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We investigate the speed and lifetime of cosmic-ray muons. The speed of cosmic-ray muons was
determined by measuring time-of-flight between parallel scintillator paddles for various separations.
The lifetime was determined by measuring the delay between capture and decay of muons in a plastic
scintillator block. The most probable speed of muons was found to be β = 1.01± 0.02 as compared
with a book value of about β = 0.994± 0.005. The mean lifetime was found to be (2.22± 0.04) µs
as compared with a book value of 2.197 034(21) µs. Relativistic kinematics was found to give a much
better fit, than Newtonian kinematics, between our experimental results and existing data on the
energies and momenta of cosmic-ray muons.

I. THEORY

I.1. Muons

Muons are unstable, deeply penetrating, negatively
charged elementary particles with a relatively long mean
lifetime.[1] Energetic cosmic rays striking the earth’s at-
mosphere approximately 15 km above the surface pro-
vide an ample source of highly energetic muons for this
experiment.[2]

I.2. Time Dilation and Decay

Unstable energetic particles provide a means of testing
relativistic kinematics against Newtonian kinematics; by
measuring the mean lifetime τ0 of a particle at rest (in
the lab), it is possible to predict the relativistic correc-

tion to their mean lifetime τ = τ0γ where γ = 1/
√

1− β2

and β = v/c. The probability of survival of such a par-
ticle traveling a distance d is then predicted by relativis-
tic kinematics to be τ−1e−d/(vτ); Newtonian kinematics
predicts τ−1

0 e−d/(vτ). We measured the speed and inten-
sity of cosmic-ray muons at approximately sea level, and
compared the predicted intensity of muons at various el-
evations to data taken by Rossi in [3].

I.3. Speed and Momentum

Relativistic dynamics predicts a momentum-speed re-
lationship of p = γmv; Newtonian mechanics predicts
the relationship p = mv. We measured the speed of
cosmic-ray muons by measuring time-of-flight over vari-
ous distances. Momentum data, taken by Wilson in [4]
and depicted graphically by Rossi in [3], along with the
textbook value for muon mass permitted a comparison
between the relativistic and Newtonian relationships.
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II. LIFETIME

II.1. Methodology and Experimental Setup

In order to measure the mean lifetime of muons in the
lab, we stopped cosmic-ray muons in a plastic scintillator
block, as shown in Figure 1; interactions with the dense
plastic material caused the muons to deposit energy into
the scintillator.
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FIG. 1. Experimental setup diagram taken from [2].

When enough energy was deposited within a short pe-
riod of time, the scintillator flashed, and the photomul-
tiplier tubes (PMTs) amplified this signal (henceforth
called the arrival signal). The flux rate of muons was
sufficiently small that we expected only a single muon to
be present (and stopped) by the detector at any partic-
ular time.

When enough energy was deposited by a particular
muon, it came to a halt in the scintillator. Such muons
decayed some time later, and the PMTs amplified this
signal, too (henceforth called the decay signal).

In order to reduce the noise (false positives) of the
PMTs, we piped the signal first through constant frac-
tion discriminators (CFDs) and then into a coincidence
circuit. Unfortunately, we neglected to measure the in-
dividual count rates of the PMTs, making a theoretical
prediction of remaining noise impossible.

Because the arrival signal and the decay signal were
expected to be extremely close together, relative to the
expected spacing between signals from different muons,
we were able to determine the time between arrival
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and decay using a time to amplitude converter (TAC)
which measured the time interval between a time start-
ing shortly after any signal and ending at the next signal.
The delay between the incoming signal and the start time
(on the order of a few nanoseconds) was judged to be in-
significant relative to the decay time (on the order of a
few microseconds). A multichannel analyzer (MCA) was
then used to record the decay times.

Because the probability distribution for decay is time-
translation invariant (the probability that a muon will
decay at a time t from now is alway τ−1e−t/τ , assuming
that it has not yet decayed), we may infer the mean life-
time from the decay-time curve, despite the fact that we
didn’t measure a creation event.

II.2. Data Analysis

In order to use the data from the MCA, we needed to
find the conversion between channel number and time.
We connected a pulse generator to the TAC, using an
interval of 0.16 µs. Figure 2 shows the resulting time
calibration, which gave (0.0199± 0.0001) µs per channel.
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FIG. 2. Time calibration plot of delay vs. channel number.
The uncertainty comes from ±0.5 in the last decimal place
on the pulse generator, which read 0.16 µs, from an assumed
uncertainty of ±0.5 channels, and from Poisson error bars on
the counts; the error is obviously vastly overestimated. Chan-
nel numbers are a weighted average of the channels making
up a spike.

We took muon lifetime data for approximately 18
hours. After dropping the channels which corresponded
to a time that was too short for the TAC to deal with
(most of which had zero counts), the lifetime data were
fit to ae−t/τ + b. The residuals were found to be strongly
systematic ( ) with χ2

ν = 60. Since the noise, as-
sumed to be constant over the time interval that we mea-
sured, comes out to be b = −0.000 04± 0.000 09 counts,
which is negligible. I hypothesized that the systematic-
ity in the residuals was due to ±0 being a terrible esti-
mate of the uncertainty for 0 counts; dropping the ze-
ros and fitting the revised data to ae−t/τ gives Figure 3;

τ = (2.22± 0.04) µs with χ2
ν = 1.0, which is a remarkably

good fit. The textbook value is 2.197 034(21) µs.
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FIG. 3. Plot of muon count vs. lifetime, without any zero
counts. Vertical error bars are Poisson; horizontal error bars
are due to uncertainty in the time calibration and channel
number (assumed to be ±0.5 channels).

III. SPEED

III.1. Methodology and Experimental Setup

In order to measure the most probable speed of muons,
we measured the time-of-flight of muons traveling vari-
ous known distances between 15 cm and 350 cm. We
recorded incidence events of muons in two parallel scin-
tillator paddles, as shown in Figure 4. The events were
separated from noise via CFDs. Because the time scales
were so short and the precise characteristics of the cables
and equipment was unknown, a delay was added to the
bottom signal (via a length of RG-58 cable) so that the
TAC would not cut off the lower end (shorter times) of
the delay spectrum.
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FIG. 4. Experimental setup diagram taken from [2]. A muon
which strikes both paddles causes a signal to get through both
CFDs. The delay line delays the later signal enough to get
picked up by the TAC, which feeds in to the MCA.

The unknown time-delay characteristics of the circuits
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prevented us from determining an absolute channel-to-
time conversion. Instead, the speed was found as the
slope of a linear fit for distance between paddles vs. peak
time delays to a line.

III.2. Data Analysis

In order to use the data from the MCA, we again
needed to find the conversion between channel number
and time. We connected a pulse generator to the TAC,
using an interval of 10 ns. Figure 5 shows the result-
ing time calibration, which gave (0.0199± 0.0001) µs per
channel.
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FIG. 5. Time calibration plot of delay vs. channel number.
The uncertainty comes from ±0.5 in the last decimal place
on the pulse generator, which read 10. ns, from an assumed
uncertainty of ±0.5 channels, and from Poisson error bars on
the counts; the error is obviously vastly overestimated. Chan-
nel numbers are a weighted average of the channels making
up a spike.

We took data at nine different paddle separations rang-
ing from 20 cm to 332 cm, for various lengths for time.
Fitting this data was particularly troublesome, as I was
unable to come up with a working theoretical model to
fit the data to. The data are not normal, not Pois-
son, not β-distributed, not γ-distributed, not Maxwell-
Boltzmann, not Maxwell-Juttner (the relativistic version
of Maxwell-Boltzmann), and I was unable to construct a
reasonable distribution based on the underlying physics,
starting from the assumption that cosmic-ray energy is
distributed according to P (E) ∼ E−α for some α ≈ 2, as
suggested by [5] and [6]. Lacking space and inclination
to show all my failed attempts at fitting, see Figure 6 for
how the data fail to be normal for an example. I found
that ignoring the uncertainties on the data and fitting to
a normal distribution using least-squares gave acceptable
fit parameters for all data sets. Lack of space prevents
me from showing more than one fit: Figure 7.

The most probable speeds were fit to a line, as shown
in Figure 8 (χ2

ν = 160). The first three data points
don’t match up well to the line, likely due to the larger
mean slant distance. Dropping them results in Figure 8.
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FIG. 6. Fit of time of flight to a normal distribution for a
paddle separation of 332.0 cm. Error bars are not shown so as
to emphasize badness-of-fit; the fit curve would not be visible
if error bars were shown. Skewness likely results from some
combination of the underlying cosmic-ray energy distribution,
the skewness towards longer distances of the distribution of
slant distances.
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FIG. 7. Fit of time of flight to a normal distribution for a pad-
dle separation of 332.0 cm. χ2

ν is calculated with vertical Pois-
son error bars and horizontal uncertainties from the channel-
to-time conversion, after dropping the zero-count data points.

This gives β = 1.01± 0.02 (χ2
ν = 6.9); the value sug-

gested by [2] is that corresponding to 1 GeV / c, or,
using the textbook value of mµ = 105.658 371 5(35) MeV
([7]), β = 0.994± 0.005, assuming an uncertainty of ±0.5
GeV / c on the momentum. Note that Newtonian kine-
matics predicts that muons with this energy travel at
β = 10± 5, which is well above what we measure.

Is there sufficient reason to drop the first three data
points? If we assume that muons took the longest path
(from one corner to the opposite one) rather than the
shortest path (straight down), then we get Figure 9. So
it is clearly possible, given the right distribution of muons
as a function of angle, that the first three data points will
be moved onto the line. However, running a Monte Carlo
simulation using P (φ) ∝ cos2 φ (details in section A)
gives almost no change in data. My guess would be that
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Β � 1.01 ± 0.02
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FIG. 8. Linear fits for muon speed. The dotted line has slope
c, and was arbitrarily chosen to intersect with the fit line at
t = 24 ns. The top plot shows the fit to all the data; the
bottom plot shows the fit after dropping the first three data
points.

either I did the simulation wrong or that muons are not
distributed according to P (φ) ∝ cos2 φ (or that the cor-
relation between the energy and the angle is significant).
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FIG. 9. The lower, red data (partially hidden by green data)
are the original measurements. The higher, blue data are the
corrected data assuming the muons take the longest path.
The intermediate, green data are the data corrected via Monte
Carlo simulation on the assumption that the muon angles are
distributed according to P (φ) ∝ cos2 φ.

IV. CONCLUSIONS

The data we took, combined with others’ measure-
ments of muon muon momentum, and muon mass,
strongly support relativistic kinematics over Newtonian
kinematics. The most probable speed of muons was
found to be β = 1.01± 0.02; the relativistic prediction is
β = 0.994± 0.005 the classical prediction is β = 10± 5.
The mean lifetime was found to be (2.22± 0.04) µs as
compared with a book value of 2.197 034(21) µs.

The distribution of muon times-of-flight calls in to
question the validity of the claim (in [2]) that muons are
distributed according to cos2 φ, or, alternatively, suggests
a correlation between energy and angle so that larger an-
gles correlate with very high energies. Determination of
the underlying distribution of muon time-of-flights for a
given separation is left to future investigation.
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Appendix A: Monte Carlo Correction
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FIG. 10. A muon strikes the upper and lower paddles at
azimuthal angle φ and planar angle θ.

Consider the setup shown in Figure 10. Give xT , yT ,
d, θ, and φ, we may calculate xB and yB as

(xB , yB) = (xT , yT )− d

cos(φ)
(cos(θ) sin(φ), sin(θ) sin(φ)) .

We have that the slant distance D = d/ cosφ. I gener-
ate θ ∈ (−π, π), φ ∈ (0, π/2), xT ∈

(
− 1

2 lT ,
1
2 lT
)
, and

yT ∈
(
− 1

2wT ,
1
2wT

)
uniformly at random, independently

of one another. I then calculate (xB , yB), and throw out
the point if (xB , yB) does not lie on the bottom pad-
dle. I take the weighted average of the resulting values,
weighting each value d

cosφ by cos2 φ. The resulting plots

are Figure 12 and Figure 11.

FIG. 11. A plot of many values of slant length D vs. separa-
tion d.
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FIG. 12. A plot of the weighted average of slant lengths D
vs. separation d.
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