Invariant positive forms on generalized (q-)Weyl algebras.

Daniil Klyuev

Plan:

- ullet Generalized Weyl and q-Weyl algebras. Formulation of a problem.
- Quantizations and short star-products (Some slides provided by Pavel Etingof from his talk.)
- Ositivity conditions.

Generalized Weyl algebra

Definition

Let P be a polynomial of degree n. A generalized Weyl algebra is an algebra \mathcal{A} with generators u, v, z and relations [z, u] = -u, [z, v] = v, $vu = P(z - \frac{1}{2})$, $uv = P(z + \frac{1}{2})$.

Generalized Weyl algebra

Definition

Let P be a polynomial of degree n. A generalized Weyl algebra is an algebra \mathcal{A} with generators u, v, z and relations [z, u] = -u, [z, v] = v, $vu = P(z - \frac{1}{2})$, $uv = P(z + \frac{1}{2})$.

• If n=1, P(x)=x, \mathcal{A} is generated by u,v with relation [u,v]=1 and $z=uv-\frac{1}{2}=vu+\frac{1}{2}$.

Generalized Weyl algebra

Definition

Let P be a polynomial of degree n. A generalized Weyl algebra is an algebra \mathcal{A} with generators u, v, z and relations [z, u] = -u, [z, v] = v, $vu = P(z - \frac{1}{2})$, $uv = P(z + \frac{1}{2})$.

- If n = 1, P(x) = x, \mathcal{A} is generated by u, v with relation [u, v] = 1 and $z = uv \frac{1}{2} = vu + \frac{1}{2}$.
- ② If n = 2, $P(x) = x^2 + C$, this is central reduction of $U(\mathfrak{sl}_2)$ with e = v, f = -u, h = 2z. The Casimir element is $ef + fe + \frac{h^2}{2} = \frac{h^2}{2} + h + 2fe$.

Generalized q-Weyl algebra

Definition

Let P be a Laurent polynomial. A generalized q-Weyl algebra is an algebra $\mathcal A$ with generators u,v,Z and relations $ZuZ^{-1}=q^2u$, $ZvZ^{-1}=q^{-2}v$, $uv=P(q^{-1}Z)$, vu=P(qZ).

Generalized q-Weyl algebra

Definition

Let P be a Laurent polynomial. A generalized q-Weyl algebra is an algebra $\mathcal A$ with generators u,v,Z and relations $ZuZ^{-1}=q^2u$, $ZvZ^{-1}=q^{-2}v$, $uv=P(q^{-1}Z)$, vu=P(qZ).

• If P(x) = 1, \mathcal{A} is generated by $u^{\pm 1}$, $Z^{\pm 1}$ with relation $Zu = q^2uZ$, a q-Weyl algebra.

Generalized q-Weyl algebra

Definition

Let P be a Laurent polynomial. A generalized q-Weyl algebra is an algebra $\mathcal A$ with generators u,v,Z and relations $ZuZ^{-1}=q^2u$, $ZvZ^{-1}=q^{-2}v$, $uv=P(q^{-1}Z)$, vu=P(qZ).

- If P(x) = 1, \mathcal{A} is generated by $u^{\pm 1}$, $Z^{\pm 1}$ with relation $Zu = q^2uZ$, a q-Weyl algebra.
- If $P(x) = \frac{x+x^{-1}}{(q-q^{-1})^2}$ this is central reduction of $U_q(\mathfrak{sl}_2)$: u=E, v=F, Z=K, the Casimir element is $\Lambda=(q-q^{-1})^2FE+qK+q^{-1}K^{-1}$.

Positive traces

Let A be a \mathbb{C} -algebra with an antilinear involution ρ .

Definition

A linear map $T: A \to \mathbb{C}$ is a trace if T(ab) = T(ba). The trace is positive if $T(a\rho(a)) > 0$ for nonzero $a \in A$.

Positive traces

Let A be a \mathbb{C} -algebra with an antilinear involution ρ .

Definition

A linear map $T: A \to \mathbb{C}$ is a trace if T(ab) = T(ba). The trace is positive if $T(a\rho(a)) > 0$ for nonzero $a \in A$.

• When T is positive $(a, b) = T(a\rho(b))$ is positive definite and

$$(ab,c) = T(ab\rho(c)) = T(b\rho(c)a) = (b,c\rho(a)).$$

Positive traces

Let A be a \mathbb{C} -algebra with an antilinear involution ρ .

Definition

A linear map $T: A \to \mathbb{C}$ is a trace if T(ab) = T(ba). The trace is positive if $T(a\rho(a)) > 0$ for nonzero $a \in A$.

• When T is positive $(a,b) = T(a\rho(b))$ is positive definite and

$$(ab,c) = T(ab\rho(c)) = T(b\rho(c)a) = (b,c\rho(a)).$$

• For central reduction of $U(\mathfrak{g})$ this corresponds to spherical unitary representations of $G \colon \mathcal{A}$ is a complexification of the corresponding (\mathfrak{g}, K) -module.

Involution ρ for generalized Weyl algebras

• Recall that \mathcal{A} is generated by u,v,z with [z,u]=-u, $[z,v]=v,\ vu=P(z-\frac{1}{2}),\ uv=P(z+\frac{1}{2}).$ We define $\rho(u)=v,\quad \rho(v)=u,\quad \rho(z)=-z.$

Involution ρ for generalized Weyl algebras

• Recall that \mathcal{A} is generated by u, v, z with [z, u] = -u, [z, v] = v, $vu = P(z - \frac{1}{2})$, $uv = P(z + \frac{1}{2})$. We define $\rho(u) = v$, $\rho(v) = u$, $\rho(z) = -z$.

• ρ is well-defined when $P(x) = \overline{P}(-x)$, hence the roots are symmetric wrt $i\mathbb{R}$.

Involution ρ for generalized Weyl algebras

• Recall that \mathcal{A} is generated by u, v, z with [z, u] = -u, [z, v] = v, $vu = P(z - \frac{1}{2})$, $uv = P(z + \frac{1}{2})$. We define

$$\rho(u) = v, \quad \rho(v) = u, \quad \rho(z) = -z.$$

- ρ is well-defined when $P(x) = \overline{P}(-x)$, hence the roots are symmetric wrt $i\mathbb{R}$.
- The problem: classify traces T on A such that $T(a\rho(a)) > 0$ for all nonzero $a \in A$.

Short star-products

Definition

A ($\mathbb{Z}/2$ -equivariant) star-product on A is an associative multiplication $*:A\otimes A\to A$ such that for $a\in A_n$ and $b\in A_m$,

$$a*b=\sum_{k=0}^{\lfloor\frac{n+m}{2}\rfloor}C_k(a,b),$$

where $C_k: A_n \otimes A_m \to A_{n+m-2k}$ are bilinear maps such that $C_0(a,b) = ab$

Short star-products

Definition

A ($\mathbb{Z}/2$ -equivariant) star-product on A is an associative multiplication $*: A \otimes A \to A$ such that for $a \in A_n$ and $b \in A_m$,

$$a*b=\sum_{k=0}^{\lfloor\frac{n+m}{2}\rfloor}C_k(a,b),$$

where $C_k: A_n \otimes A_m \to A_{n+m-2k}$ are bilinear maps such that $C_0(a,b) = ab$

Definition (Beem, Peelaers, Rastelli, 2016)

A star-product * on A is short if for any $m, n \in \mathbb{Z}_{\geq 0}$ and any $a \in A_n$, $b \in A_m$ one has

$$C_k(a,b)=0, k>\min(n,m).$$

In other words, a * b has no terms in A_d for d < |n - m|.

Filtered deformations

• Let A be a commutative graded algebra. Fix a filtered associative algebra $\mathcal{A} = \bigcup_{d \geq 0} F_d \mathcal{A}$ such that its associated graded algebra is identified with the graded algebra \mathcal{A} ; namely,

$$\operatorname{gr} \mathcal{A} = \bigoplus_{d \geq 0} F_d \mathcal{A} / F_{d-1} \mathcal{A}$$

and $F_d \mathcal{A}/F_{d-1} \mathcal{A} \cong A_d$ for $d \geq 0$ (compatibly with multiplication) with $F_{-1} \mathcal{A} := 0$.

Filtered deformations

• Let A be a commutative graded algebra. Fix a filtered associative algebra $\mathcal{A} = \bigcup_{d \geq 0} F_d \mathcal{A}$ such that its associated graded algebra is identified with the graded algebra \mathcal{A} ; namely,

$$\operatorname{gr} \mathcal{A} = \bigoplus_{d \geq 0} F_d \mathcal{A} / F_{d-1} \mathcal{A}$$

and $F_d \mathcal{A}/F_{d-1} \mathcal{A} \cong A_d$ for $d \geq 0$ (compatibly with multiplication) with $F_{-1} \mathcal{A} := 0$.

• Such A is called filtered deformation (quantization) of A.

Filtered deformations

• Let A be a commutative graded algebra. Fix a filtered associative algebra $\mathcal{A} = \bigcup_{d \geq 0} F_d \mathcal{A}$ such that its associated graded algebra is identified with the graded algebra \mathcal{A} ; namely,

$$\operatorname{gr} \mathcal{A} = \bigoplus_{d \geq 0} F_d \mathcal{A} / F_{d-1} \mathcal{A}$$

and $F_d \mathcal{A}/F_{d-1} \mathcal{A} \cong A_d$ for $d \geq 0$ (compatibly with multiplication) with $F_{-1} \mathcal{A} := 0$.

- Such A is called filtered deformation (quantization) of A.
- For example, when \mathcal{A} is a generalized Weyl algebra, $\operatorname{gr} \mathcal{A}$ is isomorphic to $A = \mathbb{C}[u,v,z]/(uv-z^n)$, Kleinian singularity of type A. Each deformation of A is isomorphic to a GWA with parameter P of degree n.

Bijection between star-products and quantization maps

Given a quantization map $\phi:A\to \mathcal{A}$, we can define the star-product on A by

$$a*b:=\phi^{-1}(\phi(a)\phi(b)).$$

Bijection between star-products and quantization maps

Given a quantization map $\phi:A\to \mathcal{A}$, we can define the star-product on A by

$$a*b:=\phi^{-1}(\phi(a)\phi(b)).$$

Conversely, given a star-product on A, we can set $\mathcal{A} := (A, *)$ with the filtration induced by the grading, and $\phi := \mathrm{Id}$.

Bijection between star-products and quantization maps

Given a quantization map $\phi:A\to\mathcal{A}$, we can define the star-product on A by

$$a*b:=\phi^{-1}(\phi(a)\phi(b)).$$

Conversely, given a star-product on A, we can set $\mathcal{A} := (A, *)$ with the filtration induced by the grading, and $\phi := \mathrm{Id}$.

Lemma

This defines a pair of mutually inverse bijections between star-products on A and ($\mathbb{Z}/2$ -equivariant) quantizations of A equipped with a quantization map.

Positivity condition.

• A short star-product is positive if $C_k(a, \rho(a)) > 0$ for all nonzero a of degree k.

Positivity condition.

- A short star-product is positive if $C_k(a, \rho(a)) > 0$ for all nonzero a of degree k.
- It follows from the results in Etingof-Stryker that there is a bijection between positive short star-products and pairs (A, T), where A is a filtered deformation of A and T is a positive trace.

Positivity condition.

- A short star-product is positive if $C_k(a, \rho(a)) > 0$ for all nonzero a of degree k.
- It follows from the results in Etingof-Stryker that there is a bijection between positive short star-products and pairs (A, T), where A is a filtered deformation of A and T is a positive trace.
- This is a physical motivation for considering positive traces. Beem, Peelaers and Rastelli tried to compute positive short star-products on Kleinian singularities of type A.

The answer

• Let α be a root of P(x). We say that α is good if $|\operatorname{Re} \alpha| < \frac{1}{2}$.

The answer

- Let α be a root of P(x). We say that α is good if $|\operatorname{Re} \alpha| < \frac{1}{2}$.
- Assume for simplicity that there are no roots of P with $\operatorname{Re} \alpha = \pm \frac{1}{2}$. Then

Proposition

Let k be the number of good roots. Then the dimension of the cone of positive traces modulo scaling is k-4 if n is divisible by 4 and k-2 otherwise.

The answer

- Let α be a root of P(x). We say that α is good if $|\operatorname{Re} \alpha| < \frac{1}{2}$.
- Assume for simplicity that there are no roots of P with $\operatorname{Re} \alpha = \pm \frac{1}{2}$. Then

Proposition

Let k be the number of good roots. Then the dimension of the cone of positive traces modulo scaling is k-4 if n is divisible by 4 and k-2 otherwise.

• For example, for n=2 a positive trace is unique and exists when $P(x)=x^2+C$ satisfies $C>-\frac{1}{4}$. If $C\geq 0$ we get spherical principal series representations, if $-\frac{1}{2}< C< 0$ we get complementary series representations.

Case of q-Weyl algebras

• Suppose that \mathcal{A} is generalized q-Weyl algebra. Then $\rho(u)=v$, $\rho(v)=u$, $\rho(Z)=Z^{-1}$ and P(x) is real on unit circle.

Case of q-Weyl algebras

- Suppose that \mathcal{A} is generalized q-Weyl algebra. Then $\rho(u)=v,\ \rho(v)=u,\ \rho(Z)=Z^{-1}$ and P(x) is real on unit circle.
- There is a similar notion of good roots $(q < |\alpha| < q^{-1})$, but the answer is always k 1.

• Let M be an $\mathcal{A} - \overline{\mathcal{A}}$ -bimodule. For any P we can define ρ in the same way: $\rho(u) = v$, $\rho(v) = u$, $\rho(z) = -z$.

- Let M be an $\mathcal{A} \overline{\mathcal{A}}$ -bimodule. For any P we can define ρ in the same way: $\rho(u) = v$, $\rho(v) = u$, $\rho(z) = -z$.
- Such M exists when for each root α_i of P have $2 \operatorname{Re} \alpha_i \in \mathbb{Z}$ or $\alpha_i + \overline{\alpha_j} \in \mathbb{Z}$.

- Let M be an $\mathcal{A} \overline{\mathcal{A}}$ -bimodule. For any P we can define ρ in the same way: $\rho(u) = v$, $\rho(v) = u$, $\rho(z) = -z$.
- Such M exists when for each root α_i of P have $2 \operatorname{Re} \alpha_i \in \mathbb{Z}$ or $\alpha_i + \overline{\alpha_j} \in \mathbb{Z}$.
- Let us rewrite the definition of good root: instead of $|{\rm Re}\,\alpha_i|<\frac{1}{2}$ write $-1<\alpha_i-\alpha_j<1$. Then it works in this case.

- Let M be an $\mathcal{A} \overline{\mathcal{A}}$ -bimodule. For any P we can define ρ in the same way: $\rho(u) = v$, $\rho(v) = u$, $\rho(z) = -z$.
- Such M exists when for each root α_i of P have $2 \operatorname{Re} \alpha_i \in \mathbb{Z}$ or $\alpha_i + \overline{\alpha_j} \in \mathbb{Z}$.
- Let us rewrite the definition of good root: instead of $|\operatorname{Re} \alpha_i| < \frac{1}{2}$ write $-1 < \alpha_i \alpha_j < 1$. Then it works in this case.
- The answer is the same: number of good roots minus a constant from 1 to 4.

- Let M be an $\mathcal{A} \overline{\mathcal{A}}$ -bimodule. For any P we can define ρ in the same way: $\rho(u) = v$, $\rho(v) = u$, $\rho(z) = -z$.
- Such M exists when for each root α_i of P have $2 \operatorname{Re} \alpha_i \in \mathbb{Z}$ or $\alpha_i + \overline{\alpha_j} \in \mathbb{Z}$.
- Let us rewrite the definition of good root: instead of $|{\rm Re}\,\alpha_i|<\frac{1}{2}$ write $-1<\alpha_i-\alpha_j<1$. Then it works in this case.
- The answer is the same: number of good roots minus a constant from 1 to 4.
- ullet The story when ${\cal A}$ is a q-deformation is similar.

Bibliography

- C. Beem, W. Peelaers, L. Rastelli, Deformation quantization and superconformal symmetry in three dimensions, arXiv:1601.05378.
- P. Etingof, D. Stryker, Short Star-Products for Filtered Quantizations, I, SIGMA 16 (2020), 014.
- D. Klyuev, On Unitarizable Harish-Chandra Bimodules for Deformations of Type-A Kleinian Singularities, IMRN 2023, 3
- P. Etingof, D. Klyuev, E. Rains, D. Stryker, Twisted Traces and Positive Forms on Quantized Kleinian Singularities of Type A, SIGMA 17 (2021), 029
- D. Klyuev. Twisted traces and positive forms on generalized q-Weyl algebras. SIGMA 18 (2022), 009
- \blacksquare D. Klyuev. Unitarizability of Harish-Chandra bimodules over generalized Weyl and q-Weyl algebras, in preparation

Thank you!

Thank you!

Computation of traces

We will restrict our attention to the case of even n for convenience. In this case s = id. An easy computation shows that the space of traces on \mathcal{A} is isomorphic to V^* , where

$$V = \mathbb{C}[x]/\{P(x+1)S(x+1) - P(x-1)S(x-1) \mid S \in \mathbb{C}[x]\}$$

Computation of traces

We will restrict our attention to the case of even n for convenience. In this case $s=\operatorname{id}$. An easy computation shows that the space of traces on $\mathcal A$ is isomorphic to V^* , where

$$V = \mathbb{C}[x]/\{P(x+1)S(x+1) - P(x-1)S(x-1) \mid S \in \mathbb{C}[x]\}$$

Suppose that $\phi \in V^*$. We have $\mathcal{A} = \bigoplus_{m \in \mathbb{Z}} \mathcal{A}_m$ — an eigenspace of ad z decomposition. The corresponding trace T acts as follows: if $a \in \mathcal{A}_m$, $m \neq 0$, then T(a) = 0. If $a \in \mathcal{A}_0 = \mathbb{C}[h]$ then a = R(h) and $T(a) = \phi(R)$.

Analytic formula.

Suppose that all roots of P(x) belong to the open strip $|\operatorname{Re} x| < 1$. Then there is the following formula:

$$T(R) = \int_{i\mathbb{R}} R(x)w(x)dx,$$

where
$$w(x) = \frac{Q(e^{i\pi x})}{\mathcal{P}(e^{i\pi x})}$$
, $\mathcal{P}(x) = \prod_{P(\alpha)=0} (x + e^{i\pi \alpha})$.

Analytic formula.

Suppose that all roots of P(x) belong to the open strip $|\operatorname{Re} x| < 1$. Then there is the following formula:

$$T(R) = \int_{i\mathbb{R}} R(x)w(x)dx,$$

where $w(x) = \frac{Q(e^{i\pi x})}{\mathcal{P}(e^{i\pi x})}$, $\mathcal{P}(x) = \prod_{P(\alpha)=0} (x + e^{i\pi \alpha})$. Recall that a trace T is positive if and only if

$$T(S(x)\overline{S}(-x)) > 0$$

and

$$T(\pm S(1-x)\overline{S}(x-1)P(x-1))<0$$

Analytic formula.

Suppose that all roots of P(x) belong to the open strip $|\operatorname{Re} x| < 1$. Then there is the following formula:

$$T(R) = \int_{i\mathbb{R}} R(x)w(x)dx,$$

where $w(x) = \frac{Q(e^{i\pi x})}{\mathcal{P}(e^{i\pi x})}$, $\mathcal{P}(x) = \prod_{P(\alpha)=0} (x + e^{i\pi \alpha})$. Recall that a trace T is positive if and only if

$$T(S(x)\overline{S}(-x)) > 0$$

and

$$T(\pm S(1-x)\overline{S}(x-1)P(x-1))<0$$

Condition $T(S(x)\overline{S}(-x)) > 0$ translates to $w(x) \geq 0$ on $i\mathbb{R}$, similarly for the second condition we get $\pm w(x+1)P(x) \leq 0$ on $i\mathbb{R}$.

Analytic formula, ctd.

It follows shortly that the cone of positive forms is isomorphic to the cone of nonnegative polynomials of degree $d \le d_0$ for certain d_0 .

Analytic formula, ctd.

It follows shortly that the cone of positive forms is isomorphic to the cone of nonnegative polynomials of degree $d \le d_0$ for certain d_0 .

In the case when not all roots of P(x) belong to $|\operatorname{Re} x| < 1$ analytic formulas for traces become harder: instead of $i\mathbb{R}$ we should take slightly different contour.

Analytic formula, ctd.

It follows shortly that the cone of positive forms is isomorphic to the cone of nonnegative polynomials of degree $d \le d_0$ for certain d_0 .

In the case when not all roots of P(x) belong to $|\operatorname{Re} x| < 1$ analytic formulas for traces become harder: instead of $i\mathbb{R}$ we should take slightly different contour.

It can be proved that roots x with $|\operatorname{Re} x| > 1$ do not change the cone of positive forms, and each pair of roots $x \pm 1$ with $\operatorname{Re} x = 0$ multiplies the cone by $\mathbb{R}_{\geq 0}$: there exists trace $R \mapsto R(x)$.