TRANSLATION OF DELIGNE ÉQUATIONS DIFFÉRENTIELLES À POINTS SINGULIERS REGULIERS ´

KENTA SUZUKI

ABSTRACT. We translate §I.3 and §I.4 of [\[Del70\]](#page-4-0).

3. Translation in terms of first order partial differential equations

3.1. Let X be a complex analytic variety. If $V = V_0$ is the constant vector bundle on X, it carries a canonical connection $_0\nabla$. Then any connection $\overline{\nabla}$ on V is of the form

$$
\nabla = {}_0 \nabla + \Gamma
$$

where $\gamma \in \Omega^1_X \otimes End(V)$. In other words, given a section v of V viewed as a function $X \to V_0$,

$$
\nabla v = dv + \Gamma \cdot v.
$$

Once we choose a basis (e_{α}) of V_0 , Γ represents a matrix $(\omega_{\beta}^{\alpha})$. Then

(3.1)
$$
(\nabla v)^{\alpha} = dv^{\alpha} + \sum_{\beta} \omega^{\alpha}_{\beta} v^{\beta}.
$$

Now let V be any holomorphic vector bundle on X. Given a trivialization $e: \mathbb{C}^n \simeq \mathcal{V}$ of V, by the above we can view a connection as a $n \times n$ matrix ω_e of differential forms on X. If $f: \mathbb{C}^n \simeq \mathcal{V}$ is another trivialization, then they differ by a coordinate change $A = e^{-1}f \in GL_n(\mathcal{O}_X)$, and a computation shows

$$
\omega_f = A^{-1} dA + A^{-1} \omega_e A.
$$

If in addition we have a system of local coordinates $(xⁱ)$ on X, they define a basis $dxⁱ$ of Ω_x^1 , and we can write

$$
\omega^\alpha_\beta = \sum_i \Gamma^\alpha_{\beta i} dx^i,
$$

where $\Gamma^{\alpha}_{\beta i}$ are the <u>coefficients of the connection</u>. Then [\(3.1\)](#page-0-0) can be re-written as

$$
(\nabla_i v)^\alpha = \partial_i v^\alpha + \sum_\beta \Gamma \beta i^\alpha v^\beta.
$$

.

Now a section v is horizontal, i.e., $\nabla v = 0$ if and only if

(3.2)
$$
\partial_i v^{\alpha} = -\sum_{\beta} \Gamma^{\alpha}_{\beta i} v^{\beta}
$$

3.2. Now using Einstein notation,

$$
\nabla^2 v = \nabla((dv^{\alpha} + \omega^{\alpha}_{\beta}v^{\beta})e_{\alpha})
$$

= $d(dv^{\alpha} + \omega^{\alpha}_{\beta}v^{\beta})e_{\alpha} - (dv^{\alpha} + \omega^{\alpha}_{\beta}v^{\beta}) \wedge \omega^{\gamma}_{\alpha} \cdot e_{\gamma}$
= $(d\omega^{\gamma}_{\beta} - \omega^{\alpha}_{\beta} \wedge \omega^{\gamma}_{\alpha})v^{\beta}e_{\gamma}.$

Thus the Riemann curvature tensor is

(3.3)
$$
R^{\alpha}_{\beta} = d\omega^{\alpha}_{\beta} + \sum_{\gamma} \omega^{\alpha}_{\gamma} \wedge \omega^{\gamma}_{\beta},
$$

which can equivalently be written as

$$
R = d\omega + \omega \wedge \omega.
$$

Now (3.3) gives:

$$
R^{\alpha}_{\beta,i,j} = (\partial_i \Gamma^{\alpha}_{\beta j} - \partial_j \Gamma^{\alpha}_{\beta i}) + (\Gamma^{\alpha}_{\gamma,i} \Gamma^{\gamma}_{\beta,j} - \Gamma^{\gamma}_{\gamma,j} \Gamma^{\gamma}_{\beta,i})
$$

$$
R^{\alpha}_{\beta} = \sum_{i < j} R^{\alpha}_{\beta,i,j} dx^i \wedge dx^j.
$$

The condition $R^{\alpha}_{\beta,i,j} = 0$ is equivalent to [\(3.2\)](#page-0-2) being *integrable* in the classical sense.

4. DIFFERENTIAL EQUATIONS OF ORDER n

4.1. Solving the differential equation

$$
\frac{d^n}{dx^n}y = \sum_{i=1}^n a_i(x) \frac{d^{n-i}}{dx^{n-i}}y
$$

is equivalent to solving the n equations

$$
\frac{d}{dx}y_i = y_{i+1}(1 \le i < n)
$$
\n
$$
\frac{d}{dx}y_n = \sum_{i=1}^n a_i(x)y_{n+1-i}.
$$

By $\S3$, this is equivalent to a finding the horizontal sections in a rank n vector bundle with connection.

4.2. Let X be a complex analytic variety of dimension 1, and let X_n be the *n*-th infinitesimal neighborhood of the diagonal of $X \times X$, and let p_1 and p_2 be the projections of X_n to X. Let $\pi_{k,\ell}$ denote the injection $X_{\ell} \hookrightarrow X_k$ for $\ell \leq k$.

Letting $\mathcal I$ be the sheaf of ideals defining $\Delta X \subset X \times X$, we have canonical isomorphisms

$$
\mathcal{I}/\mathcal{I}^2 \simeq \Omega^1_X
$$

$$
\mathcal{I}^n/\mathcal{I}^{n+1} \simeq (\Omega^1_X)^{\otimes n}.
$$

For an invertible sheaf $\mathcal L$ on X, let $P^n(\mathcal L)$ be the vector bundle of jets of order n,

$$
P^{n}(\mathcal{L}) := p_{1*}p_2^*\mathcal{L}.
$$

The *I*-adic filtration on $p_2^*\mathcal{L}$ defines a filtration on $P^n(\mathcal{L})$ given by

(4.1)
$$
\operatorname{gr} P^{n}(\mathcal{L}) = \operatorname{gr} P^{n}(\mathcal{O}) \otimes \mathcal{L}
$$

$$
\operatorname{gr}^{i} P^{n}(\mathcal{L}) = \Omega^{\otimes i} \otimes \mathcal{L} (0 \leq i \leq n).
$$

Recall that we inductively defined a differential operator of degree $\leq n$ to be a C-linear homomorphism of \mathcal{O}_X -modules $A: \mathcal{M} \to \mathcal{N}$ such that:

- when $n = 0$: A is \mathcal{O}_X -linar: and
- when $n = m + 1$: for all local sections f of O, the commutator $[A, f]$ is of order $\leq m$.

For all local sections s of L, the pullback p_2^* defines a local section $D^n(s)$ of $P^n(\mathcal{L})$. The C-linear morphism $D^n: \mathcal{L} \to P^n(\mathcal{L})$ is the universal differential operator of degree $\leq n$.

Definition 4.3. (1) A homogeneous linear differential equation of order n on \mathcal{L} is a \mathcal{O}_X -linear section of the inclusion $\Omega^{\otimes n} \otimes \mathcal{L} \hookrightarrow P^n(\mathcal{L}).$

(2) A local section s of $\mathcal L$ is a solution of a differential equation E if $E^n(s) = 0$.

4.4. Let $\mathcal{L} = \mathcal{O}_X$ and let x be a local coordinate on X. A choice of x identifies $P^k(\mathcal{O})$ with $\mathcal{O}^{[0,k]}$, and the homomorphism D^k becomes

$$
D^k \colon \mathcal{O} \to P^k(\mathcal{O}) \simeq \mathcal{O}^{[0,k]}
$$

$$
f \mapsto (\partial_x^i f)_{0 \le i \le k}.
$$

A choice of x identifies Ω^1 with \mathcal{O} , so a differential equation of order n is a morphism $E \in$ Hom($\mathcal{O}^{[0,n]},\mathcal{O}$), and so has coordinates $(b_i)_{0\leq i\leq n}$ where $b_n=1$. The solutions to E are exactly holomorphic functions f such that

$$
\sum_{i=0}^{n} b_i(x)\partial_x^i f = 0(b_n = 1).
$$

Cauchy's theorem on the existence and uniqueness of solutions to differential equations can be re-phrased as:

Theorem 4.5 (Cauchy). Let X and L be as in [4.2](#page-1-0) and let E be a differential equation of order n on L. Then

- (1) The subsheaf of $\mathcal L$ of solutions to E is a rank n local system $\mathcal L^E$ on X; and
- (2) the canonical morphism D^{n-1} : $\mathcal{L}^E \to P^{n-1}(\mathcal{L})$ induces an isomorphism

$$
\mathcal{O}\otimes_{\mathbb{C}}\mathcal{L}^E\simeq P^{n-1}(\mathcal{L}).
$$

The result [\(2\)](#page-2-0) and 2.17 shows that E defines a canonical connection on $P^{n-1}(\mathcal{L})$, and horizontal sections are the images under D of the solutions to E .

4.6. For a differential equation E on \mathcal{L} , we thus associated:

- (1) a holomorphic vector bundle $\mathcal{V} = P^{n-1}(\mathcal{L})$ with a (integrable) connection; and
- (2) a surjective homomorphism $\lambda: \mathcal{V} \to \mathcal{L}$, i.e., the $i = 0$ case of [\(4.1\)](#page-1-1).

Moreover, the solutions to E are images under λ of horizontal sections of V. This is simply another way of phrasing the equivalence in (4.1) .

4.7. Let $\mathcal V$ be a vector bundle of rank n with connection ∇ . Let v be a local section of $\mathcal V$, and w a vector field^{[1](#page-2-1)} on X which does not die on any point. We will say that v is cyclic if the local sections $(\nabla_w)^i v$ of V $(0 \le i \le n)$ form a basis. The condition does not depend on the choice of w, and if f is an invertible holomorphic function, then v is cyclic if and only if $f v$ is cyclic. In fact one can show that $(\nabla_{gw})^i f v$ is in the sub-module of V generated by $(\nabla_w)^j(v)$ $(0 \le j \le i)$.

If $\mathcal L$ is an invertible module, we will say a section v of $\mathcal V \otimes \mathcal L$ is cyclic if for all local isomorphisms of L and O, the corresponding section of V is cyclic. This in particular applies to any section v of $Hom(V, \mathcal{L}) = \mathcal{V}^{\vee} \otimes \mathcal{L}.$

Lemma 4.8. With the notation and hypothesis from [4.6,](#page-2-2) λ is a cyclic section of $Hom(V, \mathcal{L})$.

The problem is local on X, so we reduce to the case $\mathcal{L} = \mathcal{O}$ and there exists a local coordinate x. A section (f^i) of $P^{n-1}(\mathcal{O}) \simeq \mathcal{O}^{[0,n-1]}$ is horizontal if and only if it satisfies

$$
\partial_x f^i = f^{i+1} (0 \le i \le n-2)
$$

$$
\partial_x f^{n-1} = -\sum_{i=0}^{n-1} b_i f^i.
$$

¹A section of the tangent bundle of X .

This provides us with a connection

$$
\nabla = d + \begin{pmatrix} 0 & -1 & & & \\ & 0 & -1 & & \\ & & \ddots & & \\ & & & 0 & -1 \\ b^0 & b^1 & \cdots & b^{n-2} & b^{n-1} \end{pmatrix} dx.
$$

In our coordinate system $\lambda = e^0$, and we calculate

$$
\nabla_x^i \lambda = e^i (0 \le i \le n - 1),
$$

which proves Lemma [4.8.](#page-2-3)

Proposition 4.9. The construction in [4.6](#page-2-2) gives an equivalence of the following categories^{[2](#page-3-0)} where we take the morphsims to be isomorphisms:

- the category of invertible sheaves on X, with a differential equation of order n; and
- the category of a vector bundle $\mathcal V$ of rank n equipped with a connection and an invertible sheaf \mathcal{L} , together with a cyclic homomorphism $\lambda: \mathcal{V} \to \mathcal{L}$.

We construct a quasi-inverse to the functor of [4.6.](#page-2-2) Let $\mathcal V$ be a vector bundle with connection and let λ be a homomorphism from $\mathcal V$ to an invertible sheaf $\mathcal L$. Let V be the local system of horizontal sections of V . For any \mathcal{O} -module \mathcal{M} , we have an isomorphism

$$
\operatorname{Hom}_{\mathcal{O}}(\mathcal{V},\mathcal{M}) \simeq \operatorname{Hom}_{\mathbb{C}}(V,\mathcal{M}).
$$

In particular, we define a homomorphism $\gamma^k \colon \mathcal{V} \to P^k(\mathcal{L})$ by setting, for a <u>horizontal section</u> v of $\mathcal{V},$

(4.2)
$$
\gamma^k(v) := D^k(\lambda(v)).
$$

Lemma. The homomorphism λ is cyclic if and only if γ^{n-1} is an isomorphism.

The question is local on X, so let $\mathcal{L} = \mathcal{O}$ and let x be a local coordinate. Then in the notation of [4.4,](#page-2-4) we have $\partial_x^i \lambda = \nabla_x^i \lambda$ for $0 \leq i \leq k$. For $k = n - 1$, they form a basis of Hom $(\mathcal{V}, \mathcal{O})$ if and only if γ^{n-1} is an isomorphism.

For $k \geq \ell$, the diagram

is commutative; if λ is cyclic, we deduce from the lemma that $\gamma^{n}(\mathcal{V})$ is a direct summand of codimension 1 in $P^n(\mathcal{L})$, and $\Omega^{\otimes n} \otimes \mathcal{L} \simeq \ker(\pi_{n-1,n})$. Therefore there exists a unique equation of order n on ${\mathcal L}$

$$
E\colon P^n(\mathcal{L})\to \Omega^{\otimes n}\otimes \mathcal{L}
$$

such that $E \circ \gamma^n = 0$. By [\(4.2\)](#page-3-1), if v is a horizontal section of V, then $ED^n\lambda v = E\gamma^n v = 0$, so that λv is a solution of E. Let us equip $P^{n-1}(\mathcal{L})$ with the connection from [4.6](#page-2-2) defined by E. If v is a horizontal section of V, then $\gamma^{n-1}(v) = D^{n-1}\lambda v$ where λv is a solution to E, and $\gamma^{n-1}v$ is

² actually groupoids

therefore horizontal. We deduce that γ^{n-1} is comptaible with the connections. Now a special case $(k = n - 1, \ell = 0)$ of (4.3) shows that the diagram

$$
\begin{array}{ccc}\n\mathcal{V} & \xrightarrow{\gamma^{n-1}} & P^{n-1}(\mathcal{L}) \\
\downarrow^{\lambda} & & \downarrow^{\pi_{0,n-1}} \\
\mathcal{L} & \xrightarrow{\hspace{2cm}} & \mathcal{L}\n\end{array}
$$

is commutative. The functor

$$
(\mathcal{V}, \mathcal{L}, \lambda) \mapsto (\mathcal{L}, E)
$$

is a quasi-inverse to the functor in [4.6.](#page-2-2)

4.10. Let's summarize the relation between the triple $(V, \mathcal{L}, \lambda)$ and (\mathcal{L}, E) under the category equivalence in [4.6](#page-2-2) and Proposition [4.9.](#page-3-3) We have a homomorphism $\gamma^k: \mathcal{V} \to P^k(\mathcal{L})$, such that:

- for v horizontal, $\gamma^k(v) = D^k \lambda v$.
- we have $\gamma^0 = \lambda$ and $\pi_{\ell,k} \gamma^k = \gamma^{\ell}$.
- γ^{n-1} is an isomorphism (λ is cyclic).
- $E\gamma^n=0$.
- λ induces an isomorphism between the local system V of horizontal sections in V and the local system \mathcal{L}^E of solutions of E.

REFERENCES

[Del70] Pierre Deligne, Équations différentielles à points singuliers réguliers, Lecture Notes in Mathematics, vol. Vol. 163, Springer-Verlag, Berlin-New York, 1970. MR 417174

M.I.T., 77 Massachusetts Avenue, Cambridge, MA, USA Email address: kjsuzuki@mit.edu