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a b s t r a c t

We give the formulation of new 4-node overlapping quadrilateral finite elements and demonstrate their
performance in several numerical examples. The elements are insensitive to mesh distortions and lead
overall to accurate numerical solutions. We show how the quadrilateral elements are utilized in the
AMORE scheme of ‘‘automatic meshing with overlapping and regular elements”. Since in this paradigm
the finite elements interior to the domain of analysis are undistorted regular elements and the
distortion-tolerant overlapping elements are used for discretizations near the boundaries, high solution
accuracy is achieved. This accuracy is obtained with much less effort for meshing than in traditional finite
element analysis and with a reasonable computational expense.

� 2019 Elsevier Ltd. All rights reserved.

1. Introduction

While finite element methods are abundantly used in engineer-
ing and the sciences, their use is still much restricted due to the
effort expended on meshing [1].

To avoid the generation of a mesh, meshless methods were pro-
posed in which the global solution fields are constructed using
scattered points [2]. The method of finite spheres is one such
method [3]. However, the effort required for the numerical integra-
tion in meshless methods that do not involve the setting of param-
eters for solution stability causes the approach to be
computationally expensive and prevents their wide use in engi-
neering practice [2–4].

In order to significantly reduce the effort of meshing for finite
element analysis without increasing the computational expense,
we proposed the use of overlapping finite elements in a scheme
of meshing [4–7], now referred to as the AMORE paradigm for

‘‘automatic meshing with overlapping and regular elements”.
Mostly easy to generate regular, traditional elements are used
but also overlapping finite elements are employed. In this way
the cost of obtaining an effective mesh is much reduced. The first
overlapping elements used in AMORE were the disks (in three-
dimensional analysis, spheres) of the method of finite spheres
and effective coupling schemes between traditional finite elements
and overlapping elements were proposed [4,5].

Recently, the concept of overlapping finite elements was
improved and a new triangular overlapping element was presented
[6,7], in which the overlapping finite element method can be
regarded as a combination of the traditional finite element method
and the method of finite spheres. The new element formulation is
much more effective than the meshless methods because the
numerical integration can be as simple as for traditional elements,
and the bandwidth of the governing matrices is as in traditional
finite element analysis.

An important feature of the overlapping finite elements is that
the nodal degrees of freedom are polynomials or any other suitable
functions, e.g. trigonometric functions can be included for the solu-
tion of wave propagation problems [8]. As a result, the overlapping
finite elements can exactly represent the functions used as degrees
of freedom irrespective of whether the mesh is distorted. This fea-
ture also pertains to the finite element method with interpolation
covers [9], which however was only used in meshes of triangular
elements, and the new overlapping elements are more effective
[6,7].

Of course, meshes of overlapping finite elements satisfy the par-
tition of unity property as do the formulations of the traditional,
extended and generalized finite element methods [10–13], and
there are similarities in these formulations. However, to have an
effective finite element scheme, the details of the formulation are
important. The AMORE scheme with the overlapping finite ele-
ments has been formulated to have stable, accurate and computa-
tionally efficient finite element solutions.
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The AMORE paradigm for finite element analysis is deemed to
be used directly on geometries obtained from computer-aided
design programs or three-dimensional computerized scans. The
main part of the domain (the interior) is discretized with regular
traditional elements, and the boundary regions are meshed with
overlapping elements. Since the overlapping elements are insensi-
tive to mesh distortions, the complete mesh can be created quite
effectively. An example is given in Section 3.4.

In this paper we present the formulation of novel quadrilateral
overlapping finite elements for two-dimensional analyses, show
their performance in several numerical examples, and illustrate
their use in the AMORE paradigm.

2. The quadrilateral overlapping elements

The quadrilateral overlapping element is considered to be the
overlapped region of four polygonal elements, as shown in Fig. 1.
For each polygonal element, e.g. DI , the interpolation is based on
the method of finite spheres (disks in two-dimensional analyses)
with the centers of the disks at the nodes. The final displacement
field in the new 4-node element is the weighted average of the four
method of finite spheres fields corresponding to the disks located
at the four nodes of the element. The weight functions are the

traditional shape functions. These concepts are used in the formu-
lation of the 3-node elements [7,14] and are also the basis of the
formulation of the new 4-node quadrilateral element.

2.1. The interpolation

We consider the solution of the displacement field of a well-
posed problem in elasticity. The element interpolation of one com-
ponent u (say, the x-displacement) is given in the following form

uðxÞ ¼
X4
I¼1

qIðxÞ uIðxÞ ð1Þ

where the qIðxÞ are the new interpolation functions of the element.
In traditional finite element analysis, uI is the nodal value of the
field u at node I. For the new overlapping finite elements, however,
we use functions and usually polynomials as nodal unknowns, i.e. uI
is a polynomial function given in the Cartesian coordinate system
x ¼ ðx; yÞ attached to node I

uIðxÞ ¼ aI1 þ aI2xþ aI3yþ � � � ð2Þ
If the linear basis is used, we have uIðxÞ ¼ aI1 þ aI2xþ aI3y. Using

the quadratic basis, uIðxÞ ¼ aI1 þ aI2xþ aI3yþ aI4x2 þ aI5xyþ aI6y2.
Since we use local Cartesian coordinates at node I, we have
aI1 ¼ uIð0Þ. We will see that the qI are cubic functions in each of
the isoparametric coordinates (r, s) and we use the quadratic basis
in the present paper; however the linear, cubic or even quartic
polynomial bases might be used. In these cases, the computational
effort required for a given accuracy would need to be assessed.

Comparing this interpolation with the approach of meshless
interpolations we see that the nodal coupling leading to the band-
width is as in traditional finite element analyses, while in meshless
interpolations, the bandwidth of the stiffness matrix can be very
large. Hence the discretization using Eq. (1) is computationally
not expensive in solving the governing equations, see also Ref. [7].

To formulate the expression for the new interpolation functions
in Eq. (1), we use (see Fig. 1)

u ¼
X4
I¼1

hIwI ð3Þ

where the hI are the traditional shape functions for a quadrilateral
element, and the wI are functions that we establish using the con-
cepts of the method of finite spheres. However, we can note already
that since the traditional element interpolation functions hI provide
a compatible displacement field, Eq. (3) does so too provided the
functions wI are continuous in the corresponding polygonal
element.

2.2. The functions wI

We aim to construct for each node I the function wI and consider
for this purpose the polygonal element formed by all triangular
and quadrilateral elements coupling into node I. A typical polygo-
nal element is shown in Fig. 2, where we note that also two trian-
gular subdomains are included. We define the support set NI for

(a) A typical 9-node polygonal element DI and its local support SI

(b) A typical quadrilateral element obtained as the overlapped region εe

Fig. 1. The 4-node quadrilateral overlapping finite element. Fig. 2. Local support of the polygonal element.
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node I as the set of all nodes neighboring node I and node I itself.
Fig. 2 also shows the support radius rI , which is defined as the
radius of a disk (a sphere in three-dimensional analysis) that con-
tains all these nodes.

In this paper, the value of rI is given by

rI ¼ max
J2NI

k xI � xJ k ð4Þ

and we also define another radius for each node by

r�I ¼ min
J2NI ; J–I

k xI � xJ k ð5Þ

which will be used later on. With rI given we can define

wIðxÞ ¼
X4
K¼1

/I
KðxÞuKðxÞ ð6Þ

where we use for /I
K the Shepard functions interpolated over the 4-

node element of interest such as to provide compatibility.
The Shepard functions are widely used for interpolations of

scattered data, and they are also adopted in the method of finite
spheres. However, they are non-polynomial functions in the form
of a quotient of polynomial weight functions. For this reason, when
used in meshless techniques (like in the method of finite spheres),
their use is computationally expensive, that is, a very high order
numerical integration is needed [3,6]. Therefore we interpolate
the functions using polynomials to obtain a much more effective
solution scheme.

2.3. Interpolation of the Shepard functions

As in the formulation of triangular elements [7], we use here
also for the interpolation of each Shepard function mid-edge nodes
as shown in Fig. 3 to obtain a more accurate representation of the
function

~/I
JðxÞ ¼

X8
i¼1

ĥiðxÞ/̂I
Ji ð7Þ

where ~/I
J is the approximation of the Shepard function, the /̂I

Ji are

coefficients to be determined, and the ĥiðxÞ are the traditional shape
functions of the 8-node quadrilateral element.

Three criteria govern the determination of these coefficients:

� The interpolated Shepard functions should lead to a compatible
displacement field between elements, which is a basic require-
ment of finite element methods.

� The interpolated Shepard functions should be partition of unity
functions, i.e.

P
J
~/I
J ¼ 1.

� The element interpolation should depend only on the four
weight functions (see below) located at the four corner nodes
of the quadrilateral element.

Based on these criteria we use the coefficients listed in Table 1,
where the WJ are the quartic spline weight functions:

WJðxÞ ¼ 1� 6s2 þ 8s3 � 3s4; 0 6 s < 1
0; s P 1

(
ð8Þ

with s ¼ dJðxÞ=rJ being the scaled distance, and dJðxÞ being the dis-
tance between the point x and node J. The shapes of two typical
weight functions are shown in Fig. 4.

To take mesh distortions into consideration, the final interpo-
lated Shepard functions are given by

/I
J ¼

ffiffiffiffi
r�I

p
ffiffiffiffi
rI

p þ ffiffiffiffi
r�I

p ~/I
J þ

ffiffiffiffi
rI

pffiffiffiffi
rI

p þ ffiffiffiffi
r�I

p dIJ ð9Þ

where the rI and r�I are the radii defined in Eqs. (4) and (5), respec-
tively, and dIJ is the Kronecker delta. For a severely distorted mesh,
rI � r�I , hence /I

J � dIJ , and the formulation reduces to using finite
elements enriched by interpolation covers [9]. This method can
exactly reproduce polynomial fields that are one order higher than
the nodal basis functions used, hence a one order higher conver-
gence can be achieved. However, quadrilateral finite elements
enriched by interpolation covers may yield stiffness matrices that
are only positive semi-definite, whereas the weight coefficients
we use in Eq. (9) ensure a reasonable conditioning of the
formulation.

With the above equations we now see that

qI ¼
X4
J¼1

hJ /
J
I ð10Þ

Fig. 3. Nodal positions (nodes 1, 2, 3, 4) of the Shepard functions and nodes used for
the interpolation of the Shepard functions (nodes 1–8) for the quadrilateral 4-node
element ee .

Table 1
Interpolation of the Shepard functions on a quadrilateral element (see Fig. 3).

/̂I
1 ¼ P8

i¼1
ĥi/̂

I
1i

/̂I
11 /̂I

12 /̂I
13 /̂I

14

1 W1
W1þW2

���
x2

0 W1
W1þW4

���
x4

/̂I
15 /̂I

16 /̂I
17 /̂I

18
W1

W1þW2

���
x5

W1
W1þW2þW3

���
x6

W1
W1þW3þW4

���
x7

W1
W1þW4

���
x8

/̂I
2 ¼ P8

i¼1
ĥi/̂

I
2i

/̂I
21 /̂I

22 /̂I
23 /̂I

24

0 W2
W1þW2

���
x2

0 0

/̂I
25 /̂I

26 /̂I
27 /̂I

28
W2

W1þW2

���
x5

W2
W1þW2þW3

���
x6

0 0

/̂I
3 ¼ P8

i¼1
ĥi/̂

I
3i

/̂I
31 /̂I

32 /̂I
33 /̂I

34

0 0 1 0

/̂I
35 /̂I

36 /̂I
37 /̂I

38

0 W3
W1þW2þW3

���
x6

W3
W1þW3þW4

���
x7

0

/̂I
4 ¼ P8

i¼1
ĥi/̂

I
4i

/̂I
41 /̂I

42 /̂I
43 /̂I

44

0 0 0 W4
W1þW4

���
x4

/̂I
45 /̂I

46 /̂I
47 /̂I

48

0 0 W4
W1þW3þW4

���
x7

W4
W1þW4

���
x8
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The new shape functions have contributions from both isoparamet-
ric and meshless interpolations. Hence the overlapping finite ele-
ment method combines aspects of mesh-dependent and mesh-
independent methods. We illustrate in the following sections that
the new displacement interpolation results in accurate and
distortion-insensitive numerical solutions.

2.4. Dirichlet boundary conditions

When using overlapping finite elements, the natural boundary
conditions are imposed weakly as in traditional finite element
methods [1]. To impose Dirichlet boundary conditions, a different
set of interpolation is used for the boundary nodes that are con-
strained, namely we use the technique of interpolation covers
[6,9].

Fig. 5 shows two typical cases of nodes on a boundary. As
shown in Fig. 5(a), for a flat or curved boundary a local coordinate
system is established at a boundary node I4, with one axis tangent
to and the other perpendicular to the displacement boundary. If
the u field is constrained along the I3 � I4 edge, we use, like in
the method using interpolation covers, for the node I ¼ I4 the nodal
displacement function

wI4
ðr; sÞ ¼ uI4 ¼ aI41 þ aI42r þ aI43rsþ higher-order terms ð11Þ

Thus, wI4 ð0; sÞ becomes a constant as desired. Similarly, we can con-
struct the function for node I3. With the displacement field still
given by Eq. (3), we see that if the Dirichlet boundary is flat, the
constraints are imposed exactly, otherwise discretization errors
occur.

For corner nodes, it can be seen in Fig. 5(b) that local axes are
oriented along the corner edges, and similarly

wI4
ðr; sÞ ¼ uI4 ¼ aI41 þ aI42rsþ higher-order terms

is used for a corner node I4 with fixed boundary conditions.

2.5. The coupling between overlapping elements and traditional
elements

In the AMORE paradigm, we use both overlapping elements and
traditional elements to mesh the complete analysis domain; hence
the coupling needs to be achieved, and for this purpose we formu-
late coupling elements.

We define that if all nodes of a quadrilateral element are over-
lapping element nodes, the element is an overlapping element, see
Fig. 6. Similarly, if all nodes of a quadrilateral element are finite
element nodes, the element is a traditional or regular finite ele-
ment. Otherwise it is a coupling element.

The interpolation for a coupling element is still given by Eq. (3)
but the wI are defined differently. For a coupling element, we
denote the set of finite element nodes as KFE, and the set of over-

lapping element nodes as KOFE with the union of these two sets
equal to all nodes of the element. The interpolation wI for each
node of the element is given by

wIðxÞ ¼
a; I 2 KFEP

K2KOFE
/I

KuK þPK2KFE
/I

Ka; I 2 KOFE

(
ð12Þ

with

a ¼
X

K2KOFE

hKaK1 þ
X
K2KFE

hKuK ð13Þ

Fig. 4. Shapes of weight functions.

a) Curved or flat boundary 

b) Corner node 

Fig. 5. The local coordinate systems.

Fig. 6. Coupling of overlapping elements and finite elements.
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where aK1 is the constant part of the nodal unknown polynomial for
node K. Since

P
K2KOFE

hKaK1 þ
P

K2KFE
hKuK is independent of the index

I, we denote it as a. If KFE ¼ £, the interpolation for a coupling ele-
ment coincides with that of the ‘‘pure” overlapping element and if
KOFE ¼ £, we have the traditional finite element interpolation.

2.6. Mesh distortion sensitivity and convergence rates

The overlapping elements with or without coupling elements
and tradtional finite elements satisfy the patch tests. Further, if
the overlapping finite elements use the kth order basis, the ele-
ments are able to exactly represent any kth order polynomial irre-
spective of whether the mesh is distorted.

Namely, we can choose all nodal polynomials to be pk and have
in each element

uðxÞ ¼
X4
I¼1

qI

 !
pk ð14Þ

But

X4
I¼1

qI ¼
X4
I¼1

X4
J¼1

hI/
I
J ¼ 1 ð15Þ

where we use the equality
P4

J¼1/
I
J ¼ 1 because the interpolated

Shepard functions are designed to satisfy this criterion and will
always do so, irrespective of any mesh distortion, hence

uðxÞ ¼ pk

over the complete analysis domain. This conclusion is quite differ-
ent from what we see with higher-order traditional finite elements,
especially elements in the Serendipity family, that are (to a small or
large degree) sensitive to mesh distortions [1].

To establish the rate of convergence we follow the usual argu-
ments used in traditional finite element analysis [1]. We use the
energy norm or equivalently the H1 semi-norm ( �j j1) for the error
estimation. Considering a mesh of overlapping elements equipped
with the kth order basis, the interpolation error satisfies

inf
u�2Vh

u� u�j j1 6 chk ð16Þ

provided the exact solutionuhas boundedderivatives up to the order

(k + 1), where Vh is the finite element discretized space, u* is an ele-

ment in Vh, h is the element size, and c is a constant independent of
h. Then, due to Céa’s lemma, the numerical error satisfies

u� uhj j1 6 c�hk ð17Þ
where uh is the numerical solution and c� is a constant independent
of h.

To prove that Eq. (16) holds we use the usual interpolation the-
ory [1]. Some numerical examples regarding the mesh distortion
sensitivity and convergence rates are given in Section 3.

2.7. Numerical implementation

In the overlapping finite element method, the coefficients of the
terms in the nodal polynomials are the unknowns. Since the coef-
ficients corresponding to different polynomial terms are of differ-
ent scales, the stiffness matrix may become ill-conditioned. To
reduce the condition number of the resulting stiffness matrix, the
nodal polynomials are rewritten as

uI ¼ a�I1 þ a�I2
2x
rI

þ a�I3
2y
rI

þ a�I4
4x2

r2I
þ a�I5

4xy
r2I

þ a�I6
4y2

r2I
þ � � � ð18Þ

and these new coefficients a�
IJ are solved for instead. This normaliza-

tion results in a much better conditioning of the stiffness matrix.

In this paper, we use the 16-point quadrature rule (see Refs.
[1,15,16]) for triangular overlapping elements and the 6 � 6 Gauss
quadrature rule for quadrilateral overlapping elements. With these
integration orders, the overlapping elements are evaluated exactly
when they are not distorted [1]. The numerical effort for integra-
tion is actually a small part of the total expense [7,8]. We also note
that 5 � 5 quadrature points for quadrilaterals and 12 quadrature
points for triangles lead to no spurious mode, and in our example
analyses the numerical solutions are almost the same.

3. Numerical examples

We give here some example solutions to illustrate the perfor-
mance of the overlapping elements.

3.1. Thin beam problem to test trapezoidal elements

We consider the solution of the thin beam studied by MacNeal,
see Fig. 7. MacNeal showed that any traditional 4-node finite ele-
ment would either fail to pass the constant strain patch tests or
suffer from trapezoidal locking [17]. The numerical solutions
obtained with the quadrilateral overlapping element, the 4-node
element with incompatible modes [18], and the traditional 4-
node finite element are compared in Table 2. The results presented
here are slightly better than those earlier reported, see Ref. [14],
because to improve the formulation now Eq. (9) is used.

The incompatible element is designed for beam bending prob-
lems as bending solutions are added into the interpolation, but
the overlapping elements are even more effective in this special
problem, in particular when the mesh is distorted. In the solutions
we refine the mesh by dividing each element edge into equal line
segments. The reference solution is calculated using Timoshenko
beam theory [19].

We see that the incompatible element suffers from trapezoidal
locking but converges to the analytical solution as the mesh is
refined. On the other hand, the 4-node isoparametric element does
not perform well.

3.2. Convergence study for an ‘‘ad-hoc problem”

We consider the ad-hoc problem described in Fig. 8 [1]. The dis-
placements are prescribed and the body force is calculated from
the equations of equilibrium. The reference strain
energy = 5.9414 � 108.

The numerical predictions of the strain energy are plotted in
Fig. 9. The convergences obtained agree with our discussion in
Section 2.6.

3.3. Study of effects of mesh distortions in bending beam problems

We give the solutions of two simple problems to illustrate the
observations given in Section 2.6. As shown in Fig. 10, a beam is
meshed with two elements. Pure bending and linear bending con-
ditions are considered. The mesh distortion is parameterized by e.
The analytical displacement solutions based on linear elasticity for
these problems are [19]

Pure bending : ux ¼ 120x�120xy
E ; uy ¼ 60x2þ18y2�36y

E

Linear bending : ux ¼ 6x2y�4:6y3�6x2�120xyþ13:8y2þ120x�9:2y
E

uy ¼ �2x3�1:8xy2þ60x2þ3:6xyþ18y2þ9:2x�36y
E

ð19Þ

Using the traditonal 4-node finite element and the 4-node
incompatible modes element, the mesh is further refined into
4 � 4 � 2 elements by dividing each element edge into four equal
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Table 2
Numerical solutions of the thin beam problem (Reference solution = 0.1081).

1 � 6 Mesh 2 � 12 Mesh 3 � 18 Mesh 4 � 24 Mesh

Overlapping finite element (Quadratic basis)
Rectangular 0.1069 (156 dofs) – – –
Parallelogram 0.1072 (156 dofs) – – –
Trapezoidal 0.1070 (156 dofs) – – –

Incompatible element
Rectangular 0.1073 (24 dofs) – 0.1076 (144 dofs) 0.1077 (240 dofs)
Parallelogram 0.0675 (24 dofs) – 0.1056 (144 dofs) 0.1072 (240 dofs)
Trapezoidal 0.0049 (24 dofs) – 0.0964 (144 dofs) 0.1044 (240 dofs)

4-node finite element
Rectangular 0.0101 (24 dofs) – – 0.0671 (240 dofs)
Parallelogram 0.0037 (24 dofs) – – 0.0395 (240 dofs)
Trapezoidal 0.0029 (24 dofs) – – 0.0502 (240 dofs)

a) Beam problem considered, total applied force = 1 

b) Meshes

Fig. 7. Thin beam problem and meshes used.

a) Problem description

b) Regular mesh c) Distorted mesh

Fig. 8. The ad-hoc problem.

Fig. 9. The ad-hoc problem: convergence rates; h is the mean element size
(diameter of smallest circle encompassing the element) [1].
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segments. The numerical solutions of the vertical displacement at
the point (10,0) are listed in Tables 3 and 4 as the distortion param-
eter increases.

In the pure bending case, the quadratic overlapping finite ele-
ments give the exact solution irrespective of the mesh distortion
because the quadratic field of the analytical solution can always
be reproduced. However the incompatible modes element shows
sensitivity to the mesh distortion as the exact bending functions
can only be represented when the element is undistorted. The 4-
node finite element is most sensitive to the mesh distortion
because it can only reproduce linear fields. In the linear bending
case, although the cubic field cannot be exactly reproduced by
the quadratic overlapping finite element, the numerical solutions
are still very close to the analytical solution irrespective of the
mesh distortion.

3.4. The AMORE paradigm in the analysis of a bracket problem

We show in this section how the quadrilateral overlapping ele-
ment can be used in the AMORE paradigm. As shown in Fig. 11, a
bracket is fixed on part of its boundary and loaded on the boundary
of its hole.

In the AMORE scheme we use both regular and overlapping ele-
ments to simplify the meshing process. The overlapping elements
are important because, being insensitive to mesh distortions, they
are used in the areas difficult to mesh with regular elements. The
AMORE paradigm involves these steps (see Fig. 12):

� The complete analysis domain is immersed in a Cartesian grid.
� The boundary is meshed. The cells located outside the domain
or cutting the boundary are deleted.

� The remaining cells internal to the domain are converted into
regular, that is, traditional finite elements. Instead of using 4-
node finite elements as in previous examples using AMORE,
we use here the incompatible modes element.

� The empty space in the domain is meshed using overlapping
elements.

As seen in Fig. 12, we use both quadrilateral and triangular
overlapping elements. The triangles are used for the boundary with
large curvature. Because severely distorted elements are allowed,
the mesh pattern follows very simple rules. The formulation of
the triangular overlapping element used here is slightly different
from the earlier formulation [7,14] to provide compatibility
between the quadrilateral and triangular overlapping elements
(see Appendix A).

We label in Fig. 12 elements with different colors. The regular
elements are blue, the overlapping elements are red, and the cou-
pling elements are green. The traditional mesh used for solution
comparisons is also given. In this problem, we use quadratic over-
lapping elements. The reference solution is obtained using a fine
traditional 9-node element mesh with over 340,000 degrees of
freedom.

The reference strain energy is 1.044. The AMORE paradigm
and traditional mesh all give reasonable energy predictions at
1.042. Fig. 13 plots the field solutions for the horizontal

a) Pure bending problem  

b) Linear bending problem  

Fig. 10. A beam meshed with two elements.

Table 3
The vertical displacement uy at ð10; 0Þ: The pure bending beam (OFE = overlapping finite elements, FE = finite elements).

e = 0 e = 2 e = 4 e = 4.9

Quadratic OFE (65 dofs) 6.0000 � 10�4 6.0000 � 10�4 6.0000 � 10�4 6.0000 � 10�4

Incompatible FE (84 dofs) 6.0000 � 10�4 5.9741 � 10�4 5.4826 � 10�4 4.8066 � 10�4

4-node FE (84 dofs) 5.1861 � 10�4 3.3018 � 10�4 1.6362 � 10�4 1.2214 � 10�4

Reference 6.0000 � 10�4

Table 4
The vertical displacement uy at ð10; 0Þ: The linear bending beam.

e = 0 e = 2 e = 4 e = 4.9

Quadratic OFE (69 dofs) 4.0874 � 10�4 4.0886 � 10�4 4.0899 � 10�4 4.0931 � 10�4

Incompatible FE (87 dofs) 4.0766 � 10�4 4.0573 � 10�4 3.7196 � 10�4 3.2252 � 10�4

4-node FE (87 dofs) 3.5059 � 10�4 2.4361 � 10�4 1.3642 � 10�4 1.0495 � 10�4

Reference 4.0920 � 10�4

Fig. 11. The bracket problem.
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a) Step 1: The structure is immersed in 
a Cartesian grid

b) Step 2: The boundary is discretized; Cells 
outside or cutting the domain are removed

c) Step 3: The empty space is meshed  d) AMORE mesh (1936 dofs)

e) Traditional mesh (9-node elements; 2558 dofs) 

Fig. 12. The AMORE paradigm in the solution of a bracket problem.
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displacement u, the stress rxy, and the effective stress. The tradi-
tional mesh gives a good solution for the displacement field,
however the stress predictions are not as good as when using
the AMORE scheme.

4. Concluding remarks

We presented novel quadrilateral overlapping elements and
illustrated their use. The overlapping elements are insensitive to

a) Left: AMORE mesh ( max min0.05224, 0.06284u u= = − ) 
Middle: Traditional mesh ( max min0.05224, 0.06298u u= = − ) 
Right: Reference solution ( max min0.05231, 0.06312u u= = − ) 

b) Left AMORE mesh (σxymax = 0.4728, σxymin  = −1.4525)
Middle: Traditional mesh (σxymax = 0.4625, σxy  = −1.3187)
Right Reference solution(σxymax = 0.4680, σxy  = −1.4604)  

c)
  Middle: Traditional mesh ( max 2.3358σ = ) 

max 2.5800)σ =  Right: Reference solution (

Left: AMORE mesh ( max 2.6681σ = ) 

min

min

Fig. 13. Numerical solutions for the bracket problem.
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mesh distortions and in the problems tested give accurate
solutions.

The displacement interpolation used in the formulation of the
overlapping elements is based on the traditional isoparametric
interpolation and the method of finite spheres. A major difference
of the new elements from the traditional finite elements is that the
nodal unknowns are polynomials (or other suitable functions)
instead of single nodal values. According to the analysis needs,
the order of the nodal polynomials can be increased and thus
higher convergence rates can be achieved.

Since all polynomial terms in the nodal basis can be represented
exactly even when the mesh is distorted, the new elements are
insensitive to mesh distortions. Although the overlapping elements
use the method of finite spheres interpolation, the Shepard func-
tions are interpolated by polynomials. The numerical integration
effort is reasonable and the nodal coupling for the resulting stiff-
ness matrix is as in traditional finite element analysis which ren-
ders the proposed elements very effective.

Lower order quadrilateral overlapping finite elements still suf-
fer from locking, which might be alleviated using the MITC interpo-
lation [1]. The shear locking is well resolved in the above limited
study given. However, a further study regarding a mixed formula-
tion is needed and an optimal overlapping element formulation
free of the locking effects should be pursued. The investigation
should also include the inf-sup test [20].

The overlapping elements are developed to reduce the mesh-
ing effort for finite element analysis in the AMORE paradigm.
We demonstrated the use of the AMORE scheme in one example.
The new meshing paradigm is designed to be used for geometries
established with any CAD program or by a computerized geome-
try scan. In the AMORE paradigm, typically most of the elements
are regular, traditional elements, and overlapping elements are
only used to establish the mesh near the boundaries. In the paper
we focused on quadrilateral overlapping elements that corre-
spond to the overlapped regions of polygons, like for the triangu-
lar overlapping elements [6,7]. However, a more general
overlapping element scheme that allows elements to overlap
‘‘freely” in any geometric form as visualized in Refs. [4,14] would
be very valuable.

The AMORE paradigm is promising because it enables fast auto-
matic meshing, and the solution of the governing equations is
effective. We see that the use of AMORE with overlapping elements
opens an avenue for much valuable further research. More general
and more effective overlapping elements may be sought [14], and
the possibilities of using the paradigm in various analysis fields
should be investigated.

Appendix A

The triangular overlapping elements that we use with the
quadrilateral elements are formulated in the way discussed for
the quadrilateral overlapping elements. Each element is regarded
as the overlapped region of three polygonal elements, and for each
polygonal element DI we use the concepts of the method of finite
spheres to establish the wI [6,14]. These fields are then assembled
to obtain

u ¼
X3
I¼1

hIwI ðA:1Þ

where the hI are now the shape functions for the traditional 3-node
triangular finite element.

We also have as in Eq. (6):

wIðxÞ ¼
X3
K¼1

/I
KðxÞuKðxÞ ðA:2Þ

where the /I
K are the interpolated Shepard functions over the trian-

gular element. As can be seen in Fig. A.1, we use 6 nodes to interpo-
late the Shepard functions.

We first interpolate the Shepard functions by

~/I
JðxÞ ¼

X6
i¼1

ĥiðxÞ/̂I
Ji ðA:3Þ

where naturally the ĥi represent the shape functions for the 6-node
traditional triangular finite element. The coefficients are listed in
Table A.1.

Finally, the interpolated Shepard functions are given by

/I
J ¼

ffiffiffiffi
r�I

p
ffiffiffiffi
rI

p þ ffiffiffiffi
r�I

p ~/I
J þ

ffiffiffiffi
rI

pffiffiffiffi
rI

p þ ffiffiffiffi
r�I

p dIJ ðA:4Þ

as in Eq. (9).
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