus \scrA initially in a state | A0\rangle .
Let \{ | si\rangle \} and \{ | Ai\rangle \} be orthonormal bases for the sys-
tem and the apparatus, respectively; the | si\rangle are the pos-
sible states of the system that we can measure with our
apparatus, and each | Ai\rangle is the state that we observe the
apparatus to have when it measures the system to be
in the corresponding state | si\rangle . Letting | A0\rangle denote the
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initial state of the apparatus, a premeasurement on the
system is a unitary time evolution from (10) to (11):

| \Psi 0\rangle \equiv | \psi \rangle \otimes | A0\rangle =

\Biggl( \sum 
i

ai| si\rangle 

\Biggr) 
\otimes | A0\rangle (10)

\downarrow 

| \Psi t\rangle \equiv 
\sum 
i

ai| si\rangle \otimes | Ai\rangle . (11)

Informally, a premeasurement is an interaction between
the system and the apparatus which does not change the
state of the system when the apparatus is ignored.2

This step of premeasurement is not sufficient to mea-
sure \scrS , as we shall see in the next section, but it expresses
the reason that we call \scrA a measuring device: \scrA attains
a specific state corresponding to each possible state of
the system, without disturbing the system.

B. Toy Model: c-not

Two-state systems are useful toy models for some
quantum processes. The simplest toy model for mea-
surement is when the system we are trying to measure
is a two state system, often called the ``target bit"", and
our measuring apparatus is also a two state system, often
called the ``control bit"". When we refer to this objects
as ``bits"", the two states are labeled 0 and 1.

Consider, as in [1], the logical operation ``controlled
not"", which flips a target bit when a control bit is 1, and
leaves the target bit alone when the control bit is 0:

0cat  - \rightarrow 0cat; 1cat  - \rightarrow 1c\neg at (12)

where \neg at is logical negation, sending 0 to 1 and 1 to 0.
The quantum analog of this classical operation evolves
by the rule

(\alpha | 0\rangle c + \beta | 1\rangle c)| a\rangle t \rightarrow \alpha | 0\rangle c| a\rangle t + \beta | 1\rangle c| \neg a\rangle t (13)

where the logical negation | \neg a\rangle t \equiv \neg | a\rangle t is given by the
rule

\neg (\gamma | 0\rangle + \delta | 1\rangle ) \equiv \gamma | 1\rangle + \delta | 0\rangle (14)

Letting | A0\rangle \equiv | 0\rangle t and | A1\rangle \equiv | 1\rangle t turns c-not in to a
toy model for premeasurement.

In the classical controlled not, information unambigu-
ously flows from the control to the target; knowing the
state of the target bit before and after premeasurement
is sufficient to determine the control bit. Knowing the
state of the control bit before and after the premeasure-
ment, on the other hand, tells you nothing; the control
bit is unchanged by the target bit.

2 More precisely, a premeasurement fixes the projection of the state
onto \scrS .

It is tempting to think that the flow of information in
the quantum controlled not system is also unambiguous.
However, this is not the case. If we prepare the target bit
in the state | 0\rangle t or | 1\rangle t, then premeasurement transfers
information from the control to the target. Consider,
however, the | \pm \rangle basis defined by

| \pm \rangle \equiv 1\surd 
2
(| 0\rangle \pm | 1\rangle ) . (15)

Application of the transformation rule of Equation 13 to
Equation 15, after straightforward calculation, gives us
the new transformation rule

| \pm \rangle c \otimes | +\rangle t  - \rightarrow | \pm \rangle c \otimes | +\rangle t
| \pm \rangle c \otimes |  - \rangle t  - \rightarrow | \mp \rangle c \otimes |  - \rangle t. (16)

If we prepare the ``target"" (the ``measuring device"") in
the state | +\rangle t or |  - \rangle t, then the target bit is unaffected
by the premeasurement, and we have precisely the re-
verse of the situation we had before; knowing the state
of the target bit before and after premeasurement gives
no information about the control bit, but knowing the
state of the control bit before and after gives complete
information about the target bit. The same result oc-
curs if we prepare the control bit in | +\rangle c or |  - \rangle c. Zurek
claims in [1] that this basis ambiguity is present in all
such target-control systems.

C. Three Descriptions of Measurement

Following Zurek in [1], I describe three different quan-
tum mechanical descriptions of the same measurement.
Consider a quantum system \scrS with orthonormal states

\{ | si\rangle \} , and three potential observers (measuring devices)
\scrI , \scrD , and \scrO , all of which can measure \scrS . Say that the
possible (classical) states of the measuring devices are
\{ | Ii\rangle \} , \{ | Di\rangle \} , and \{ | Oi\rangle \} , respectively; say that ``\scrI is in
state | Ii\rangle "" corresponds to \scrI measuring \scrS to be in state
| si\rangle (for that i), and similarly for \scrD and \scrO .

1. The Insider

The simplest case of quantum measurement corre-
sponds to when the (classical) state of the system is al-
ready known with certainty; this is usually because it has
just been measured. An insider is an observer already
perfectly correlated with the state of the system; the in-
sider can predict the outcome of his next measurement
with certainty.
More formally, an insider, who already knows the state

of \scrS to be si, has this information recorded somewhere,
say in measuring device \scrI which is now in state Ii. A sub-
sequent measurement of the system, using a measuring
device \scrI \prime , looks like

| I \prime 0\rangle \otimes | Ii\rangle \otimes | si\rangle  - \rightarrow | I \prime i\rangle \otimes | Ii\rangle \otimes | si\rangle . (17)



Decoherence: An Explanation of Quantum Measurement 5

This is the familiar classical case of measurement; if
you know the initial state of a classical system, and you
know the (deterministic) laws according to which the sys-
tem evolves, then you can predict with certainty what the
outcome of a future measurement will be.

As Zurek notes in [1], every classical observer could
aim, in principle, to be the ultimate insider; classically, if
you ignore details about information storage limits, it is
possible, in principle, to know the initial conditions of ev-
ery particle in the universe, and thus be able to calculate,
in principle, the outcome of every measurement ahead of
time. In quantum mechanics, this is not possible, even
in principle.

2. The Discoverer

Consider the standard description of quantum mea-
surement: Observer \scrD measures the system \scrS , and
records a particular outcome si. If \scrD did not ahead of
time what the outcome of the measurement would be
(i.e., if \scrD describes the state of the system, before mea-
surement, as a superposition of the states | si\rangle ), then this
observer is called a discoverer. If the discoverer also ob-
serves an insider \scrI , in addition to the system \scrS , then
we can describe this observation mathematically by the
(non-unitary) time evolution

| D0\rangle \otimes 
\sum 
i

ai| Ii\rangle \otimes | si\rangle  - \rightarrow | Di\rangle \otimes | Ii\rangle \otimes | si\rangle . (18)

This discoverer describes his observation with what
is commonly called ``collapse of the wave-function""; the
discoverer might describe his measurement by saying:
``When I measure \scrS , which is currently in a superposi-
tion state, I see it collapse into one of the classical states
| si\rangle with respective probabilities | ai| 2. No matter which
state I measure \scrS to be in, I will percieve the insider \scrI 
to be in agreement with my measurement, and to have
known this outcome ahead of time.""

3. The Outsider

An outsider is an observer who describes the process
of \scrI and \scrD measuring \scrS , but taking no measurements of
\scrS (nor of \scrI nor of \scrD ) himself. Such an observer \scrO would
say that the insider starts off entangled with the state of
the system, and, in measuring the system, the discoverer
becomes entangled with the state of the system, but no
collapse occurs. The mathematical description of this
process (excluding the state of \scrO for simplicity) is the
time evolution

| D0\rangle 
\sum 
i

ai| Ii\rangle | si\rangle  - \rightarrow 
\sum 
i

ai| Di\rangle | Ii\rangle | si\rangle . (19)

This is a unitary process, and well-described by what we
called premeasurement above.

VI. DECOHERENCE

A. Environmentally Induced Superselection

B. Toy Model: c-not + Environment

Consider again the controlled not not gate of sec-
tion VB, but instead of just a control/system \scrS and a
target/apparatus \scrA , consider also the environment \scrE .
As before, the first step is premeasurement by the ap-

paratus of the system, in which the system, apparatus,
and environment evolve as

| 0\rangle c \otimes | A0\rangle \otimes | \varepsilon \ast \rangle  - \rightarrow | 0\rangle c \otimes | A0\rangle \otimes | \varepsilon \ast \rangle 
| 1\rangle c \otimes | A0\rangle \otimes | \varepsilon \ast \rangle  - \rightarrow | 1\rangle c \otimes | A1\rangle \otimes | \varepsilon \ast \rangle . (20)

where | \varepsilon \ast \rangle is a generic state of the environment, and the
other states are as they were defined above. In general,
we have the transformation rule

(a| 0\rangle c + b| 1\rangle c)| A0\rangle | \varepsilon \ast \rangle  - \rightarrow (a| 0\rangle c| A0\rangle + b| 1\rangle c| A1\rangle )| \varepsilon \ast \rangle 
(21)

Let us suppose that the pointer states of the apparatus
are einselected. That is, suppose that the states of the
apparatus corresponding to our possible measurements,
| A0\rangle and | A1\rangle , are eigenstates of the interaction between
the measurement device \scrA and the environment \scrE . The
environment then preforms a premeasurement on the ap-
paratus and system, resulting in the transformation

(a| 0\rangle c| A0\rangle + b| 1\rangle c| A1\rangle )| \varepsilon \ast \rangle 
\downarrow (22)

a| 0\rangle c| A0\rangle | \varepsilon 0\rangle + b| 1\rangle c| A1\rangle | \varepsilon 1\rangle 

where | \epsilon 0\rangle and | \epsilon 1\rangle are the states of the environment that
have premeasured the system. 3

As Zurek notes in [1], the basis ambiguity of sec-
tion VB is gone; in a tensor product of three or more
spaces, the form of the interaction Hamiltonian and time
evolution pick out an unambiguously preferred basis for
us.

C. Toy Model: One Qubit + N Spins

1. The Model

Following Zurek, Cucchietti, and Paz in [1, 8], suppose
that instead of a single bit, the environment consists of

3 I am abusing notation somewhat by not specifying | \varepsilon \ast \rangle ; to make
this a unitary transformation, either the coefficients have to
change slightly, other terms have to be introduced, or the envi-
ronment must be prepared in a special state. When we explicitly
calculate decoherence time in the next section, we will see that
this representation of the transformation is only approximate,
and that in general other terms with exponentially suppressed
coefficients are introduced.
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N bits, or spins, initially in states \alpha k| 0\rangle e + \beta k| 1\rangle e, each
coupled to the apparatus by a coupling coefficient gk. In
the simplest case, we can say that the self-Hamiltonian
of both the system and the apparatus are zero. I con-
sider the case where the system is first premeasured by
the apparatus, and then undergoes decoherence. In ana-
lyzing decoherence, I drop the state of the system from
the wave-function, for convenience, because it does not
change. The interaction Hamiltonian is then

H = \sigma (\scrS )
z \otimes 

\sum 
k

gk\sigma 
(ek)
z (23)

where \sigma 
(\scrS )
z and \sigma 

(ek)
z the Pauli spin matrices for the sys-

tem and environment respectively:

\sigma z = | 0\rangle \langle 0|  - | 1\rangle \langle 1| . (24)

If we make the simplifying assumption that the en-
vironment begins in a pure state, then the Schr\"odinger
equation gives the time evolution transformation rule

| \Psi (0)\rangle \equiv (a| 0\rangle a + b| 1\rangle a)
N\bigotimes 

k=1

gk
\bigl( 
\alpha k| 0\rangle ek + \beta k| 1\rangle ek

\bigr) 
\downarrow 

| \Psi (t)\rangle = a| 0\rangle a| \scrE 0(t)\rangle + b| 1\rangle a| \scrE 1(t)\rangle (25)

where

| \scrE 0(t)\rangle \equiv 
N\bigotimes 

k=1

\Bigl( 
\alpha ke

igkt/\hbar | 0\rangle ek + \beta ke
 - igkt/\hbar | 1\rangle ek

\Bigr) 
\equiv | \scrE 1( - t)\rangle (26)

and where
\bigotimes 

k denotes a tensor product indexed by k.

2. Calculating Decoherence Time

We can ask the following question: as a function of
time, how far from classical should a discoverer associ-
ated with the apparatus expect his measurements to be?
Recall from section IV that what makes the quantum law
of superposition different from the classical (probabilis-
tic) law of superposition is the interference terms, or cross
terms. Thus asking this question is thus approximately
equivalent to asking for the expectation value of the sum
of the interference terms, that is, the expectation over
the environment of

ab\ast | 0\rangle a| \scrE 0(t)\rangle \langle 1| a\langle \scrE 1(t)| + a\ast b| 1\rangle a| \scrE 1(t)\rangle \langle 0| a\langle \scrE 0(t)| (27)

which can be shortened to

2\Re (ab\ast | 0\rangle a\langle 1| a \otimes | \scrE 0(t)\rangle \langle \scrE 1(t)| ) . (28)

Pick an orthonormal basis of the environment \{ | \varepsilon i\rangle \} .
Then, as seen in section IVB, if we assume that all basis

states of the environment are equally likely, the ensemble
average over the environment is\sum 

i

\langle \varepsilon i| 2\Re (ab\ast | 0\rangle a\langle 1| a \otimes | \scrE 0(t)\rangle \langle \scrE 1(t)| ) | \varepsilon i\rangle 

= 2\Re (ab\ast | 0\rangle a\langle 1| a\langle \scrE 1(t)| \scrE 0(t)\rangle ) (29)

Thus we see that the time dependence of the interfer-
ence terms is given by

r(t) \equiv \langle \scrE 1(t)| \scrE 0(t)\rangle =
N\prod 

k=1

\Bigl( 
| \alpha k| 2e2igkt/\hbar + | \beta k| 2e - 2igkt/\hbar 

\Bigr) 
(30)

Since | \alpha k| 2 + | \beta k| 2 = 1 by normalization, this simplifies
to

r(t) =

N\prod 
k=1

\bigl( 
cos(2gkt/\hbar ) + i(1 - 2| \beta k| 2) sin(2gkt/\hbar )

\bigr) 
.

(31)
We are interested primarily in how quickly this drops off
to zero, if at all.
Suppose that the \beta k and the gk are randomly sam-

pled from some distribution. If we assume that we are
sampling from and ensemble of systems where | \beta k| are
uniformly distributed between 0 and 1, then we can cal-
culate the ensemble average of r(t) by integrating over
each | \beta k| from 0 to 1. If we suppose further, for sim-
plicity, that the gk are distributed normally with mean
\mu g and variance \sigma 2

g , then we can calculate the ensemble
average over g by integrating over a normal distribution
for each gk:

\langle r(t)\rangle =
\biggl( 
e - 2(\sigma gt/\hbar )2

\biggl( 
cos (2t\mu g/\hbar ) +

1

3
i sin (2t\mu g/\hbar )

\biggr) \biggr) N

.

(32)

Thus we see that we expect the interference terms to drop

off as e - 2N(\sigma gt/\hbar )2 , and the characteristic decoherence
time scale of the system is \hbar /(

\surd 
2N\sigma g).

Zurek, Cucchietti, and Paz treat this model more gen-
erally in [8], making fewer assumptions about the form
of the interaction Hamiltonian.

VII. CONCLUDING REMARKS;
WHAT'S LEFT?

This paper provides only a brief introduction to deco-
herence. For more complicated systems, density matri-
ces and reduced density matrices are powerful tools that
unify the calculations I presented. (See [6, \S 2.4] and [7,
\S 2.1.8] for more details.) Zurek develops an alternative
description of decoherence in [1, 4] based on information
transfer and the ability of a state to propagate its infor-
mation through the environment.
Decoherence provides a mathematical formalism for

talking about the apparent ``collapse"" of the wave-
function. With the aid of decoherence, we can recover the
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illusion of the classical; we can describe why observers of
open quantum systems, both of which are constantly in-
teracting with (and being measured by) the environment,
observe systems to behave classically, on average.

Everett and Gleason independently proved in [9, 10]
that the norm squared measure is the only possible prob-
ability measure on a Hilbert space of dimension \geq 3.
Zurek derived Born's Rule in [1, 4, 11] from the stand-
point of decoherence, using the idea that if there are mul-
tiple possible states, and we are completely ignorant of
which state the system is in, then there must be an equal
probability of measuring the system to be in any of those
given states.

As stated by Yudkowsky in [12], however, decoherence
does not completely solve the measurement problem, at
least in so far as I can tell. When we talk about prob-
abilities classically, we talk about the probability of an
event happening. We specify the set of possible outcomes
of a particular process, and after the process completes,
we will have observed one of those outcomes. One way
of characterizing the probability of a particular outcome
is by the frequency of that outcome in the limit of an
infinite sequence of identically prepared processes. From

the point of view of an outsider (see section VC3), there
seems to be no similar description for probability in de-
scribing a discoverer making a measurement. There is
no ambiguity about the outcome of the measurement, as
described by the outsider. So not only does probability
seem to be subjective, in the sense that its definition re-
quires you to be a discoverer, but the probability space
itself, the set of possible outcomes that you label with
likelihoods, seems to be subjective, in that it does not
admit any remotely familiar classical description, so long
as you are an outsider. While Zurek et al. give an op-
erational definition of probability from decoherence, it
does not seem to me be philosophically satisfying; de-
coherence is almost, but not quite, enough, to solve the
measurement and interpretation problems.
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