Fundamentals of Applied Dynamics MIT Press

Wave Propagation

— An Introduction to Engineering Analyses — MIT Press

Wave Propagation

— An Introduction to Engineering Analyses —

Sophomores \rightarrow (2.001 and 2.003) ... Style: Extended and Repetitive Expositions 200+ End-of-Chapter Problems

Chapter 1 Introduction to Wave Propagation

Vignette I Chapter 2 The Classical Wave Equation

Vignette II and Vignette III **Chapter 3 Wave Propagation in Infinite Media** ... ■ Examples ... // ... ♦ Examples ...

Vignette IV

Chapter 4 Wave Propagation in Semi-Infinite Media

Vignette V and Vignette VI Chapter 5 Wave Propagation in Finite Media

Classical Wave Equation

$$\frac{\partial^2 z(x,t)}{\partial t^2} = c^2 \frac{\partial^2 z(x,t)}{\partial x^2}$$

Wave Functions

$$z(x,t) = f(x-ct) + g(x+ct)$$

where f(x) and g(x) are sample functions.

Infinite Continua

Strings Rods Circular Shafts Shear Beams Electric Transmission Lines

Initial Conditions on Infinite Systems

Initial conditions: $\xi(x,0) = A(x)$ and $\dot{\xi}(x,0) = 0$, where

$$A(x) = \begin{cases} A_0(1 - x^2/a^2), & |x| \le a \\ 0, & |x| > a \end{cases}$$

depicted as

Find: $\xi(x,t)$ [and $\dot{\xi}(x,t), F(x,t)$]

Displacements of uniform rod released from rest, shown at increasing times.

Domains 1 through 4 on *x*-*t* plane.

Three-dimensional schematic of displacement wave propagation in rod.

• Domain of Dependence

- Time Lags
- Transmission of Energy by Arbitrary and Harmonic Waveforms

♦ Fourier Series

Fourier Integral of Tone Burst Wave

- ♦ Ultrasonic Attenuation of Tone Burst Wave
- ♦ NDE of Impact-Damaged Fiber Composites
- ♦ NDE of Fatigued Fiber Composites

• Chapter 4 Wave Propagation in Semi-Infinite Media

Reflection and Transmission Coefficients at Junctions; and Reflection Coefficients at Boundaries

• Vignettes

• Chapter 5 Wave Propagation in Finite Media

One-Dimensional Wave Fields in Finite Media [Timewise Global and Point Variations]

Vignettes

I. Is There a Smallest Quantity of Energy?

$$\begin{bmatrix} h = 6.62607015 \times 10^{-34} \text{ J} \cdot \text{s} \end{bmatrix}$$
$$\begin{bmatrix} \mathscr{E} = h \cdot \overline{f} \end{bmatrix}$$

$$\left[\mathbf{J} \cdot \mathbf{s} = (\mathbf{N} \cdot \mathbf{m}) \cdot (\mathbf{s}) = (\mathbf{k}\mathbf{g}\frac{\mathbf{m}}{\mathbf{s}^2}) \cdot \mathbf{m} \cdot \mathbf{s} = \mathbf{k}\mathbf{g} \cdot \mathbf{m}^2 \cdot \mathbf{s}^{-1}\right]$$

II. Gravitational Waves & Laser Interferometer Gravitational-Wave Observatory (LIGO)

III. NDE of Composite Materials and Structures

IV. Sound Waves and Sound Channels in the Ocean

V. Domino Waves

VI. Falling Slinky

II. Gravitational Waves & LIGO

Flat space-time

Curved space-time

IV. Sound Waves and Sound Channels in the Ocean

V. Domino Waves

Field and Point Timewise Motion

Midpoint displacement $\xi(l/2,t)$ of elastic rod.

Video of Falling Slinky

https // tinyurl com / y2psyp7y (Deactivated via this Site)

Collision of Elastic Rods

Initial Displacement: $\xi(x,0) = 0, \ 0 < x < 3l$ Initial Particle Velocity:

$$\dot{\xi}(x,0) = \begin{cases} v_0, & 0 < x < l \\ 0, & l < x < 3l \end{cases}$$

Collision of Elastic Rods

Initial Displacement: $\xi(x,0) = 0, \ 0 < x < 3l$ Initial Particle Velocity:

$$\dot{\xi}(x,0) = \begin{cases} v_0, & 0 < x < l \\ 0, & l < x < 3l \end{cases}$$
$$= \frac{v_0}{3} + \begin{cases} \frac{2v_0}{3}, & 0 < x < l \\ -\frac{v_0}{3}, & l < x < 3l \end{cases}$$

Rigid-body and elastic initial particle velocities.

Displacement waves, rigid-body displacement, and their sums for elastic rod system after collision.

... Chapter 5

Displacement waves, rigid-body displacement, and their sums for elastic rod system after collision (continued).

Force waves in elastic rod system after collision.

Acknowledgments

Many ... With immense gratitude to

Gang Chen

Bestowal

All royalties from *Wave Propagation* are donated to **The MIT Office of Engineering Outreach Programs** & **The MIT Summer Research Program**

in the names of James H. Williams, Jr. '67 and Raymond J. Nagem '80

Dedication

To A. Neil (1964) and Jane Pappalardo, by measure of profound and indelible devotion and love, MIT Royalty.