The (Speed and) Decay of Cosmic-Ray Muons

Jason Gross

MIT - Department of Physics

Goals

test relativity (time dilation)

determine the mean lifetime of muons

Goals

test relativity (time dilation)

determine the mean lifetime of muons

Muons

- elementary particle
- unit negative charge
- spin 1/2
- unstable

- unstable
- . long mean lifetime ($\approx 2.2\,\mu s$)
- naturally abundant
- penetrating

- unstable
- long mean lifetime (\approx 2.2 μ s)
- naturally abundant
- penetrating

- unstable
- long mean lifetime (\approx 2.2 μ s)
- naturally abundant
- penetrating

- unstable
- long mean lifetime (\approx 2.2 μ s)
- naturally abundant
- penetrating

contact point between theory and reality (we can predict mean lifetime from Fermi β -decay, if we know the mass)

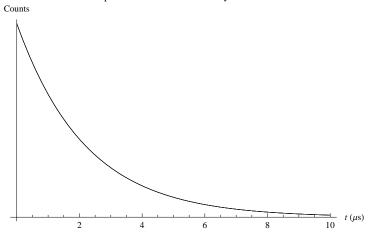
Experimental Outline

- muons generated by cosmic-rays above 15 km
- capture muons in a block of plastic scintillator

Experimental Outline

- muons generated by cosmic-rays above 15 km
- capture muons in a block of plastic scintillator
- record arrival & decay events

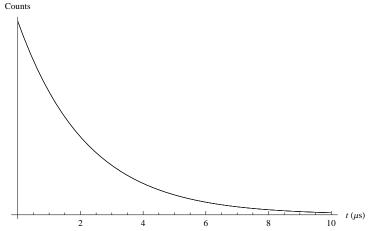
6/30

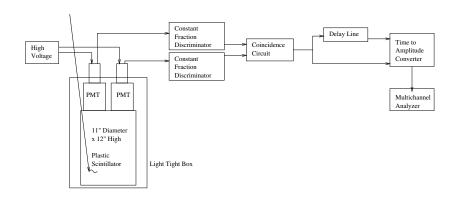

Experimental Outline

- muons generated by cosmic-rays above 15 km
- capture muons in a block of plastic scintillator
- record arrival & decay events

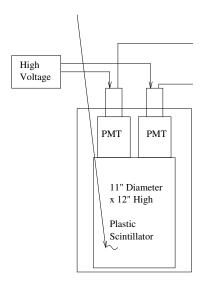
Expected Results

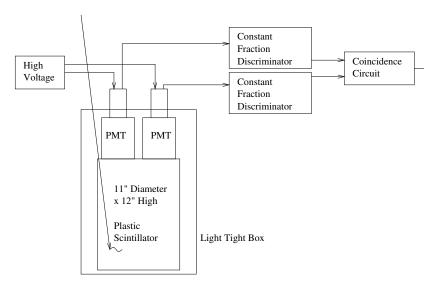
$$N(t) = N_0 e^{-t/ au}$$


Expected Count Rate vs. Decay Time

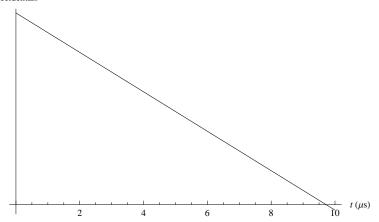


Expected Results

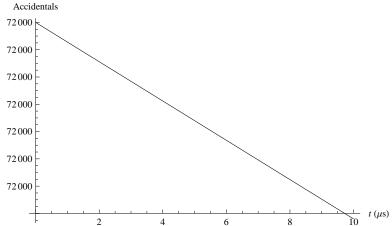

But only if there's no noise!


Expected Count Rate vs. Decay Time

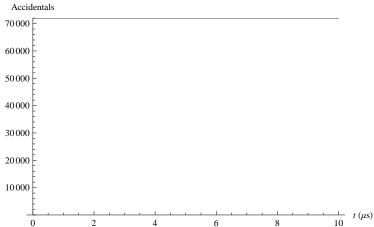
Muon Detection

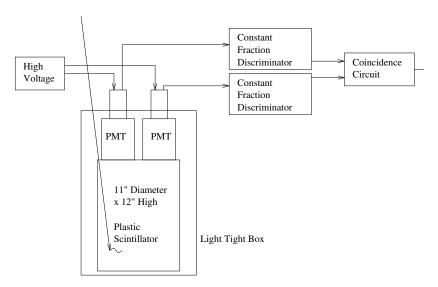


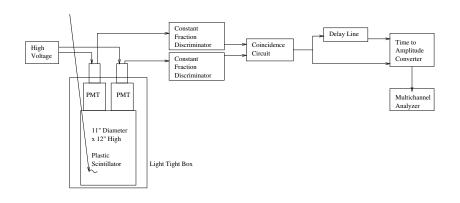
Accidentals =
$$Tn_1n_2\Delta t$$

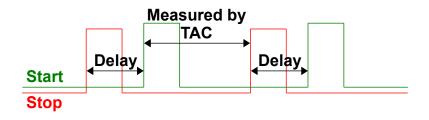


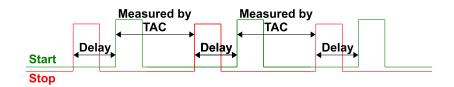
If $n_1 = 10^4$ s⁻¹, $n_2 = 2 \cdot 10^4$ s⁻¹, T = 1 hour, $\Delta t = 100$ ns, Accidental Count vs. Apparent Time

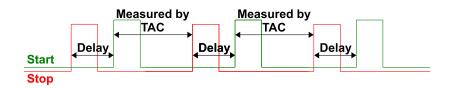

Accidentals


If $n_1 = 10^4$ s⁻¹, $n_2 = 2 \cdot 10^4$ s⁻¹, T = 1 hour, $\Delta t = 100$ ns, Accidental Count vs. Apparent Time




If $n_1=10^4~{\rm s}^{-1}$, $n_2=2\cdot 10^4~{\rm s}^{-1}$, $T=1~{\rm hour}$, $\Delta t=100~{\rm ns}$, Accidental Count vs. Apparent Time

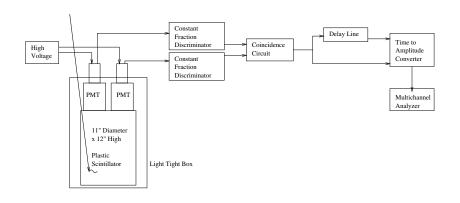


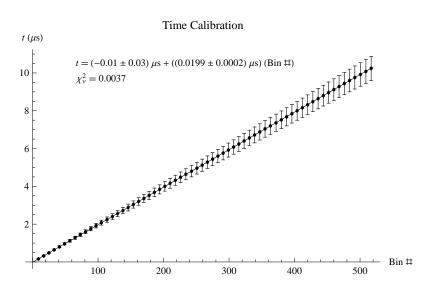


Arrival times of pulses along the STOP input (red) and the START input (green) of the TAC.

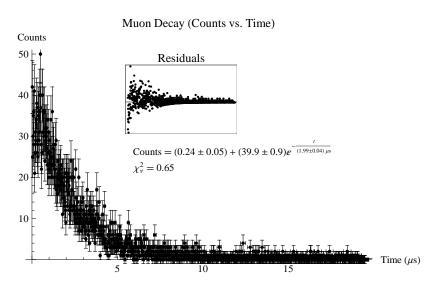
arrival interval \approx decay time

arrival interval $\approx \frac{1}{2}$ decay time


arrival interval ≫ decay time


Lifetime: \approx 2.2 µs

Arrival Rate: $\approx (0.2 \pm 0.1) \, \text{s}^{-1}$



Time Calibration

Results

Results

My Value: $\tau = (1.986 \pm 0.042) \, \mu s$

Book Value: $\tau = 2.197034(21) \, \mu s$

My Value: $m_{\mu} = (107.96 \pm 0.46) \, \text{MeV}/c^2$

Book Value: $m_{\mu} = 105.65836668(38)\,\mathrm{MeV}/c^2$

Sources of Error

- systematic: didn't account for the delay in the cable, so all my times are shorter than they should be
- poor estimation of errors (least squares gives $(2.30 \pm 0.04)\,\mu\text{s})$
- not enough data to get an estimate of the accidentals (if I fit to $ae^{-t/\tau}$, I get (2.06 \pm 0.04) μ s)

Sources of Error

- systematic: didn't account for the delay in the cable, so all my times are shorter than they should be
- poor estimation of errors (least squares gives $(2.30 \pm 0.04)\,\mu\text{s})$
- not enough data to get an estimate of the accidentals (if I fit to $ae^{-t/\tau}$, I get (2.06 \pm 0.04) μ s)

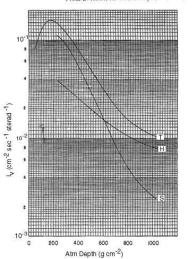
Sources of Error

- systematic: didn't account for the delay in the cable, so all my times are shorter than they should be
- poor estimation of errors (least squares gives $(2.30 \pm 0.04)\,\mu\text{s})$
- not enough data to get an estimate of the accidentals (if I fit to $ae^{-t/\tau}$, I get $(2.06\pm0.04)\,\mu s)$

Testing Relativity: Muon Travel Time

- generated 10-15 km above sea level
- others' experiments suggest most likely momentum is 1 GeV / c
- to go 10-15 km at this momentum (which corresponds to 0.994c) takes 30-50 μs
- (but if we throw away all of special relativity, then this momentum corresponds to 9.5c, and it only

Testing Relativity: Muon Travel Time


- generated 10-15 km above sea level
- others' experiments suggest most likely momentum is 1 GeV / c
- to go 10-15 km at this momentum (which corresponds to 0.994c) takes 30-50 μs
- (but if we throw away all of special relativity, then this momentum corresponds to 9.5c, and it only

Testing Relativity: Muon Travel Time

- generated 10-15 km above sea level
- others' experiments suggest most likely momentum is 1 GeV / c
- to go 10-15 km at this momentum (which corresponds to 0.994c) takes 30-50 μs
- (but if we throw away all of special relativity, then this momentum corresponds to 9.5c, and it only takes 5 µs)

Testing Relativity

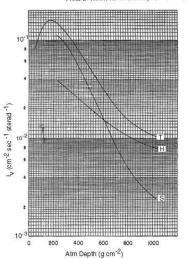
From B. Rossi, Rev. Mod. Phys., 20, 537 (1948)

- about 10^{-2} cm⁻² s⁻¹ sr⁻¹ (muons intensity at sea level)
- without time dilation, it takes at least 30 μs to get down to sea level
- if we take $\tau \approx 2\,\mu s$, if there is no time dilation, we see $3\cdot 10^{-5}\%$ of muons
- corresponds to about $10^5 \, \mathrm{cm}^{-2} \, \mathrm{s}^{-1} \, \mathrm{sr}^{-1}$ at $10 \, \mathrm{km}$

27/30

- about 10^{-2} cm⁻² s⁻¹ sr⁻¹ (muons intensity at sea level)
- without time dilation, it takes at least 30 μs to get down to sea level
- if we take $\tau \approx 2\,\mu s$, if there is no time dilation, we see $3\cdot 10^{-5}\%$ of muons
- corresponds to about $10^5 \, \mathrm{cm}^{-2} \, \mathrm{s}^{-1} \, \mathrm{sr}^{-1}$ at $10 \, \mathrm{km}$

- about 10^{-2} cm⁻² s⁻¹ sr⁻¹ (muons intensity at sea level)
- without time dilation, it takes at least 30 μs to get down to sea level
- if we take $\tau \approx$ 2 µs, if there is no time dilation, we see 3 · 10⁻⁵% of muons
- corresponds to about $10^5 \, \mathrm{cm}^{-2} \, \mathrm{s}^{-1} \, \mathrm{sr}^{-1}$ at $10 \, \mathrm{km}$


○ < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

27/30

- about 10^{-2} cm⁻² s⁻¹ sr⁻¹ (muons intensity at sea level)
- without time dilation, it takes at least 30 μs to get down to sea level
- if we take $\tau \approx$ 2 µs, if there is no time dilation, we see 3 · 10⁻⁵% of muons
- corresponds to about $10^5 \, \mathrm{cm}^{-2} \, \mathrm{s}^{-1} \, \mathrm{sr}^{-1}$ at 10 km

Testing Relativity

From B. Rossi, Rev. Mod. Phys., 20, 537 (1948)

Testing Relativity

Relativity Wins!

Thank You!

Any questions?