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Abstract
People can learn visual concepts from just one en-
counter, but it remains a mystery how this is accom-
plished. Many authors have proposed that transferred
knowledge from more familiar concepts is a route to
one shot learning, but what is the form of this abstract
knowledge? One hypothesis is that the sharing of parts
is core to one shot learning, but there have been few
attempts to test this hypothesis on a large scale. This
paper works in the domain of handwritten characters,
which contain a rich component structure of strokes.
We introduce a generative model of how characters are
composed from strokes, and how knowledge from previ-
ous characters helps to infer the latent strokes in novel
characters. After comparing several models and humans
on one shot character learning, we find that our stroke
model outperforms a state-of-the-art character model by
a large margin, and it provides a closer fit to human per-
ceptual data.
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A hallmark of human cognition is learning from just a
few examples. For instance, a person only needs to see
one Segway to acquire the concept and be able to dis-
criminate future Segways from other vehicles like scoot-
ers and unicycles (Fig. 1 left). Similarly, children can ac-
quire a new word from one encounter (Carey & Bartlett,
1978). How is one shot learning possible?

New concepts are almost never learned in a vacuum.
Experience with other, more familiar concepts in a do-
main can support more rapid learning of novel concepts
by showing the learner what aspects of objects matter
for generalization. Many authors have suggested this
as a route to one shot learning: transfer of abstract
knowledge from old to new concepts, often called trans-
fer learning, representation learning, or learning to learn.
But what is the nature of the learned abstract knowl-
edge, the learned representational capacities, that lets
humans learn new object concepts so quickly?

The most straightforward proposals invoke attentional
learning (Smith, Jones, Landau, Gershkoff-Stowe, &
Samuelson, 2002) or overhypotheses (Kemp, Perfors, &
Tenenbaum, 2007; Dewar & Xu, in press), like the shape
bias in word learning. Given several dimensions along
which objects may be similar, prior experience with con-
cepts that are clearly organized along one dimension
(e.g., shape, as opposed to color or material) draws a
learner’s attention to that same dimension (Smith et al.,
2002) – or increases the prior probability of new concepts
concentrating on that same dimension, in a hierarchical
Bayesian model of overhypothesis learning (Kemp et al.,
2007). But this approach is limited since it requires that
relevant dimensions of similarity be defined in advance.

Where are the others?

Figure 1: Test yourself on one shot learning. From
the example boxed in red, can you find the others in
the grid below? On the left is a Segway and on
the right is the first character of the Bengali alphabet.

AnswerfortheBengalicharacter:Row2,Column2;Row3,Column4.

Figure 2: Examples from a new 1600 character database.

In contrast, for many interesting, real-world concepts,
the relevant dimensions of similarity may be constructed
in the course of learning to learn. For instance, when we
first see a Segway, we may parse it into a structure of
familiar parts arranged in a novel configuration: it has
two wheels, connected by a platform, supporting a motor
and a central post at the top of which are two handle-
bars. Such parts and their relations comprise a useful
representational basis for many different vehicle and ar-
tifact concepts more generally – a representation that is
likely learned in the course of learning the many differ-
ent object concepts that they support. Several papers
from the recent machine learning and computer vision
literature argue for such an approach: joint learning of
many concepts and a high-level part vocabulary that un-
derlies those concepts (e.g., Torralba, Murphy, & Free-
man, 2007; Fei-Fei, Fergus, & Perona, 2006). Another
recently popular machine learning approach is based on
deep learning (LeCun, Bottou, Bengio, & Haffner, 1998;
Salakhutdinov & Hinton, 2009): unsupervised learning



of hierarchies of distributed feature representations in
multilayered neural-network-style probabilistic genera-
tive models. These models do not specify explicit parts
and structural relations, but they can still construct
meaningful representations of what makes two objects
in a domain deeply similar that go substantially beyond
low-level image features or pixel-wise similarity.

These approaches from the recent machine learning
literature may be compelling ways to understand how
humans learn to learn new concepts from few examples,
but there is little experimental evidence that directly
supports them. Models that construct parts or features
from sensory data (pixels) while learning object concepts
have been tested in elegant behavioral experiments with
very simple stimuli, and a very small number of con-
cepts (Austerweil & Griffiths, 2009; Schyns, Goldstone,
& Thibaut, 1998). But there have been few systematic
comparisons of multiple state-of-the-art computational
approaches to representation learning with human learn-
ers on a large scale, using a large number of interesting
natural concepts. This is our goal here.

We work in the domain of handwritten characters.
This is an ideal setting for studying one shot learn-
ing and knowledge transfer at the interface of human
and machine learning. Handwritten characters contain
a rich internal part structure of pen strokes, providing
good a priori reason to explore a parts-based approach
to representation learning. Furthermore, studies have
shown that knowledge about how characters decompose
into strokes influences basic perception, including classi-
fication (Freyd, 1983) and apparent motion (Tse & Ca-
vanagh, 2000). While characters contain complex inter-
nal structure (Fig. 2), they are still simple enough for
us to hope that tractable computational models can fully
represent all the structure people see in them – unlike for
natural visual images. Handwritten digit recognition (0
to 9) has received major attention in machine learning,
with genuinely successful algorithms. Classifiers based
on deep learning can obtain over 99 percent accuracy on
the standard MNIST dataset (e.g., LeCun et al., 1998;
Salakhutdinov & Hinton, 2009). Yet these state-of-the-
art models are still probably far from human-level com-
petence; there is much room to improve on them. The
MNIST dataset provides thousands of training examples
for each class. In stark contrast, humans only need one
example to learn a new character (Fig. 1 right).

Can this gap be closed by exploring a different form of
prior knowledge? Earlier work on one shot digit learning
investigated how to transfer knowledge of common im-
age deformations, such as scale, position, and rotation
(Miller, Matsakis, & Viola, 2000). While these factors
are important, we suggest there is much more to the
knowledge that supports one shot learning. People have
a rich understanding of how characters are formed from
the strokes of a pen, guided by the human motor system.

20 People’s Drawings

20 People’s Strokes
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Figure 3: Illustration of the character dataset. Each panel
shows the original character, 20 people’s image drawings, and
20 people’s strokes color coded for order.

There are challenges with conducting a large scale
study of character learning. First, people already know
the digits and the Latin alphabet, so experiments must
be conducted on new characters. Second, people receive
massive exposure to domestic and foreign characters over
a lifetime, including extensive first hand drawing experi-
ence. To simulate some of this experience for machines,
we collected a massive new dataset of over 1600 char-
acters from around the world. By having participants
draw characters online, it was possible to record both the
images, the strokes, and the time course of each draw-
ing (Fig. 3). Using the dataset, we can investigate the
dual problems of understanding human concept learning
and building machines that learn from one example. We
propose a new model of character learning based on in-
ducing probabilistic part-based templates, similar to the
computer vision approaches of Torralba, Fei Fei, Perona
and colleagues. Given an example image of a new char-
acter type, the model infers a sequence of latent strokes
that best explains the pixels in the image, drawing on
a large vocabulary of candidate strokes abstracted from
many previous characters. This stroke-based represen-
tation guides generalization to new examples of the con-
cept. We test the model against both human perceptual



similarity data and human accuracy in a challenging one-
shot classification task, and compare it with a leading al-
ternative approach from the machine learning literature,
the Deep Boltzmann Machine (DBM; Salakhutdinov &
Hinton, 2009). The DBM is an interesting comparison
because it is also a generative probabilistic model, it
achieves state-of-the-art performance on the permuta-
tion invariant version of the MNIST task, and it has no
special knowledge of strokes. We find that the stroke
model outperforms the DBM by a large margin on one-
shot learning accuracy, and it provides a closer fit to
human perceptual similarity.

New dataset of 1600 characters
We collected a new dataset suitable for large scale con-
cept learning from few examples. The dataset can be
viewed as the “transpose” of MNIST; rather than hav-
ing 10 character (digit) classes with thousands of exam-
ples each like MNIST, the new dataset has over 1600
characters with only 20 examples each. These char-
acters are from 50 alphabets from around the world,
including Bengali, Cyrillic, Avorentas, Sanskrit, Taga-
log, and even synthetic alphabets used for sci-fi nov-
els. Prints of the original characters were downloaded
from www.omniglot.com and several original images are
illustrated in Figure 3 (top left in each panel). Percep-
tion and modeling should not be tested on these original
typed versions, since they contain differences in style and
line width across alphabets. Instead each alphabet was
posted on Amazon Mechanical Turk using the printed
forms as reference, and all characters were drawn by 20
different non-experts with computer mice (Figure 3, bot-
tom left). In addition to capturing the image, the inter-
face captures the drawer’s parse into strokes, shown in
Figure 3 (right) where color denotes stroke order.

Drawing methods are remarkably consistent across
participants. For instance, Figure 3a shows a Cyrillic
character where all 20 people used one stroke. While
not visible from the static trace, each drawer started
the trajectory from the top right. Figure 3b shows
a Tagalog character where 19 drawers started with
top stroke (red), followed by a second dangling stroke
(green). But there are also slight variations in stroke
order and number. Videos of the drawing process
for these characters and others can be downloaded at
http://web.mit.edu/brenden/www/charactervideos.html.

Generative stroke model of characters
The consistent drawing pattern suggests a principled in-
ference from static character to stroke representation
(see Babcock & Freyd, 1988). Here we introduce a stroke
model that captures this basic principle. When shown
just one new example of a character, the model tries
to infer a set of latent strokes and their configuration
that explains the pixels in an image. This high-level
representation is then used to classify new images with
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Figure 4: Illustration of the generative process. Character
types are defined by strokes Si and their template locations
Wi. Tokens are generated by choosing image specific posi-
tions Z(j) from W and producing a pixel image I(j). All
variables inside the character type plate are implicitly in-
dexed by character type.

unknown identity. Figure 4 describes the generative pro-
cess. Character types (A, B, etc.) are generated from
general knowledge which includes knowledge of strokes.
These types are abstract descriptions defined by strokes:
their number, identity, and general configuration. Char-
acter tokens (images) are generated from the types by
perturbing stroke positions and inking the pixels.

Generating a character type The number of strokes
m is picked from a uniform distribution (1 to 10 for
simplicity). The first stroke is drawn uniformly from
P (S1) = 1/K, where K = 1000 is the size of the stroke
set, and its general position is drawn uniformly from
P (W1) = 1/N where there are N pixels in the image.
Position W1 = [wx1 , wy1 ] has a discrete x and y co-
ordinate. Subsequent strokes P (Si+1|Si) and positions
P (Wi+1|Wi) are drawn from the transition model. The
transitions are also uniform, but the model could be ex-
tended to include a more accurate sequential process.

Generating a character token A character type (S
and W ) generates a character token I(j), which is a pixel
image. While W specifies a rough template for the rela-
tive positions of strokes, the image specific positions Z(j)

vary slightly from token to token. The conditional dis-
tribution P (Z(j)|W ) samples a configuration Z(j) sim-
ilar to W in relative location (if Si is to the left of Sj

in W , it will likely be the case in Z(j)), the distribu-
tion is translation invariant, meaning shifting the entire
image to the left by 4 pixels has equal probability un-



der the probability mass function (Figure 4b). The im-
age specific positions Z(j) = {z(j)

x1 , z
(j)
y1 , ..., z

(j)
xm , z

(j)
ym}, as

with W , specify discrete x and y coordinates. Denoting
d[xi, xj ] = (wxi

− wxj
) − (z(j)

xi − z
(j)
xj ) as the difference

between pairwise offsets for coordinates xi and xj ,

P (Z(j)|W ) ∝ exp(−
m∑

i<j

(
1
σ2

w

d[xi, xj ]2 +
1
σ2

w

d[yi, yj ]2)).

Given the strokes S1, ..., Sm and now their image spe-
cific positions Z(j), an image is generated by choosing
G pixels to “ink.” Intuitively, ink is sprayed across the
strokes with Gaussian spray paint. This is captured by
lining each stroke with little Gaussian beads that gen-
erate ink, borrowed from Revow, Williams, and Hinton
(1996). The ink model has a recursive mixture structure;
an inked pixel is drawn from a mixture of uniform noise
(parameter β) and another mixture over the m strokes,
and each stroke is yet another mixture of the Gaussian
beads. The mixture over strokes is

P (I(j)|S,Z(j)) =
G∏

g=1

β

N
+

1− β
m

m∑
i=1

P (I(j)
g |Si, z

(j)
xi
, z(j)

yi
),

where index g includes just the inked (black) pixels. The
within stroke mixture model is

P (I(j)
g |Si, z

(j)
xi
, z(j)

yi
) ∝ 1

B

B∑
b=1

exp(− 1
σ2

b

(xb +z(j)
xi
−xg)2

− 1
σ2

b

(yb + z(j)
yi
− yg)2),

where xb + z
(j)
xi and yb + z

(j)
yi are the bead coordinates

translated into position and xg and yg are the inked pixel
I
(j)
g coordinates. The parameters settings B = 28, σb =

1.5, β = 0.1, and σw = 2 provide a good ink/position
model but many others are reasonable.

Learning a library of strokes General knowledge of
strokes was learned from the drawing data. The charac-
ter dataset was split randomly into a 25 alphabet “back-
ground set” and a 25 alphabet “experiment set.” The
background set was used to learn the strokes, and the
models and people were tested on the experiment set.
About 40,000 strokes were aligned and clustered to form
K = 1000 centroids that comprise the model’s library
(Figure 4). Stroke trajectories vary widely in length,
and each stroke is reduced to a common dimensionality
by fitting a cubic B-spline with 10 control points (Revow
et al., 1996; Branson, 2004).1 The cluster centroids are

1B-splines are a compact representation of a smooth curve,
providing a function B(s) that maps a dimension s (similar
to time for strokes) to an x and y position. It smoothly
interpolates between the 10 control points (which are x and y
coordinates) such that the curve starts near the first control
point and ends near the last. The least-squares fit can be
computed in closed form (Branson, 2004).

learned in control point space using k-means. Strokes
are direction specific meaning left to right and right to
left are different centroids.

Inference for one shot learning For one shot learn-
ing, the model is given a single example image I and a
candidate image I(t). Exact computation of P (I(t)|I) is
intractable so it is approximated with maximum a pos-
teriori (MAP) estimate, where

P (I(t)|I) =
∫

S,W

P (I(t)|S,W )
∫

Z

P (S,W,Z|I) dZdSdW

≈ P (I(t)|S∗,W ∗),

where S∗,W ∗ = argmax
S,W,Z

P (S,W,Z|I). This involves

finding strokes S∗ and configuration W ∗ that best ex-
plain I, and the space is searched with Markov Chain
Monte Carlo (MCMC) and the Metropolis-Hastings al-
gorithm for 50,000 proposals. Given a current state S
and W , the algorithm jointly proposes swaps of a stroke
Si and its positions Wi with similar strokes and posi-
tions. There are also reversible jump proposals that
jointly perturb S1 to Sm and W while adding a new
stroke Sm+1 and Wm+1. There is a corresponding re-
moval proposal and a proposal that permutes indices.
We also approximate

P (I(t)|S∗,W ∗) =
∫

Z(t)
P (I(t), Z(t)|S∗,W ∗)dZ(t)

≈ P (I(t), Z(t)∗|S∗,W ∗),

where Z(t)∗ = argmax
Z(t)

P (I(t), Z(t)|S∗,W ∗) using MCMC

with 2000 position-specific proposals.

Results

The stroke model, the Deep Boltzmann Machine (DBM,
Salakhutdinov & Hinton, 2009), and Nearest Neighbor
(NN) in pixel space were evaluated on character learning.
These three models were compared on accuracy for one
shot learning and also on their fit to human perceptual
similarity.

20-way classification from one example
We tested accuracy on 20-way classification, where each
training class gets only one example. The 20 training
characters are picked at random from different alphabets
in the 25 alphabet experiment set, and the models see
only one image of each. The models have never seen any
of these alphabets or characters before. Accuracy is then
tested on novel images drawn from this set of 20 char-
acters. All models receive 28x28 images (binary for the
stroke model and NN, grayscale for the DBM). The DBM
was pretrained on the 25 background alphabets using a
combination of MCMC and variational approximation
(see Salakhutdinov & Hinton, 2009). The architecture
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Figure 5: Classification accuracy from one example (left, our
results) and on the MNIST digits (right, previously published
results not from this work). Error bars are standard error.

was two hidden layers with 1000 units each. After re-
ceiving the 20 new characters for one shot learning, the
stroke model fits a latent stroke representation to each,
and a test image I(t) is classified by picking the largest
P (I(t)|I) across the 20 possible training characters I us-
ing the MAP approximation. DBM classification is per-
formed by nearest neighbor in the hidden representation
space, combining vectors from both hidden layers and
using cosine similarity. NN classification uses Euclidean
distance but cosine performs similarly.

The stroke model achieves 56.3% correct, compared
to 39.6% for the DBM and 17.5% for nearest neighbor
in pixels (Figure 5 left). This was averaged over many
random draws (26) of the training characters and four
test examples per class. Figure 6 illustrates one of these
draws of 20 characters and the model fits to each im-
age. How would people perform on this task? If people
were run directly on 20-way classification, they would
continue learning from the test examples. Instead par-
ticipants were asked to make same vs. different judge-
ments using the experiment set of characters. “Same”
trials were two images, side by side, of the same charac-
ter from two unique drawers, and “different” trials were
two different characters. Each participant saw 200 tri-
als using a web interface on Mechanical Turk, and the
ratio of same to different trials was 1/4. Across 20 par-
ticipants who saw different pairings randomly selected
from the experiment set of characters, performance was
97.6% correct. Although this is a different task than 20-
way classification, it confirms there is a substantial gap
between human and machine competence.

To create an interesting juxtaposition with the one
shot learning, some previously published results on
MNIST, not from this work, are displayed (Fig. 5 right).
Even simple methods like K-nearest neighbors perform
extremely well (95% correct LeCun et al., 1998) due to
the huge training set (n = 60, 000). As a possible ana-
log to the stroke model, Hinton and Nair (2006) learned
motor programs for the MNIST digits where characters
were represented by just one, more flexible stroke (unless
a second stroke was added by hand). As evident from
the figure, the one example setting provides more room
for both model comparison and progress.
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Figure 6: Example run of 20-way classification, showing the
training images/classes (white background) and the stroke
model’s fits (black background) where lighter pixels are
higher probability. Accuracy rates are indicated on the 4
test examples (not shown) per class.

Fit to human perceptual similarity
The models were also compared with human perceptual
judgments. A collection of six alphabets and four char-
acters each was selected for high confusability within al-
phabets. Fig. 7 shows the original print images, but par-
ticipants were shown the handwritten copies. Like the
previous experiment, participants were asked to make
200 same vs. different judgments, where the proportion
of same trials was 1/4. The task was speeded to avoid
near perfect performance, and the first of two images
was flashed on the screen for just 50 milliseconds before
it was covered by a mask. The second image then ap-
peared and remained visible until a response was made.
There was an option for “I wasn’t looking at the com-
puter screen” and these responses were discarded. Sixty
people were run on Mechanical Turk, and 13 subjects
were removed for having a d-prime less than 0.5.2 Of
the remaining, accuracy was 80 percent.

Trials were pooled across participants to create a char-
acter by character similarity matrix. Cells show the per-
centage of responses that were “same” when either char-
acter in a pair appeared on the screen (Fig. 8). There
is a clear block structure showing confusion within al-
phabets, except Inuktitut that contains shapes already
familiar to people (e.g. triangle). The stroke model,
DBM, and image distance were compared to the per-
ceptual data. Each model saw many replications (20)
of mock 24-way classification, exactly like the 20-way
classification results. For each test image, the goodness
of fit to each of the 24 training classes was calculated
and ranked from best (24) to worst (1). For each pair-
ing of stimuli, these numbers were added to the simi-
larity matrix while averaging across replications in each
cell. Of the models, the stroke model had the strongest
block structure. Along with the DBM, it shows addi-
tional structure between alphabets that is not evident
in the subject responses. After computing a correlation
with the human matrix over the unique cells, the stroke
model (r=0.72) fits better than the DBM (r=0.63) and
image distance (r=0.14).

2The number of false alarms was divided by 3 to correct
for having 3 times as many different trials.
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Figure 8: Similarity matrices (lighter is more similar) for the
24 characters in Figure 7. Alphabets are blocked and denoted
by their starting letter (A, I, etc.). Character index (Fig. 7)
within alphabet blocks is in increasing order, left to right.

Discussion

This paper introduced a generative model where charac-
ters are composed of strokes. When shown an image of
a character, it attempts to infer a latent set of strokes
that explain the pixels in the image. This approach per-
forms well on one shot learning and classification, beat-
ing Deep Boltzmann Machines by a wide margin. The
stroke model also provided the closest fit to human per-
ceptual judgements across a set of confusable characters.

The stroke model is still far from human competence,
although there are many avenues for extension and im-
provement. For instance, the basic elements in the stroke
set are rigid, allowing for translations but no scaling,
rotation, or deformation within individual strokes (see
Revow et al., 1996). Our large stroke basis provides
only discrete approximation to a much richer continu-
ous space. Stroke deformations are completely consistent
with our framework, but they make an already challeng-
ing inference problem worse. Despite this challenge, data
driven proposals for inference could provide such an im-

provement, where proposals are influenced by bottom-up
stroke detectors that look at the image when deciding
what to propose.

The new 1600 character dataset supports other in-
teresting problems like alphabet recognition. A unique
stroke found in a few examples of an alphabet could be
acquired on the fly, allowing generalization to new al-
phabet examples. By studying more problems like these
at the interface of human and machine learning, we can
gain new insight into both domains.
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