TRANSLATION OF DELIGNE ÉQUATIONS DIFFÉRENTIELLES À POINTS SINGULIERS RÉGULIERS

KENTA SUZUKI

ABSTRACT. We translate §I.3 and §I.4 of [Del70].

3. Translation in terms of first order partial differential equations

3.1. Let X be a complex analytic variety. If $\mathcal{V} = \underline{V_0}$ is the constant vector bundle on X, it carries a canonical connection $_0\nabla$. Then any connection ∇ on \mathcal{V} is of the form

$$\nabla = _0 \nabla + \mathbf{I}$$

where $\gamma \in \Omega^1_X \otimes End(\mathcal{V})$. In other words, given a section v of \mathcal{V} viewed as a function $X \to V_0$,

$$\nabla v = dv + \Gamma \cdot v$$

Once we choose a basis (e_{α}) of V_0 , Γ represents a matrix $(\omega_{\beta}^{\alpha})$. Then

(3.1)
$$(\nabla v)^{\alpha} = dv^{\alpha} + \sum_{\beta} \omega^{\alpha}_{\beta} v^{\beta}$$

Now let \mathcal{V} be *any* holomorphic vector bundle on X. Given a trivialization $e: \underline{\mathbb{C}}^n \simeq \mathcal{V}$ of \mathcal{V} , by the above we can view a connection as a $n \times n$ matrix ω_e of differential forms on X. If $f: \underline{\mathbb{C}}^n \simeq \mathcal{V}$ is another trivialization, then they differ by a coordinate change $A = e^{-1}f \in \operatorname{GL}_n(\mathcal{O}_X)$, and a computation shows

$$\omega_f = A^{-1}dA + A^{-1}\omega_e A.$$

If in addition we have a system of local coordinates (x^i) on X, they define a basis dx^i of Ω^1_x , and we can write

$$\omega^{\alpha}_{\beta} = \sum_{i} \Gamma^{\alpha}_{\beta i} dx^{i},$$

where $\Gamma^{\alpha}_{\beta i}$ are the <u>coefficients of the connection</u>. Then (3.1) can be re-written as

$$(\nabla_i v)^\alpha = \partial_i v^\alpha + \sum_\beta \Gamma \beta i^\alpha v^\beta.$$

Now a section v is horizontal, i.e., $\nabla v = 0$ if and only if

(3.2)
$$\partial_i v^{\alpha} = -\sum_{\beta} \Gamma^{\alpha}_{\beta i} v^{\beta}$$

3.2. Now using Einstein notation,

$$\begin{aligned} \nabla^2 v &= \nabla ((dv^{\alpha} + \omega_{\beta}^{\alpha} v^{\beta}) e_{\alpha}) \\ &= d(dv^{\alpha} + \omega_{\beta}^{\alpha} v^{\beta}) e_{\alpha} - (dv^{\alpha} + \omega_{\beta}^{\alpha} v^{\beta}) \wedge \omega_{\alpha}^{\gamma} \cdot e_{\gamma} \\ &= (d\omega_{\beta}^{\gamma} - \omega_{\beta}^{\alpha} \wedge \omega_{\alpha}^{\gamma}) v^{\beta} e_{\gamma}. \end{aligned}$$

Thus the Riemann curvature tensor is

(3.3)
$$R^{\alpha}_{\beta} = d\omega^{\alpha}_{\beta} + \sum_{\gamma} \omega^{\alpha}_{\gamma} \wedge \omega^{\gamma}_{\beta},$$

which can equivalently be written as

$$R = d\omega + \omega \wedge \omega.$$

Now (3.3) gives:

$$\begin{split} R^{\alpha}_{\beta,i,j} &= (\partial_i \Gamma^{\alpha}_{\beta j} - \partial_j \Gamma^{\alpha}_{\beta i}) + (\Gamma^{\alpha}_{\gamma,i} \Gamma^{\gamma}_{\beta,j} - \Gamma^{\gamma}_{\gamma,j} \Gamma^{\gamma}_{\beta,i}) \\ R^{\alpha}_{\beta} &= \sum_{i < j} R^{\alpha}_{\beta,i,j} dx^i \wedge dx^j. \end{split}$$

The condition $R^{\alpha}_{\beta,i,j} = 0$ is equivalent to (3.2) being *integrable* in the classical sense.

4. Differential equations of order n

4.1. Solving the differential equation

$$\frac{d^n}{dx^n}y = \sum_{i=1}^n a_i(x)\frac{d^{n-i}}{dx^{n-i}}y$$

is equivalent to solving the n equations

$$\frac{d}{dx}y_i = y_{i+1} (1 \le i < n)$$
$$\frac{d}{dx}y_n = \sum_{i=1}^n a_i(x)y_{n+1-i}.$$

By $\S3$, this is equivalent to a finding the horizontal sections in a rank n vector bundle with connection.

4.2. Let X be a complex analytic variety of dimension 1, and let X_n be the *n*-th infinitesimal neighborhood of the diagonal of $X \times X$, and let p_1 and p_2 be the projections of X_n to X. Let $\pi_{k,\ell}$ denote the injection $X_\ell \hookrightarrow X_k$ for $\ell \leq k$.

Letting \mathcal{I} be the sheaf of ideals defining $\Delta X \subset X \times X$, we have canonical isomorphisms

$$\mathcal{I}/\mathcal{I}^2 \simeq \Omega^1_X$$

 $\mathcal{I}^n/\mathcal{I}^{n+1} \simeq (\Omega^1_X)^{\otimes n}.$

For an invertible sheaf \mathcal{L} on X, let $P^n(\mathcal{L})$ be the vector bundle of jets of order n,

$$\mathcal{P}^n(\mathcal{L}) := p_{1*} p_2^* \mathcal{L}$$

The \mathcal{I} -adic filtration on $p_2^*\mathcal{L}$ defines a filtration on $P^n(\mathcal{L})$ given by

(4.1)
$$\mathbf{gr}P^{n}(\mathcal{L}) = \mathbf{gr}P^{n}(\mathcal{O}) \otimes \mathcal{L}$$
$$\mathbf{gr}^{i}P^{n}(\mathcal{L}) = \Omega^{\otimes i} \otimes \mathcal{L}(0 \leq i \leq n).$$

Recall that we inductively defined a differential operator of degree $\leq n$ to be a \mathbb{C} -linear homomorphism of \mathcal{O}_X -modules $A: \mathcal{M} \to \mathcal{N}$ such that:

- when n = 0: A is \mathcal{O}_X -linar: and
- when n = m + 1: for all local sections f of \mathcal{O} , the commutator [A, f] is of order $\leq m$.

For all local sections s of \mathcal{L} , the pullback p_2^* defines a local section $D^n(s)$ of $P^n(\mathcal{L})$. The \mathbb{C} -linear morphism $D^n \colon \mathcal{L} \to P^n(\mathcal{L})$ is the universal differential operator of degree $\leq n$.

Definition 4.3. (1) A homogeneous linear differential equation of order n on \mathcal{L} is a \mathcal{O}_X -linear section of the inclusion $\Omega^{\otimes n} \otimes \mathcal{L} \hookrightarrow P^n(\mathcal{L})$.

(2) A local section s of \mathcal{L} is a solution of a differential equation E if $E^n(s) = 0$.

4.4. Let $\mathcal{L} = \mathcal{O}_X$ and let x be a local coordinate on X. A choice of x identifies $P^k(\mathcal{O})$ with $\mathcal{O}^{[0,k]}$, and the homomorphism D^k becomes

$$D^k \colon \mathcal{O} \to P^k(\mathcal{O}) \simeq \mathcal{O}^{[0,k]}$$
$$f \mapsto (\partial_x^i f)_{0 \le i \le k}.$$

A choice of x identifies Ω^1 with \mathcal{O} , so a differential equation of order n is a morphism $E \in \text{Hom}(\mathcal{O}^{[0,n]}, \mathcal{O})$, and so has coordinates $(b_i)_{0 \leq i \leq n}$ where $b_n = 1$. The solutions to E are exactly holomorphic functions f such that

$$\sum_{i=0}^{n} b_i(x)\partial_x^i f = 0(b_n = 1).$$

Cauchy's theorem on the existence and uniqueness of solutions to differential equations can be re-phrased as:

Theorem 4.5 (Cauchy). Let X and \mathcal{L} be as in 4.2 and let E be a differential equation of order n on \mathcal{L} . Then

- (1) The subsheaf of \mathcal{L} of solutions to E is a rank n local system \mathcal{L}^E on X; and
- (2) the canonical morphism $D^{n-1}: \mathcal{L}^E \to P^{n-1}(\mathcal{L})$ induces an isomorphism

$$\mathcal{O} \otimes_{\mathbb{C}} \mathcal{L}^E \simeq P^{n-1}(\mathcal{L}).$$

The result (2) and 2.17 shows that E defines a canonical connection on $P^{n-1}(\mathcal{L})$, and horizontal sections are the images under D of the solutions to E.

4.6. For a differential equation E on \mathcal{L} , we thus associated:

- (1) a holomorphic vector bundle $\mathcal{V} = P^{n-1}(\mathcal{L})$ with a (integrable) connection; and
- (2) a surjective homomorphism $\lambda \colon \mathcal{V} \to \mathcal{L}$, i.e., the i = 0 case of (4.1).

Moreover, the solutions to E are images under λ of horizontal sections of \mathcal{V} . This is simply another way of phrasing the equivalence in (4.1).

4.7. Let \mathcal{V} be a vector bundle of rank n with connection ∇ . Let v be a local section of \mathcal{V} , and w a vector field¹ on X which does not die on any point. We will say that v is cyclic if the local sections $(\nabla_w)^i v$ of \mathcal{V} ($0 \leq i \leq n$) form a basis. The condition does not depend on the choice of w, and if f is an invertible holomorphic function, then v is cyclic if and only if fv is cyclic. In fact one can show that $(\nabla_{gw})^i fv$ is in the sub-module of \mathcal{V} generated by $(\nabla_w)^j(v)$ ($0 \leq j \leq i$).

If \mathcal{L} is an invertible module, we will say a section v of $\mathcal{V} \otimes \mathcal{L}$ is cyclic if for all local isomorphisms of \mathcal{L} and \mathcal{O} , the corresponding section of \mathcal{V} is cyclic. This in particular applies to any section v of $Hom(\mathcal{V}, \mathcal{L}) = \mathcal{V}^{\vee} \otimes \mathcal{L}$.

Lemma 4.8. With the notation and hypothesis from 4.6, λ is a cyclic section of $Hom(\mathcal{V}, \mathcal{L})$.

The problem is local on X, so we reduce to the case $\mathcal{L} = \mathcal{O}$ and there exists a local coordinate x. A section (f^i) of $P^{n-1}(\mathcal{O}) \simeq \mathcal{O}^{[0,n-1]}$ is horizontal if and only if it satisfies

$$\partial_x f^i = f^{i+1} (0 \le i \le n-2)$$
$$\partial_x f^{n-1} = -\sum_{i=0}^{n-1} b_i f^i.$$

¹A section of the tangent bundle of X.

This provides us with a connection

$$\nabla = d + \begin{pmatrix} 0 & -1 & & \\ & 0 & -1 & & \\ & & \ddots & & \\ & & 0 & -1 \\ b^0 & b^1 & \cdots & b^{n-2} & b^{n-1} \end{pmatrix} dx.$$

In our coordinate system $\lambda = e^0$, and we calculate

$$\nabla_x^i \lambda = e^i (0 \le i \le n-1),$$

which proves Lemma 4.8.

Proposition 4.9. The construction in 4.6 gives an equivalence of the following categories² where we take the morphsims to be isomorphisms:

- the category of invertible sheaves on X, with a differential equation of order n; and
- the category of a vector bundle V of rank n equipped with a connection and an invertible sheaf L, together with a cyclic homomorphism λ: V → L.

We construct a quasi-inverse to the functor of 4.6. Let \mathcal{V} be a vector bundle with connection and let λ be a homomorphism from \mathcal{V} to an invertible sheaf \mathcal{L} . Let V be the local system of horizontal sections of \mathcal{V} . For any \mathcal{O} -module \mathcal{M} , we have an isomorphism

$$\operatorname{Hom}_{\mathcal{O}}(\mathcal{V},\mathcal{M})\simeq \operatorname{Hom}_{\mathbb{C}}(V,\mathcal{M}).$$

In particular, we define a homomorphism $\gamma^k \colon \mathcal{V} \to P^k(\mathcal{L})$ by setting, for a <u>horizontal section</u> v of \mathcal{V} ,

(4.2)
$$\gamma^k(v) := D^k(\lambda(v)).$$

Lemma. The homomorphism λ is cyclic if and only if γ^{n-1} is an isomorphism.

The question is local on X, so let $\mathcal{L} = \mathcal{O}$ and let x be a local coordinate. Then in the notation of 4.4, we have $\partial_x^i \lambda = \nabla_x^i \lambda$ for $0 \le i \le k$. For k = n - 1, they form a basis of Hom $(\mathcal{V}, \mathcal{O})$ if and only if γ^{n-1} is an isomorphism.

For $k \geq \ell$, the diagram

(4.3)
$$\begin{array}{c} \gamma^{k} & \mathcal{V} \\ P^{k}(\mathcal{L}) & \xrightarrow{\pi_{\ell,k}} & P^{\ell}(\mathcal{L}) \end{array}$$

is commutative; if λ is cyclic, we deduce from the lemma that $\gamma^n(\mathcal{V})$ is a direct summand of codimension 1 in $P^n(\mathcal{L})$, and $\Omega^{\otimes n} \otimes \mathcal{L} \simeq \ker(\pi_{n-1,n})$. Therefore there exists a unique equation of order n on \mathcal{L}

$$E\colon P^n(\mathcal{L})\to \Omega^{\otimes n}\otimes \mathcal{L}$$

such that $E \circ \gamma^n = 0$. By (4.2), if v is a horizontal section of \mathcal{V} , then $ED^n\lambda v = E\gamma^n v = 0$, so that λv is a solution of E. Let us equip $P^{n-1}(\mathcal{L})$ with the connection from 4.6 defined by E. If v is a horizontal section of \mathcal{V} , then $\gamma^{n-1}(v) = D^{n-1}\lambda v$ where λv is a solution to E, and $\gamma^{n-1}v$ is

²actually groupoids

therefore horizontal. We deduce that γ^{n-1} is comptaible with the connections. Now a special case $(k = n - 1, \ell = 0)$ of (4.3) shows that the diagram

$$\begin{array}{ccc} \mathcal{V} & \xrightarrow{\gamma^{n-1}} & P^{n-1}(\mathcal{L}) \\ \downarrow^{\lambda} & & \downarrow^{\pi_{0,n-1}} \\ \mathcal{L} & = & \mathcal{L} \end{array}$$

is commutative. The functor

$$(\mathcal{V}, \mathcal{L}, \lambda) \mapsto (\mathcal{L}, E)$$

is a quasi-inverse to the functor in 4.6.

4.10. Let's summarize the relation between the triple $(\mathcal{V}, \mathcal{L}, \lambda)$ and (\mathcal{L}, E) under the category equivalence in 4.6 and Proposition 4.9. We have a homomorphism $\gamma^k \colon \mathcal{V} \to P^k(\mathcal{L})$, such that:

- for v horizontal, $\gamma^k(v) = D^k \lambda v$.
- we have $\gamma^0 = \lambda$ and $\pi_{\ell,k} \gamma^k = \gamma^\ell$.
- γ^{n-1} is an isomorphism (λ is cyclic).
- $E\gamma^n = 0.$
- λ induces an isomorphism between the local system V of horizontal sections in \mathcal{V} and the local system \mathcal{L}^E of solutions of E.

References

[Del70] Pierre Deligne, Équations différentielles à points singuliers réguliers, Lecture Notes in Mathematics, vol. Vol. 163, Springer-Verlag, Berlin-New York, 1970. MR 417174

M.I.T., 77 MASSACHUSETTS AVENUE, CAMBRIDGE, MA, USA *Email address*: kjsuzuki@mit.edu