
MILNOR K-THEORY AND

THE BLOCH-GABBER-KATO THEOREM

KENTA SUZUKI

Abstract. An exposition on the proof of Bloch-Gabber-Kato theorem, relat-

ing Milnor K-theory and the module of differentials, mostly following [GS17].
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1. Short review of Milnor K-theory

Milnor K-theory plays a central role in number theory:

Definition 1 (Milnor K-theory [Mil70]). For a field F , define the graded ring

KM
∗ (F ) := Z⊕ F× ⊕ (F×)⊗2 ⊕ · · · /⟨a⊗ (1− a) : a ̸= 0, 1 ∈ F×⟩.

The relations a⊗ (1− a) = 0 are called the Steinberg relations. Let KM
j (F ) be the

j-th graded piece of the ring. The element a1 ⊗ · · · ⊗ aj ∈ KM
∗ (F ) is denoted as

{a1, . . . , aj}.

We will mainly be interested in Milnor K-theory when F has positive character-
istic.

Example 1.1. KM
0 (F ) = Z,KM

1 (F ) = F×, since there are no relations in degrees
0 and 1.

Example 1.2 ([Mil70, Example 1.5]). If F = Fq is a finite field, then KM
• (F ) =

Z⊕ F×, i.e., KM
2 (F ) = 0. Indeed, F× is cyclic of order q − 1, so it has φ(q − 1) ≥

q−1
2 multiplicative generators, where φ is Euler’s totient function. Thus, by the

pigeonhole principal the two subsets of the size q − 2 set F \ {0, 1}

{g : g ∈ F× is a generator} and {1− g : g ∈ F× is a generator}
1
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intersect, and hence g1 = 1 − g2 for some generators g1, g2 ∈ F×. But then
g1 ⊗ g2 = 1 by the Steinberg relation, so KM

2 (F ) = 0.

Milnor K-theory has some functoriality properties:

Proposition-Definition 1 ([Mil70, Lemma 2.1],[GS17, Prop 7.1.4]). Let F be a
field with a discrete valuation v with residue class field k. There exists a unique
homomorphism ∂ = ∂v, called the boundary homomorphism from KnF to Kn−1k
such that

∂v({π, u2, . . . , un}) = {u2, . . . , un}
for every prime element π, i.e., ordvπ = 1 and for all units u2, . . . , un.

Moreover, once a prime element π is fixed, there is a unique homomorphism
sMπ : KM

n (F ) → KM
n (k), called specialization, with the property

sMπ ({πi1u1, . . . , πinun}) = {u1, . . . , un},
for all integers i1, . . . , in and units u1, . . . , un.

Remark 1. In particular, if u1, . . . , un are units, then ∂v({u1, . . . , un}) = 1, since

∂v({π, u2, . . . , un}) = ∂v({πu1, u2, . . . , un}),
where both π and πu1 are prime.

The residue map allows for the following proposition, which assists in many
computations of Milnor K-theory:

Proposition 1.3 ([Mil70, Thm 2.3]). There is a split exact sequence

0 → KM
n (F ) → KM

n F (t)
⊕
∂π−−−→

⊕
KM
n−1F [t]/π → 0,

where the direct sum runs over all monic irreducible polynomials π ∈ F [t].

Example 1.4. If F = Fq(t) is the field of rational functions over the finite field
Fq, then

KM
n (F ) =


Z n = 0

F× n = 1⊕
π∈Fq [t]

(Fq[t]/π)× n = 2

0 n > 2,

where π ∈ Fq[t] runs through the monic irreducible polynomials. Indeed, by Propo-
sition 1.3 there are exact sequences

0 → K2(Fq) = 0 → K2(F ) →
⊕

π∈Fq [t]

K1(Fq[t]/π) =
⊕

π∈Fq [t]

(Fq[t]/π)× → 0

and
0 → K3(Fq) = 0 → K3(F ) →

⊕
π∈Fq [t]

K2(Fq[t]/π) = 0 → 0.

Milnor K-theory is closely related to cycles, and is “motivic” in nature:

Proposition 1.5 ([NS89, Thm 4.9]). For any field F , there is a natural isomor-

phism CHj(K, j)
∼−→ KM

j (F ).

When F has characteristic p, the ring KM
• (F ) is also closely related to differen-

tials on F .
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1.1. The norm map. Let F ′/F be a finite extension. Then [GS17, Section 7.3]
constructs a family of maps NF ′/F : KM

n (F ′) → KM
n (F ) such that:

(1) the map NF ′/F : KM
0 (F ′) → KM

0 (F ) is multiplication by [F ′ : F ];

(2) the map NF ′/F : KM
1 (F ′) → KM

1 (F ) is multiplication by the field norm

NF ′/F (a) = detF (F
′ ma−−→ F ′);

(3) for α ∈ KM
n (F ) and β ∈ KK

m (F ′),

NF ′/F ({αF ′ , β}) = {α,NF ′/F (β)},

where αF is the image of α under the natural homomorphism KM
• (F ) →

KM
• (F ′); and

(4) for a tower of field extensions F ′′/F ′/F ,

NF ′′/F = NF ′/F ◦NF ′′/F .

2. Background on differentials in characteristic p

For any F -vector space V , let pV denote an alternative F -vector space structure
on V , given by a · w := apw for any a ∈ F and w ∈ V .

Consider the module ΩnF := ΩnF/Z of absolute differentials over F . There is a

chain complex

Ω•
F := [Ω0

F
d0−→ Ω1

F
d1−→ Ω2

F
d2−→ · · · ],

and let BnF := im(dn−1) be the n-cocycles, and let ZnF := ker(dn) be the n-
coboundaries. We may define the cohomology Hn(Ω•

F ) := ZnF /B
n
F .

Proposition 2.1 (Cartier, [GS17, Thm 9.4.3]). There is an isomorphism

γ : ΩnF → pHn(Ω•
F ),

defined by γ(da1 ∧ · · · ∧ dan) := ap−1
1 da1 ∧ · · · ∧ ap−1

n dan, where ai ∈ F .

Let
ν(n)F := ker(γ − id : ΩnF → ΩnF /B

n
F ).

Example 2.2. If F = Fp[x]/f(x) is a finite field, where f(x) ∈ Fp[x] is irreducible,
we have

Ω1
F
∼= Fdx/f ′(x)dx ∼= Fp[x]/(f(x), f ′(x)) = 0.

In particular ν(n)F = 0 for n ≥ 1.

Example 2.3. If F = Fq(t) is the field of rational functions on the finite field Fq,
we have Ω1

F = Fdt, hence ΩnF = 0 for n ≥ 2. Thus, ν(n)F = 0 for n ≥ 2. For n = 1,

ν(1)F = {f(t)dt ∈ Fdt : f(t)ptp−1dt ≡ f(t)dt (mod B)}
= {f(t)dt ∈ Fdt : f(t)ptp−1 − f(t) = g′(t), for some g ∈ F}.

We now define

d log : (F×)⊗n → ν(n)F

a1 ⊗ · · · ⊗ an 7→ a−1
1 da1 ∧ · · · ∧ a−1

n dan.

Here d log a priori only maps into ΩnF , but its image lies in ν(n)F since

γ(a−1
1 da1 ∧ · · · ∧ a−1

n dan) = a−p1 ap−1
1 da1 ∧ · · · ∧ a−pn ap−1

n dan

= a−1
1 da1 ∧ · · · ∧ a−1

n dan.



4 KENTA SUZUKI

This gives a ring homomorphism

TensZ(F
×) = Z⊕ F× ⊕ (F×)⊗2 ⊕ · · · → ν(•)F .

In fact, d log factors through Milnor K-theory:

Lemma 2.4 ([GS17, Lem 9.5.1]). The map d log factors through the quotient
(F×)⊗n → KM

n (F )/p. It thus defines a graded ring homomorphism ψF : KM
• (F )/p→

ν(•)F , sending {a1, . . . , an} to a−1
1 da1 ∧ · · · ∧ a−1

n dan for every a1, . . . , an ∈ F×.

Proof. We have pν(n)F ⊂ pΩnF = 0, since pda = d(pa) = 0. Thus it suffices to
check the Steinberg relations. For a ̸= 0, 1 we have

d log(a⊗ (1− a)) = d log(a) ∧ d log(1− a)

=
1

a(1− a)
da ∧ d(1− a)

= − 1

a(1− a)
da ∧ da

= 0. □

2.1. Statement of the Bloch-Gabber-Kato theorem. The following theorem
relates the a priori very distinct objects KM

n and ν(n):

Theorem 2.5 (Bloch-Gabber-Kato theorem [GS17, Thm 9.5.2]). Let F be a field
of characteristic p > 0. The following is an isomorphism:

ψF : KM
• (F )/p→ ν(•)F .

Example 2.6. When F is a finite field, this is clear by Examples 1.2 and 2.2.
More generally, for perfect fields F = F p clearly KM

n (F ) = 0 and ν(n)F = 0 for
any n ≥ 1.

Example 2.7. Let F = Fq(t). Then Example 2.3 gives a description of ν(1)F , and
Theorem 2.5 claims an isomorphism, on the 1-st graded piece,

ψF : F×/(F×)p → {f(t) ∈ F : f(t)ptp−1 − f(t) = g′(t) for some g ∈ F}.

u 7→ u′

u
.

Injectivity is clear, since u′/u = 0 implies u′ = 0, so u ∈ F p = Fq(tp).

When n = 1, Theorem 2.5 is:

Theorem 2.8 (Jacobson and Cartier, [GS17, Thm 9.2.2]). For every field F of
characteristic p > 0, the sequence

1 → F× p−→ F× d log−−−→ ΩF
γ−1−−−→ pΩ1

F /
pB1

F

is exact.

In fact, Jacobson and Cartier’s theorem is a key ingredient in the proof of The-
orem 2.5. We present a proof in Section 4

As a first step to prove Theorem 2.5, we have the following functoriality property:
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Lemma 2.9 ([GS17, Lem 9.5.4]). Given a finite separable extension F ′/F , the
diagram

KM
• (F ′)/p ν(•)F ′

KM
• (F )/p ν(•)F

ψF ′

NF ′/F tr

ψF

commutes. Here, the homomorphism tr : ΩnF ′ → ΩnF is given by the composition

ΩnF ′ ∼= F ′ ⊗F ΩnF
tr⊗1−−−→ F ⊗F ΩnF = ΩnF .

Remark 2. The lemma allows us to reduce Theorem 2.5 to finitely-generated
extensions F/Fp, since any field F can be written as a colimit of finitely-generated
extensions.

3. A digression—the motivic story

Since Theorem 2.5 describesKM
• (F )/p when F has characteristic p, we also men-

tion the story of Milnor K-theory away from the characteristic of p, i.e., KM
• (F )/ℓ

where ℓ ̸= 0 ∈ F .

3.1. The norm residue theorem. Let F be a field and ℓ > 0 be an integer such
that ℓ ∈ F×. The short exact sequence

1 → µℓ → F
× ℓ−→ F

× → 1

where F is the separable closure of F gives rise to the isomorphism F×/ℓ →
H1

ét(F, µℓ). By cup products, we have a homomorphism ∂ : (F×)⊗q/ℓ→ Hq
ét(F, µ

⊗q
ℓ ).

Moreover, since ∂(x ⊗ (1 − x)) = 0 for any x ̸= 0, 1, we obtain a homomorphism

KM
q (F )/ℓ→ Hq

ét(F, µ
⊗q
ℓ ).

Theorem 3.1 (Norm residue theorem, Voevodsky). For any field F and an integer

ℓ ∈ F invertible, ∂ : KM
q (F )/ℓ→ Hq

ét(F, µ
⊗q
ℓ ) defined above is an isomorphism.

In fact, given a smooth scheme X/F , there is an object Z(j)étX ∈ D(Xét) which
interpolates between these two objects, i.e., with the properties:

• Z(j)étX/ℓr ∼= µ⊗r
ℓ when 1/ℓ ∈ OX ; and

• Z(j)étX/pr ∼=WrΩ
j
log[−j] when p = 0 ∈ OX .

4. The proof of Jacobson and Cartier’s theorem

We will follow the proof in [GS17, §9.3], due to Katz.

Definition 2. A connection on a finite dimensional F -vector space V is a homo-
morphism ∇ : V → Ω1

F ⊗F V such that

∇(av) = a∇(v) + da⊗ v

for all a ∈ F and v ∈ V .

Example 4.1. The main tool here will be to study, for a differential form ω ∈ Ω1
F ,

the map ∇ω : F → Ω1
F defined by

∇ω(a) := da+ aω.
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Indeed, for any a, b ∈ F ,

∇ω(ab) = d(ab) + abω

= a(db+ bω) + da · b
= a∇ω(b) + da · b.

Notably, a 1-form ω ∈ Ω1
F is logarithmic (i.e., in the image of d log : F× → Ω1

F ) if
and only if ∇ω(a) = da+ aω = 0 for some a ∈ F×.

A connection∇ gives rise to a F -linear map∇∗ : DerFp(F ) → EndFp(V ) sending
a derivation V to the composition

V
∇−→ Ω1

F ⊗F V
D⊗id−−−→ F ⊗F V ∼= V.

where the F -derivation D : F → F is identified with a homomorphism Ω1
F → F via

the universal property.

Remark 3. Although ∇∗ is F -linear, the element ∇∗D is only F p-linear in general.
For a ∈ F and v ∈ V ,

∇∗D(av) = D ⊗ id(a∇(v) + da⊗ v)

= aD ⊗ id(∇(v)) +D(a)v

= a∇∗D(v) +D(a)v.

Recall that D(da) = D(a) since we abuse notation by calling both the differential
K → K and the homomorphism Ω1

K → K as D. Here if a = bp for some b ∈ F
then D(a) = pbp−1D(b) = 0, showing linearity.

Example 4.2. For the connection ∇ω,

∇ω∗D(a) = D(da+ aω) = D(a) + aD(ω).

Recall that the F -vector space EndFp(V ) has two natural operations:

• the Lie bracket [ϕ, ψ] := ϕ ◦ ψ − ψ ◦ φ; and
• the p-th iterate ϕ◦p.

The subspace Der(F ) is stable under both of these operations. Indeed, for any
derivation D ∈ Der(F ),

D◦p(ab) =

p∑
i=0

(
p

i

)
D◦iaD◦(p−i)b = D◦pab+ aD◦pb.

Thus, it is a natural condition for a connection to require that the map ∇∗ respect
these operations on Der(F ) and End(V ):

Definition 3. The connection ∇ is flat if

∇∗[D1, D2] = [∇∗D1,∇∗D2]

for all D1, D2 ∈ Der(K) and ∇ is a p-connection if ∇∗(D
◦p) = (∇∗D)◦p for all

D ∈ Der(K).

Remark 4. This definition is completely analogous to flat connections in dif-
ferential geometry. A connection of a vector bundle E → M is a R-linear map
∇ : Γ(E) → Γ(T ∗M ⊗E) satisfying the product rule, and it is flat if the curvature

F∇(X,Y )(s) := ∇X∇Y −∇Y∇Xs−∇[X,Y ]s

disappears everywhere.
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We have:

Theorem 4.3 ([GS17, Thm 9.3.3]). The following are equivalent for a differential
form ω ∈ Ω1

F :

(1) ω is logarithmic
(2) ω ∈ ν(1)F
(3) The connection ∇ω is a flat p-connection.

Proof. That (1) implies (2) is clear.
We will check (2) implies (3). Denoting La for multiplication by a, we have

[∇ω∗D1,∇ω∗D2] = [D1D2] + [D1LD2ω]− [D2LD1ω]− [LD1ωLD2ω]

= [D1D2] + LD1D2ω − LD2D1ω

= ∇ω∗[D1D2]− L[D1D2]ω + LD1D2ω − LD2D1ω,

where the second equality is since D ∈ Der(F ) if and only if [D,La] = LDa for all
a ∈ F . Here, I claim that for all derivations D1, D2 ∈ Der(F ) and all ω ∈ Ω1

F ,

(4.1) (D1 ∧D2)(dω) = D1D2ω −D2D1ω − [D1D2]ω.

Given this claim, L[D1D2]ω +LD1D2ω −LD2D1ω = −L(D1∧D2)(dω) = 0 since dω = 0,
so we are done.

Now, to check (4.1) it suffice to look at ω = adb with a, b ∈ F , in which case

(D1 ∧D2)(dω) = D1(a)D2(b)−D2(a)D1(b)

= D1D2(adb)−D2D1(adb)− [D1D2](adb)

= D1D2ω −D2D1ω − [D1D2]ω.

Proving ∇ω is a p-connection is similar.
Finally, we check (3) implies (1). It suffices to prove this for F/F p a finite

extension. We use the following lemma:

Lemma 4.4 ([GS17, Thm 9.3.6]). Let F/E be a finite extension with F p ⊂ E,
and let V be a K-vector space equipped with a flat p-connection ∇. Then setting
V ∇ := {v ∈ V : ∇(v) = 0}, the natural map

F ⊗E V ∇ → V

is an isomorphism.

Applying this theorem to V = F we obtain a nonzero vector v ∈ F such that
∇ω(v) = 0, so that ω = −d log(v). □

5. Surjectivity of the differential symbol

The goal of this section is to prove:

Proposition 5.1 (Surjectivity of ψF [GS17, Thm 9.6.1]). Let F be finitely-generated
over Fp. The group ν(n)F is additively generated by the elements of the form

a−1
1 da1 ∧ · · · ∧ a−1

n dan.

We first prove the following lemma:

Lemma 5.2 ([GS17, Prop 9.6.3]). Let F/F p be a purely inseparable extension of
degree p. Then for any F -linear map g : F → F p, there exists a finite extension
E/F p of degree prime to p such that the induced map g′ : EF → E satisfies: there
exists c ∈ EF× such that g(ci) = 0 for 1 ≤ i ≤ p− 1.
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Proof. The F p-subspaces ker(g) ⊂ F and dF ⊂ Ω1
F/Fp both have codimension 1

(by Proposition 2.1), so there is a F -isomorphism ϕ : F → Ω1
F/Fp taking ker(g)

to dF . Let ω = a(db/b) ∈ Ω1
F/Fp \ dF , with a, b ∈ F×. Now Ω1

F/Fp/dF is a

one-dimensional F p-vector space, so there exists a ρ ∈ (F p)× such that

ap
db

b
∈ ρa

db

b
+ dF.

Let E = F p(u) with up−1 = ρ. Now, in Ω1
FE/E ,

(u−1a)p
db

b
∈ u−1a

db

b
+ d(FE),

i.e., u−1ω ∈ ν(1)F . Thus by Theorem 2.8 there is a y ∈ F× with u−1ω = dy/y.
Now, the following are equivalent:

• g(x) = 0;
• xa ∈ ker(g);
• xdy/y ∈ dF for all x ∈ F

Moreover, the elements yidy for 0 ≤ i ≤ p− 2 span dF . Thus c = y works. □

Now, consider F p ⊂ E ⊂ F and suppose F/E has degree pr, with a p-basis
{b1, . . . , br}, so d log bi forms a K-basis for Ω1

F/E . Let
[
r
n

]
denote the set of strictly

increasing functions from {1, . . . , n} to {1, . . . , r}, and for each s ∈
[
r
n

]
set

ωs := d log bs(1) ∧ · · · ∧ d log bs(n),

which forms a F -basis for Ω1
F/E . Now we may define a filtration on ΩnF/E by setting

ΩnF/E,<s := F{ωs : s ∈
[
r

n

]
}

BnF/E,<s := dΩn−1
F/E,<s.

Considering the lexicographic ordering on
[
r
n

]
, we have s < s′ then ΩnF/E,<s ⊂

ΩnF/E,s′ .

Now, we have a “filtered version” of Proposition 5.1:

Proposition 5.3 ([GS17, Prop 9.6.5]). Let F/E be a finite extension of degree pr,
as above. Fix s ∈

[
r
n

]
and assume a ∈ F satisfies

(γ − 1)(aωs) = (ap − a)ωs ∈ ΩnF/E,<s +BnF/E .

(recall that BnF/E is only a E-vector space.) Then, for some finite extension F ′/F

of degree coprime to p,

aωs ∈ ΩnF ′/E,<s + Im(d log).

Proof. The proof is quite technical. □

Given Proposition 5.3 we can prove Proposition 5.1:

Proof of Proposition 5.1. F/F p is a finite extension. Assume d log is not surjective.
Then since

ΩnF =
∑
s∈[rn]

ΩnF,≤s,
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we may pick a minimal s = s(F ) such that there exists a ω ∈ ν(n)F not in the image
of d log such that ω = ω′+η with ω′ ∈ ΩnF,≤s and η ∈ BnF . Now ΩnF,≤s = ΩnF,<s+Fωs
so ω′ = aωs + ω′′ for some a ∈ F and ω′′ ∈ ΩnF,<s.

Now aωs = ω − η − ω′′, so

(γ − 1)(aωs) = (γ − 1)ω − (γ − 1)η − (γ − 1)ω′′ ∈ ΩnF,<s +BnF ,

since (γ − 1)η, (γ − 1)ω ∈ BnF and (γ − 1)ω′′ ∈ ΩnF,<s.

By Proposition 5.3 there is a finite extension F ′/F of degree coprime to p such
that aωs ∈ ΩnF ′ + Im(d log).

The argument shows that s(F ′) < s(F ). Thus, eventually s(F ) will not exist, and

there exists some extension F̃ /F of degree coprime to p for which ψnF ′ : KM
n (F ′)/p→

ν(n)F ′ is surjective. Now, in the diagram:

KM
n (F )/p ν(n)F

KM
n (F ′)/p ν(n)F ′

KM
n (F )/p ν(n)F

ψF

ψF ′

NF ′/F tr

ψF

The vertical composition ν(n)F → ν(n)F ′
tr−→ ν(n)F is [F ′ : F ], which is an isomor-

phism since ν(n) is p-torsion. Thus, tr is surjective, and since ψF ′ is surjective, the
homomorphism ψF must be surjective as well. □

6. Injectivity of the differential symbol

We hope to prove:

Theorem 6.1 (Injectivity of ψnF [GS17, Thm 9.7.1]). For all finitely generated
extensions F/Fp, the differential symbol ψnF : KM

n (F )/p→ ν(n)F is injective.

The first step is to use Proposition 1.3 to allow for induction on the transcendence
degree:

Lemma 6.2 ([GS17, Prop 9.7.2]). Assume that ψnF and ψn−1
E are injective, for any

finite extension E/F . Then so is ψnF (t).

Proof. There is a commutative diagram:

0 KM
n (F )/p KM

n (F (t))/p
⊕

P∈(A1
F )0

KM
n−1(κ(P ))/p 0

0 ΩnF [t] ΩnF (t)

⊕
P∈(A1

F )0
ΩnF (t)/Ω

n
F [t]P

.

ψn
F

ψn
F (t)

⊕
iP

φf

Here, iP is the composite of ψn−1
κ(P ) with the map jP : Ωn−1

κ(P ) → ΩnF (t)/Ω
n
F [t]P

given

by

jP (x0dx1 ∧ · · · ∧ dxn−1) = x̃0dx̃1 ∧ · · · ∧ dx̃n−1 ∧ π−1
P dπP

where P = (πP ) ⊂ F [t] and the x̃i are arbitrary lifts of xi ∈ κ(P ) to F [t]P .
Thus, it suffices to check the injectivity of iP , which reduces to the injectivity of

jP .
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The module Ω1
F [t]P

is a free F [t]P -module on a basis consisting of dπP and some

other elements dai. Thus, Ω
n
F [t]P

has a basis consisting of n-fold exterior products

of these forms. Hence the relation ω̃∧π−1
P dπP = 0 can hold only for a lift ω̃ ∈ ΩnF [t]P

of ω ∈ Ωnκ(P ) if ω̃ is a linear combination of basis elements involving dπP . But then

the image of ω in Ωn−1
κ(P ) is 0, as desired. □

To prove Theorem 6.1, we proceed by induction on n, the case n = 0 being
obvious. Let d be the transcendence degree of F/Fp. Then there exists a scheme-

theoretic point of codimension 1 (i.e., a divisor) on the affine space Ad+1
Fp

whose

local ring R has residue field isomorphic to F . Let us define:

Definition 4. Let F̃ be a fractional field of R, and M its maximal ideal. Let

KM
n (R)/p be the kernel of the residue map ∂M : Kn(F̃ )/p → KM

n−1(F )/p. The
analogous construction on the differential side is

ν(n)R := ker(ΩnR
γ−1−−−→ ΩnR/B

n
R).

Now the differential symbol ψnF restricts to a homomorphism ψnR : KM
n (R)/p →

ν(n)R.
Denote by KM

n (R,M)/p the kernel of the specialization map sMR : KM
n (R) →

KM
n (F ), which is independent of the choice of the prime element, and by ν(n)R,M

the kernel of the reduction map ρR : ν(n)R → ν(n)F . Then ψ
n
R restricts further to

a map ψnR,M : KM
n (R,M)/p→ ν(n)R,M .

Lemma 6.3. With notations as above, assume that the differential symbol

ψnR,M : Kn(R,M)/p→ ν(n)R,M

is surjective. Then the symbol ψnF is injective.

Proof. We have the commutative diagram with exact rows

0 KM
n (R,M)/p KM

n (R)/p KM
n (F )/p 0

0 ν(n)R,M ν(n)R ν(n)F .

ψn
R,M ψn

R ψn
F

□

Thus to prove Theorem 6.1 it suffices to prove the surjectivity of ψnR,M .

Definition 5. If R is a semi-local Dedekind ring with field of fractions F̃ and
maximal ideals M1, . . . ,Mr, denote its Jacobson radical by I :=M1 ∩ · · · ∩Mr. By
the Chinese remainder theorem R/I ∼= R/M1 × · · · × R/Mr, a direct product of
fields. Therefore, we may define

KM
n (R/I) := KM

n (R/M1)⊕ · · · ⊕KM
n (R/Mr).

Let KM
n (R)/p ⊂ KM

n (F̃ )/p be the kernel of ⊕∂Mi : K
M
n (F̃ )/p→ KM

n (R/I)/p.
The group KM

n (R, I)/p is the kernel of

⊕sMi

R : KM
n (R)/p→

⊕
KM
n (R/Mi)/p = KM

n (R/I)/p.
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As in the case for local rings, ψnF restricts to a homomorphism ψnR : KM
n (R)/p →

ν(n)R, and the following diagram commutes:

KM
n (R)/p KM

n (R/I)/p =
⊕
KM
n (R/Mi)/p

ν(n)R ν(n)R/I =
⊕
ν(n)R/Mi

.

ψn
R

⊕sMi
R

⊕ψn
R/Mi

Thus, it restricts to a homomorphism ψnR,I : Kn(R, I)/p → ν(n)R,I , where ν(n)R,I
is the kernel of the bottom map ν(n)R → ν(n)R/I .

Thus, the statement to be proven is:

Proposition 6.4 ([GS17, Prop 9.7.6]). Let k be a perfect field of characteristic
p > 0 and R a semi-local Dedekind domain which is obtained as a localization of a
finitely-generated k-algebra. Then the differential symbol

ψnR,I : K
M
n (R, I) → ν(n)R,I

is surjective.

The proof follows a similar strategy as the proof of Proposition 5.1, using the
integral version of Theorem 2.8 to prove the injectivity of ψnF :

Corollary 6.5 ([GS17, Lemma 9.7.9]). Let R ⊃ T ⊃ Rp be an extension of semi-
local Dedekind rings which arise as localizations of finitely generated algebras over
a perfect field k of characteristic p > 0. Assume that the arising extension F/F0 of
fraction field is finite. Then the sequence

1 → R×/T× d log−−−→ Ω1
R/T

γR−1−−−→ Ω1
R/T /B

1
R/T

is exact.
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