PHYSICAL REVIEW A

VOLUME 42, NUMBER 7

1 OCTOBER 1990

Linear theory of superradiance in a free-electron laser

S.Y. Cai, J. Cao, and A. Bhattacharjee
Department of Applied Physics, Columbia University, New York, New York 10027
(Received 6 November 1989; revised manuscript received 11 May 1990)

This study is motivated by the analytical solutions of superradiance in a high-gain free-electron
laser obtained by Bonifacio, Maroli, and Piovella, using the technique of Laplace transforms [Opt.
Commun. 68, 369 (1988)]. An error in these analytical solutions is remedied by a correct treatment
of the boundary conditions on the electron beam, and the earlier theory is extended to allow for
both electron shot noise and an optical pulse in the initial state. It is shown that, when the optical
pulse is shorter than the electron pulse, superradiant behavior can also occur at the leading edge of

the optical pulse.

I. INTRODUCTION

In a free-electron laser (FEL), a relativistic electron
beam passes through the transverse periodic magnetic
field of an undulator (or wiggler), transferring energy to a
copropagating electromagnetic wave. For the device to
generate coherent radiation, it is necessary to satisfy a
resonance condition which requires the electrons to slip
one wavelength behind the radiation as the electrons pass
over one undulator period. When this resonance condi-
tion is satisfied, the electron beam, after traveling a dis-
tance z, lags behind the optical beam by a slippage dis-
tance given by

S=(\/A,)z , (1)

where A, and A, are, respectively, the wavelength of the
radiation and the undulator. A standard approximation,
frequently made in theoretical analyses, is to take the
slippage distance S to be much smaller than the input
electron pulse length L (or optical pulse length L). In
this “long-pulse” approximation, one can follow electrons
within one period of the ponderomotive potential well
and assume that electrons in adjacent wells satisfy a
periodic boundary condition. This approximation is
clearly violated if S = Ly; even if S <Ly, the periodic
boundary condition does not hold at the edge of the elec-
tron pulse.

Recently, Bonifacio, Maroli, and Piovella! have
presented some interesting analytical solutions in the
linear regime taking into account the effect of slippage.
Two distinct regimes are identified in Ref. 1. In one re-
gime, referred to hereafter as the steady-state regime, the
effect of slippage can be neglected, and the intensity
scales as n}/°, where n, is the electron density. In the
other regime, the effect of slippage is crucial, and the
peak intensity scales as n2. This latter regime is shown to
be significant when the slippage distance S is comparable
with or larger than the electron pulse length. By analogy
with laser physics,> Bonifacio and Casagrande have
termed this regime the “superradiant” regime, ! though
it has been noted in Ref. 4 that perhaps the term
“superfluorescence” is more appropriate. The oc-
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currence of superradiance has been confirmed by recent
numerical simulations. %>

Analytical solutions describing superradiant behavior
have been obtained in Ref. 1 by using Laplace trans-
forms. Particular solutions have been given for the start-
up of a high-gain FEL from initial conditions of zero op-
tical field and electron shot noise. While these solutions
predict correctly the existence of the superradiant regime
for S <Ly, we show that the analysis given in Ref. 1 is
not quite correct for S > Ly, which is precisely when
superradiance is expected to be a dominant effect. In par-
ticular, we show that the evolution of the radiation field
is qualitatively distinct in the two cases S=Ljy and
S >Lp, a distinction that has not been made in the
analytical treatment of Ref. 1. Thereafter, we give gen-
eral solutions for the evolution of the radiation field in
the presence of a finite optical pulse of length L at input.
A new result that follows is the occurrence of superradi-
ance at the leading edge of the optical pulse when
L <Lg. (A preliminary account of these results was
presented recently. ®)

II. DYNAMICAL EQUATIONS

We begin our analysis with the one-dimensional FEL
equations’

d‘yj ksasaw
=— in(y; +
o v, sin(y; +4) , (2a)
dy; —k lﬂy_f ksa;a,cos(y; +¢) (D)
dz v 2 2 ’
Yj Yj
and

. 2 i
i+l_a_ Y la,w, <exp(—n/))> ’ 2¢)
0z ¢ dt 2kc? Y

where z is the direction of propagation of the electron
and optical beams and also coincides with the undulator
axis; z/1j+¢ is the relative phase of the electron (of rest
mass m) with respect to the radiation field, and 1//,»mc2 is
its energy; A=A, + A, a,=eAd,/mc? a,=ed,/mc?
k,,k;=w/c are the wave numbers of the undulator and
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radiation fields, respectively; w is the radiation frequency;
u =aexpl(i¢@) is the complex amplitude of the radiation
field; and y, is the resonant electron energy factor,
defined by the relation

k. (1+a2)

K (3)

vi=
w
The symbol ) denotes an ensemble average over elec-
trons.

We introduce the following variable definitions:

Li=(y;=v0) /70> (4a)
8=k, (1—y2/v3), (4b)
V,=y¢; =6z, (4¢)
A =u exp(idz) . (4d)

Here 7, is the initial energy of the electron beam, taken
to be monoenergetic. By linearizing Eqgs. (2) around the
equilibrium, T ;,=0, (exp(—i¥;)) =0, 4,=0, and intro-
ducing collective variables x = — (i8W¥ exp(—i¥,)) and
y =(Texp(—iV¥,)), where 8W; =W, —W;, I'; and 4 are
small quantities, we obtain the system of equations

dx

Ez—zhy—zfA , (5a)
a _;
i ifd , (5b)
d 19 . . .
32 oo A=idA4 +ig(x —y), (5¢)

where f=ka,/(2v}), g=wla,/(2k,cy,), and h
=2k,y%/y3 Note that in Eq. (5c) the parameter g de-
pends on the density of the electron beam and is zero out-
side the beam. Inspection of the analogous equation in
Ref. 1 [Eq. (4c)] shows that the explicit dependence of the
radiation equation on the electron density is obscured by
the dimensionless variables used. Since the phenomenon
of superradiance occurs at the edges of an electron beam,
it is important to track this density dependence explicitly
in order that the boundary conditions on the beam can be
imposed correctly.

We assume that the electrons are continuously distri-
buted along the interaction region inside the pulse so that
the electron beam can be treated as a fluid, each element
of which moves at the average speed B, =V, /c. Hence
the Lagrangian derivative along z in Egs. (5a) and (5b)
can be replaced by the Eulerian derivative, that is,

d 9 1 3d
dz 0z + Bc ot ’ (6
It is convenient to transform to the coordinates,
=z, (7)
_ z —BHCt
=B’

where 7 measures the position in the electron-beam
frame. We choose the origin z=0 to coincide with the

T

(8)
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beginning of the undulator. Equations (5) can then be
solved by Laplace transforms. For a function F(§,7), the
Laplace transform is defined by

F(p,7)= fowdgexp( —pEF(&,7) . ©)
Equations (5) then yield the ordinary differential equation

dd |, 52 _ifeh |5
dr P p

ghy,
p?

X0~ Yo

=A,tig + (10)
where A,=A(z=0,7), xy=x(z=0,7), and y,=y(z
=0, 7) represent initial conditions at z=0. For simplicity
we will take y,=0, and assume that the initial electron
and optical pulses to be rectangular and of lengths Ly
and L, respectively, with their trailing edges aligned at
z=0 when 7=0. Note that the slippage is then given by

T7=E.

III. ANALYTICAL SOLUTIONS
FOR ZERO INITIAL RADIATION FIELD

In order to compare the results of our analysis with
that of Ref. 1, we first consider the simple case 4,=0.
Then Eq. (10) can be integrated in 7 to give

8o {1—exp[—A(p)7]}, 0<7<L;
7 = j (11)
A(p,7)= 1 18X . '
P pl(;)exp[—(p —i8)(r—Lpg)]

X{1—exp[—A(p)Lpl}, Lg<T

where A(p)=p —i®—2fg/p —ifgh/p* and Ly=Ly /(1
—B,). In obtaining Eq. (11), we have imposed the condi-
tion that A is continuous at 7=Lp.

The inverse Laplace transform of A4(p,7) is given by
the standard formula
g +ioc

A(é‘,r):—l—

21 cog—i®

exp(p&)A(p,7)dp , (12)

where ¢, is chosen large enough so that all singularities
of the integrand lie to the left of the straight line along
which the integral is taken. From Eq. (11), we then ob-
tain the following solutions for A (§,7): for 0<7<Ly
and £>7

igx

4
o2 (p) exp[p&—Ap)r]

A =Res | — ) (13)

p=0

where Res( )lp —o denotes the Cauchy residue at p=0.
For§<7=<L,

igxop;
Pr—Pm NP —p,)

l#m+*n (14)

3
A=73 ( exp(p;§),
=1

where p; (I=1,2,3) are the three roots of the cubic equa-
tion p?A(p)=0. For £>7> L,
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igx

A =Res | —
ST oA

exp[ —(p —id)(r—Lpg)

—Ap)Ly+pé&] (15)

1p:0
Forr>&>7—Lgand 7> Ly

igxop;
1= Pm )PP,

3
A= explp;E—(p,—i8)(r—Lp)],
= (p )

[#Fm¥*n . (16)
Finally, for 7> £+ Ly

A=0. (17)

Note that solutions (13) and (14) are similar to those ob-
tained by Bonifacio et al.! Solution (13) is the superradi-
ant solution.

On the basis of the solutions given above, we can de-
pict schematically the optical amplitude | 4| as a function
of 7 at a fixed value of £. Figure 1(a) describes the case

|A]
(14)
(13) (16)
{ ‘ (a)
\ (17)
! v
13 Lg &+Lg T
[a]
(13) (16)
(b)
(17
l '
=Ly 2Ly T
Al (15)
(13) (16)
(c)
(17)
A
1
Ly £ £+l T

FIG. 1. Schematic plots of the optical amplitude as a func-
tion of 7, in the case of zero initial optical field. The amplitude
is viewed at three positions in the undulator: (a) S <Ly (or
E<Ly), (b) S=Lp (or E=Lp),and (c) S > Ly (or §>Lg). The
rectangles stand for the electron pulse and the number in
parentheses above each sector of a curve is the equation number
in the text that describes that sector.
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S <Ly (or £<Lpg), which corresponds to the long-pulse
limit. There are three regions: the exponentially growing
region (§+Lg>7>Ly), the steady-state region
(Lg >7>§&), and the superradiant region (§>7>0). Fig-
ure 1(b) describes the special case S =L, in which case
the steady-state region disappears. Figures 1(a) and 1(b)
are similar to that given in Ref. 1.

Figure 1(c) describes the case S>L, (or £€>Ly),
which corresponds to a short electron pulse. In this case
our results are significantly different from the results of
Ref. 1, in which no distinction is made between the cases
§=Lg and S > L. Contrasting Figs. 1(a) and 1(b), we
note that for S > L, a new region appears for 7 in the
range Ly <7 <§. The solution for this region is given by
Eq. (15), and is of the superradiant type. The physical
mechanism for the occurrence of this region is as follows.
As the radiation pulse interacts with and eventually
passes over the leading edge of the electron pulse, the
superradiance within the electron pulse grows and even-
tually slips out of the leading edge of the electron pulse.
However, once the radiation slips out of the electron
pulse, it can no longer grow, and merely oscillates with
the phase exp(id7), with an amplitude that depends on
(E—1).

IV. ANALYTICAL SOLUTIONS
WITH NONZERO RADIATION FIELD

We now study the case when A4,70. For specificity,
we assume that the electron and optical pulses are rec-
tangular, as is shown in Fig. 2. In general L;#L, and we
allow for both possibilities, Ly > L or Lz <L. We define
L'=L/(1—-B).

We first look at the case L > Ly. In this case, the solu-
tion to Eq. (10) is

Ay t+igx,/
—0-g—’9—P~{1—-exp[—-?\(p)T]}, 0=7=Ly,
Alp)
Ay t+igxy/
LoT8% 7P pexp[—(p—iS)(T—Lé)]
Ap)
X {1—exp[ —Mp)Lg]}
A, _ ,
+p—i5 {1—exp[—(p —i8)7— L)1},
4= Ly<r<L' (18)
Ay tigxy/p ) )
—E—m—eXp[—(p—IS)(r—LB)]
X {1—exp[ —A(p)Lg]}
Aq ,
+ —{1—exp[—(p —i8)L'—Lg)]}
p—id

Xexp[—(p —i8)(r—L")], L'<7.

The inverse Laplace transform gives the following solu-
tions: for 0 <7<min(Lg,§)

A0+lng/P

A =Res | — p)

exp[ —Alp)T+p&]
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0 Ly L T

FIG. 2. Initial electron shot noise and optical input pulse.
Here the electron pulse length Ly can be either greater or small-
er than the optical pulse length L’.

which is again the superradiant solution. For §<7 <Ly

(p; Ao t+igxy)p,
Pi—Pm )P —Py)

exp(p,;§), I#Fm#*n (20)

3
A=
=1

which is the steady-state solution. For Ly <7<§

Ao tigxo/p
Alp)
Xexp[p&E—A(p)Lg

A =Res | —

—(p —id8)(r—Lp)] ) 2n

p=0

which is the superradiance that has slipped out of the
leading edge of the electron pulse. For max(&,Lp)
Sr<&+Ly

3. (ppAotigxolp
A =exp[ib(r—Ly)
Pl D 2 G )

Xexp[p(E—T+Lp)],
I#=m+*n . (22)
For é+L, <r<&+L'
A = Ayexp(id§) , (23)

which is the part of the initial optical pulse that does not

interact with  the electron pulse, so that
u=Aexp(—idz)= A, remains constant. Finally, for
E+L' <1

4=0. (A24)

The solutions (19)—-(24) are schematically drawn in Fig. 3.
Figure 3(a) describes the case £ <Ly, Fig. 3(b) the case
&=Ly, and in Fig. 3(c) the case §> Lg. Note that these
solutions reduce to the special case discussed in Sec. IIT if
we set 4,=0.

We now show that the radiation growing at the trailing
edge has indeed the scaling properties of superradiance.
To see this, we look at the first term in (19), which we
write as

4o

A,=Res |—
1 es p)

exp[ —A(p)r+pE] (25)

p=0

To make the problem simpler, we assume that the FEL is
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perfectly tuned, so that §=0, and we neglect the small
term 2fg /p in A(p). Then A, becomes

A 2
A,=Res | —— 0'.0
p —ifgh
xexp |p(E—7)+LE0;
p p=0
!
_ 4o & i i 1 (E—71)"(ifgh)"
ifgh Sy, %%, | ifsh n'm! ’

(26)

where 3/ +n—2m =—3. In the short-pulse limit,
fghT<<1, and at 7=§, only N=0 terms contribute.
Therefore the leading term in (26) is the term with n=0,
m=3,and /=1. Then

_ Ao 1 (ifght) 1
V' ifgh ifgh 6
which implies that the radiation intensity scales as n_.

We now consider the complementary case L <Ljp.
This case describes what happens in an FEL oscillator in

A
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X
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FIG. 3. Schematic plots of the optical field amplitude as a
function of 7, in the case of a nonzero initial optical pulse and
L >Lg (or L'>Lg). The amplitude is viewed at three positions
in the undulator: (a) S <Ljp (or £<Lyp), (b) S =Ly (or §=Ly),
and (c) S > Ly (or £> Lp).
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which the optical pulse is shorter than the electron pulse
and their trailing edges are aligned at the entry of the un-
dulator. In this case, the solution to Eq. (10) is

A0+lng/p
SO0 —expl — <r<L’
p) {1—exp[—A(p)T]}, 0=7=L
Ao tigxo/p ,
Ap) {exp[ —Alp)t—L")]
—exp[ —Alp)7]}
igxo/p
+ 1—exp[ — L
p) {1—exp[ —A(p)7—L"]} ,
i= L'<7<L} (8
Aytigxy/p , )
p) {exp[ —A(pNLg—L")]
—exp[ —A(p)Ly]}
igxy/p , ,
+ Ap) {1—exp[—A(pNLp—L )]}l
Xexp[ —(p —i8)r—Lg)]), Lg=7.

The inverse Laplace transformation of (28) gives the
following results: for 0 <7 <min(§,L")

Ay+igx,/p

—————exp[ —Alp)T+p&]

A =R
es p)

p=0
(29)

which is the same as Eq. (19) and is the superradiant solu-
tion. For§=7<L’

J

3 (Ag+igxe/p)pi

A =
/§1 (p;—pPw) P —Py)

exp(p,§), I#Fm#*n , (30)

which is the same as (20) and is the steady-state solution.
For L'<r<min(§,Lg)and L' <§

A0+igX0/p

A =Res p)

{exp[ —A(p)(r—L")]

—exp[ —Alp)r]iexp(p§)

8% MpNE—L")
pk(p)exP[ 12163

+pé&l (31)

p=0
For max(&,L")<7<min(§+L',Lg)and {<Lyg

Ao

Alp)

3 (pAotigxylp

£y (i =P 1= Py)

A =Res

exp[ —Ap)(t—L")+pé&]

|
1
\P:O

exp(p,§), I#Fm+*n (32)

which is a new solution. The first term in (32) is of the
same form as Eq. (25), describing superradiance growing
from A4,. Therefore (32) is a combination of the superra-
diant and steady-state solutions. For §+L'<t<f+Ly
and §<Lp—L'

I8X Py

1F=m+*n (33)
P1—Pm )P, —DPy)

3
A= ( exp(p;§),
=1

is another steady-state solution. For Ly <7<§

A
A =Res M;’) {exp[ —Alp)(Ly—L")]—exp[—A(p)L;]}
igx, , , ) ,
— exp[ —A(p)(Lg—L")]exp[ —(p —i8)(r—Lg)+pé&] (34)
pAp) p=0
For max(&,Lp)<7<é&+L'and§>Lg—L’
3 (py Ag+igxy)
A= DLEOTEROP o —(p—i8)(r— L)+ pi]
=y pr—Pw) P —py)
A
+Res | —=exp[ —A(p)NLjy—L')—(p —id)(r—Ljy)+pE] , (35)
)»(p) p=0

which is again a combination of the steady-state and su-
perradiant solutions. For max(§+L",Lp)<7<&+Ly

: 18X 0Py
A=
1§l (Pr=Pm NP1 =Py)
Xexp[ —(p;—id)r—Lg)+p,&] . (36)
For§+Lp <7t
A=0. 37)

f

Solutions (29)-(37) for the amplitude of the optical pulse
are represented schematically in Figs. 4-6. In Fig. 4, we
plot the case S <L (or £<L’), which describes a long
electron pulse. When the slippage is small so that
S+L <Ly (or §+L"<Lyg), there are, as shown in Fig.
4(a), two regions of steady-state behavior separated by a
region that contains a combination of steady-state and su-
perradiant behavior. However, as shown in Fig. 4(b),
when the slippage increases so that S+L >Lp, the
steady-state behavior in the leading edge disappears. Fig-
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L 1 i
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FIG. 4. Schematic plots of the optical field amplitude as a
function of 7, in the case x(,70, 4,70, and L <L. The ampli-
tude is viewed at positions S <L (or £<L’) and for (a)
S+L <Lgloré§+L'<Lg), (b)S+L >Lg.

ure 5 shows similar plots except that now L <S§ <Ly (or
L' <& < Lyg), and therefore a superradiant region replaces
the steady-state region at the trailing edge. Figure 6
shows the case Ly <S (or Ly <§&), which corresponds to
the short-pulse limit.

Note an interesting new feature in each of the Figs.
(4)—(6): there exists a region that is a combination of the
steady-state and superradiant solutions occurring at the
leading edge of the optical pulse. The physical explana-
tion for the occurrence of this “semi-superradiant” re-
gion is as follows. In this region, the steady-state part of
the radiation field is generated by the standard FEL
mechanism from the noise sources 4, and x,. However,

Y

(31)

(a)

LY

(b)

(36)
(37)

I i

L S T E+ly T

FIG. 5. Schematic plots of the optical field amplitude at posi-
tions L <S <Ly (or L'<£<Ly) as a function of 7, in the case
xo7#0, Ay#0, and L <Lgz. (a) is for S+L <Ly (or

E+L'<Lp)and (b)isfor S+L > Ly (or E+L'>Ly).
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[a]

(36) (37)

v g € E+L g4y T

FIG. 6. Schematic plot of the optical field amplitude at posi-
tions S > Ly as a function of 7 when x,7#0, 4,70, and L <Lg.

as the electrons in front of the initial optical pulse slip
into the pulse, they experience rapidly varying external
fields and emit spontaneous radiation which contributes
to superradiance, the magnitude of which depends on
A,. However, after this region slips over the entire elec-
tron pulse, the growth of the superradiant component is
stopped, with the consequence that the radiation ampli-
tude in the leading edge is usually smaller than that at the
trailing edge.

V. SUMMARY

In this paper, we have given a linear theory of superra-
diance for a free-electron laser in the high-gain Compton
regime. One of the aims of this paper has been to de-
scribe the leading as well as the trailing edges of the opti-
cal pulse, and to fix correctly the boundary conditions at
the edges of the electron pulse. We caution that compu-
tational methods that do not correctly incorporate these
boundary conditions may produce spurious behavior in
the radiation field dynamics.

When the FEL evolves from the initial conditions of
zero initial optical field, which is the case considered in
Ref. 1, we show that the evolution of the radiation pulse
proceeds in qualitatively different ways in the three cases
S <Lg,S=Lg,and S > Ly. We then extend the calcula-
tion of Ref. 1 to allow for the presence of an initial opti-
cal pulse of length L, which may be greater or smaller
than L. Whereas superradiance is a persistent feature of
the radiation field at the trailing edge of the electron
beam, we find that it can also occur at the leading edge of
the optical pulse when L < L.

The one-dimensional linear theory presented here is a
first step, but leaves several interesting questions
unanswered. The nonlinear evolution of superradiance is
a subject of considerable interest. Though superradiance
and sidebands differ in their growth rates, numerical
simulations seem to suggest that they are essentially in-
distinguishable in their nonlinear states. This feature
deserves closer scrutiny. We also note that the optical
“spikes” seen in numerical simulations are sufficiently
singular that the ‘“slowly varying” approximation rou-
tinely used for the radiation field in a high-gain FEI is
open to question.

ACKNOWLEDGMENTS

This work is supported by the U.S. Office of Naval
Research, Grant No. N0014-79C-0769 and the National
Science Foundation, Grant Nos. ECS-87-13710 and
ECS-89-12581.



4126 S. Y. CAIL J. CAO, AND A. BHATTACHARIJEE 42

IR. Bonifacio, C. Maroli, and N. Piovella, Opt. Commun. 68,
369 (1988).

2See, for instance, A. Yariv, Quantum Electronics, 3rd ed. (Wi-
ley, New York, 1989), pp. 352-355.

3R. Bonifacio and F. Casagrande, Nucl. Instrum. Methods A
239, 36 (1985).

4R. Bonifacio, B. W. J. McNeil, and P. Pierini, Phys. Rev. A 40,
4467 (1989).

SW. M. Sharp, W. M. Fawley, S. S. Yu, A. M. Sessler, R. Boni-

facio, and L. de Salvo Souza, Nucl. Instrum. Methods A 285,
217 (1989).

6]. Cao and A. Bhattacharjee, 11th International Conference on
Free Electron Lasers, 1989, Advance Program (IEEE Lasers
and Electro Optics Society, Naples, 1989), p. 11.

N. M. Kroll, P. L. Morton, and M. N. Rosenbluth, IEEE J.
Quantum Electron. QE-17, 1436 (1981).

81. Gjaja and A. Bhattacharjee, Opt. Commun. 58, 201 (1985);
62, 39 (1987).



