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Plan:

1 Generalized Weyl and q-Weyl algebras. Formulation of a
problem.

2 Quantizations and short star-products (Some slides provided
by Pavel Etingof from his talk.)

3 Positivity conditions.
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Generalized Weyl algebra

Definition

Let P be a polynomial of degree n. A generalized Weyl algebra is
an algebra A with generators u, v , z and relations [z , u] = −u,
[z , v ] = v , vu = P(z − 1

2), uv = P(z + 1
2).

1 If n = 1, P(x) = x , A is generated by u, v with relation
[u, v ] = 1 and z = uv − 1

2 = vu + 1
2 .

2 If n = 2, P(x) = x2 + C , this is central reduction of U(sl2)
with e = v , f = −u, h = 2z . The Casimir element is
ef + fe + h2

2 = h2

2 + h + 2fe.

Daniil Klyuev Unitarizability of GWAs.



Generalized Weyl algebra

Definition

Let P be a polynomial of degree n. A generalized Weyl algebra is
an algebra A with generators u, v , z and relations [z , u] = −u,
[z , v ] = v , vu = P(z − 1

2), uv = P(z + 1
2).

1 If n = 1, P(x) = x , A is generated by u, v with relation
[u, v ] = 1 and z = uv − 1

2 = vu + 1
2 .

2 If n = 2, P(x) = x2 + C , this is central reduction of U(sl2)
with e = v , f = −u, h = 2z . The Casimir element is
ef + fe + h2

2 = h2

2 + h + 2fe.

Daniil Klyuev Unitarizability of GWAs.



Generalized Weyl algebra

Definition

Let P be a polynomial of degree n. A generalized Weyl algebra is
an algebra A with generators u, v , z and relations [z , u] = −u,
[z , v ] = v , vu = P(z − 1

2), uv = P(z + 1
2).

1 If n = 1, P(x) = x , A is generated by u, v with relation
[u, v ] = 1 and z = uv − 1

2 = vu + 1
2 .

2 If n = 2, P(x) = x2 + C , this is central reduction of U(sl2)
with e = v , f = −u, h = 2z . The Casimir element is
ef + fe + h2

2 = h2

2 + h + 2fe.

Daniil Klyuev Unitarizability of GWAs.



Generalized q-Weyl algebra

Definition

Let P be a Laurent polynomial. A generalized q-Weyl algebra is an
algebra A with generators u, v ,Z and relations ZuZ−1 = q2u,
ZvZ−1 = q−2v , uv = P(q−1Z ), vu = P(qZ ).

1 If P(x) = 1, A is generated by u±1,Z±1 with relation
Zu = q2uZ , a q-Weyl algebra.

2 If P(x) = x+x−1

(q−q−1)2
this is central reduction of Uq(sl2): u = E ,

v = F , Z = K , the Casimir element is
Λ = (q − q−1)2FE + qK + q−1K−1.
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Positive traces

Let A be a C-algebra with an antilinear involution ρ.

Definition

A linear map T : A → C is a trace if T (ab) = T (ba). The trace is
positive if T (aρ(a)) > 0 for nonzero a ∈ A.

When T is positive (a, b) = T (aρ(b)) is positive definite and

(ab, c) = T (abρ(c)) = T (bρ(c)a) = (b, cρ(a)).

For central reduction of U(g) this corresponds to spherical
unitary representations of G : A is a complexification of the
corresponding (g,K )-module.
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Involution ρ for generalized Weyl algebras

Recall that A is generated by u, v , z with [z , u] = −u,
[z , v ] = v , vu = P(z − 1

2), uv = P(z + 1
2). We define

ρ(u) = v , ρ(v) = u, ρ(z) = −z .

ρ is well-defined when P(x) = P(−x), hence the roots are
symmetric wrt iR.
The problem: classify traces T on A such that T (aρ(a)) > 0
for all nonzero a ∈ A.
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Short star-products

Definition

A (Z/2-equivariant) star-product on A is an associative
multiplication ∗ : A⊗ A → A such that for a ∈ An and b ∈ Am,

a ∗ b =

⌊ n+m
2

⌋∑
k=0

Ck(a, b),

where Ck : An ⊗ Am → An+m−2k are bilinear maps such that
C0(a, b) = ab

Definition (Beem, Peelaers, Rastelli, 2016)

A star-product ∗ on A is short if for any m, n ∈ Z≥0 and any
a ∈ An, b ∈ Am one has

Ck(a, b) = 0, k > min(n,m).

In other words, a ∗ b has no terms in Ad for d < |n −m|.
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Filtered deformations

Let A be a commutative graded algebra. Fix a filtered
associative algebra A =

⋃
d≥0 FdA such that its associated

graded algebra is identified with the graded algebra A; namely,

grA =
⊕
d≥0

FdA/Fd−1A

and FdA/Fd−1A ∼= Ad for d ≥ 0 (compatibly with
multiplication) with F−1A := 0.

Such A is called filtered deformation (quantization) of A.

For example, when A is a generalized Weyl algebra, grA is
isomorphic to A = C[u, v , z ]/(uv − zn), Kleinian singularity of
type A. Each deformation of A is isomorphic to a GWA with
parameter P of degree n.
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Bijection between star-products and quantization maps

Given a quantization map ϕ : A → A, we can define the
star-product on A by

a ∗ b := ϕ−1(ϕ(a)ϕ(b)).

Conversely, given a star-product on A, we can set A := (A, ∗) with
the filtration induced by the grading, and ϕ := Id.

Lemma

This defines a pair of mutually inverse bijections between
star-products on A and (Z/2-equivariant) quantizations of A
equipped with a quantization map.
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Positivity condition.

A short star-product is positive if Ck(a, ρ(a)) > 0 for all
nonzero a of degree k .

It follows from the results in Etingof-Stryker that there is a
bijection between positive short star-products and pairs
(A,T ), where A is a filtered deformation of A and T is a
positive trace.

This is a physical motivation for considering positive traces.
Beem, Peelaers and Rastelli tried to compute positive short
star-products on Kleinian singularities of type A.
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The answer

Let α be a root of P(x). We say that α is good if |Reα| < 1
2 .

Assume for simplicity that there are no roots of P with
Reα = ±1

2 . Then

Proposition

Let k be the number of good roots. Then the dimension of the
cone of positive traces modulo scaling is k − 4 if n is divisible by 4
and k − 2 otherwise.

For example, for n = 2 a positive trace is unique and exists
when P(x) = x2 + C satisfies C > −1

4 . If C ≥ 0 we get
spherical principal series representations, if −1

2 < C < 0 we
get complementary series representations.
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Case of q-Weyl algebras

Suppose that A is generalized q-Weyl algebra. Then
ρ(u) = v , ρ(v) = u, ρ(Z ) = Z−1 and P(x) is real on unit
circle.

There is a similar notion of good roots (q < |α| < q−1), but
the answer is always k − 1.
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Bimodules

Let M be an A−A-bimodule. For any P we can define ρ in
the same way: ρ(u) = v , ρ(v) = u, ρ(z) = −z .

Such M exists when for each root αi of P have 2Reαi ∈ Z or
αi + αj ∈ Z.
Let us rewrite the definition of good root: instead of
|Reαi | < 1

2 write −1 < αi − αj < 1. Then it works in this
case.

The answer is the same: number of good roots minus a
constant from 1 to 4.

The story when A is a q-deformation is similar.
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Thank you!

Thank you!
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Computation of traces

We will restrict our attention to the case of even n for
convenience. In this case s = id. An easy computation shows that
the space of traces on A is isomorphic to V ∗, where

V = C[x ]/{P(x + 1)S(x + 1)− P(x − 1)S(x − 1) | S ∈ C[x ]}

Suppose that ϕ ∈ V ∗. We have A = ⊕m∈ZAm — an eigenspace of
ad z decomposition. The corresponding trace T acts as follows: if
a ∈ Am, m ̸= 0, then T (a) = 0. If a ∈ A0 = C[h] then a = R(h)
and T (a) = ϕ(R).
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Analytic formula.

Suppose that all roots of P(x) belong to the open strip |Re x | < 1.
Then there is the following formula:

T (R) =

∫
iR
R(x)w(x)dx ,

where w(x) = Q(e iπx )
P(e iπx )

, P(x) =
∏

P(α)=0

(x + e iπα).

Recall that a

trace T is positive if and only if

T (S(x)S(−x)) > 0

and
T (±S(1− x)S(x − 1)P(x − 1)) < 0

Condition T (S(x)S(−x)) > 0 translates to w(x) ≥ 0 on iR,
similarly for the second condition we get ±w(x + 1)P(x) ≤ 0 on
iR.
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Analytic formula, ctd.

It follows shortly that the cone of positive forms is isomorphic to
the cone of nonnegative polynomials of degree d ≤ d0 for certain
d0.

In the case when not all roots of P(x) belong to |Re x | < 1
analytic formulas for traces become harder: instead of iR we
should take slightly different contour.
It can be proved that roots x with |Re x | > 1 do not change the
cone of positive forms, and each pair of roots x ± 1 with Re x = 0
multiplies the cone by R≥0: there exists trace R 7→ R(x).
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