
This talk is based on the joint work arXiv:2202.09934 with Pavel Shlykov.

1. Symplectic duality with examples

There is a certain interesting class of symplectic varieties called conical symplectic
resolutions of singularities. Informally speaking symplectic resolution of singularities
consists of a pair π : X → Y , where Y is an affine (singular) Poisson variety and X is
a symplectic variety with π being a resolution of singularities. A symplectic resolution
is conical if group C× acts on both X,Y such that π is equivariant, C× contracts Y to
the point and scales symplectic form ωX with some positive weight.

Let us some give examples of conical symplectic resolutions

π : X → Y.

—–
The simplest example of the symplectic resolution is

π : X = T ∗P1 → N = Y,

where N ⊂ sl2 consists of nilpotent matrices

(
a b
c −a

)
i.e. of matrices with zero

determinant so
N = {(a, b, c) | bc+ a2 = 0}.

The Poisson strucutre on N is induced from the Kirillov-Kostant-Souriau Poisson
bracket on sl2 ≃ sl∗2, the conical C× action on N is just the scaling action.

We have

X =
{(

ℓ ⊂ C2, A =

(
a b
c −a

)
∈ N

)
| ℓ ⊂ kerA

}
= T ∗P1

the map π : T ∗P1 → N simply forgets the line ℓ.
—–
Another example (generalizing the above one) is T ∗Pn−1 that is similar to the ex-

ample above and resolves the space On ⊂ sln consisting of matrices A ∈ sln such that
rkA ⩽ 1. One can show that

T ∗Pn−1 =
{(

ℓ ⊂ Cn, A ∈ sln

)
, ImA ⊂ ℓ ⊂ kerA

}
.

The map
π : T ∗Pn−1 → On

simply forgets ℓ. For n = 2 we get the same example as above.
—–
Other examples are resolutions of type A singularities (or more generally ADE sin-

gularities). Explicitly consider the two-dimensional affine space A2 and consider the
action of the group Γ = Z/nZ on A2, where the generator [1] ∈ Z/nZ acts as follows:

[1] · (x, y) = (e−
2πi
n x, e

2πi
n y).

We can consider the quotient A2/Γ functions on which are

C[A2]Γ = C[xy, xn, yn] = C[a, b, c]/(an − bc)
1
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so

A2/Γ = {(a, b, c) | an = bc}.
For n = 2 we get our main example of the nilotent cone N in sl2. The variety A2/Γ is
Poisson, bracket is induced from the standard bracket on A2 ({x, y} = 1).

It turns out that in general this singularity an = bc can be resolved via n − 1 blow
ups so we obtain the desired symplectic resolution

π : Ã2/Γ→ A2/Γ.

The conical C× action comes from the scaling action on A2.
—–
Another example is Hilbn(A2) (Hilbert scheme of n points on A2) and more generally

the ADHM spaceM(n, r) or even more generally quiver varietiesM(Q). We start from
the definition of the ADHM space M(n, r).

Pick positive integers n, r ∈ Z⩾1. Let V be a vector space of dimension n and W be
a vector space of dimension r:

V = Cn, W = Cr.

Consider the space

M = M(n, r) := Hom(V, V )⊕2⊕Hom(W,V )⊕Hom(V,W ) = T ∗(Hom(V, V )⊕Hom(W,V )).

Elements of M will be denoted by (X,Y, γ, δ) and called quadruples. They can be
considered as representations of the following quiver

W

V

γ δ

YX

Group GL(V ) acts naturally on M preserving symplectic structure. There is a
moment map

µ : M→ gl(V ), (X,Y, γ, δ) 7→ [X,Y ] + γδ.

Definition 1.1. A quadruple (X,Y, γ, δ) ∈ M(n, r) is called stable if for every X,Y -
invariant subspace S ⊂ V such that S contains im γ we have S = V . We denote by
M(n, r)st ⊂M(n, r) the (open) subset of stable quadruples.

Definition 1.2. The Nakajima quiver varieties M(n, r), M0(n, r) that we call ADHM
spaces or Gieseker varieties are defined as the following quotients

M(n, r) := µ−1(0)st/GL(V ), M0(n, r) := µ−1(0)//GL(V ).

Remark 1.3. This definition can be generalized to define quiver variety M(Q) corre-
sponding to arbitrary quiver Q = (I0, I1) together with the choice of dimension and
framing vectors (vi)i∈I0, (wi)i∈I0. In the definition above one should just replace V by⊕

i∈I0 Vi, W =
⊕

i∈I0 Wi and GL(V ) by GV =
∏

i∈I0 GL(Vi). Let me not go deep into
this since we will be mostly interested in M(n, r) or even M(n, 1).
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The natural morphism

π : X = M(n, r)→M0(n, r) = Y

is our symplectic resolution of singularities. Let us mention that M(n, r) is also known
as the Uhlenbeck compactification of the moduli space of SU(r) instantons on C2. Our
goal for now is to discuss geometry of M(n, r),M0(n, r).

Let z(V ) ⊂ gl(V ) be the center of gl(V ). Explicitly

z(V ) = {diag(t, t, . . . , t) t ∈ C}.
VarietiesM(n, r),M0(n, r) admit certain natural deformations over the space z(V ) = C.

Definition 1.4. The universal quiver varieties Muniv(n, r), Muniv
0 (n, r) are defined as

follows:

Muniv(n, r) := µ−1(z(V ))st/GL(V ), Muniv
0 (n, r) := µ−1(z(V ))//GL(V ).

Let us now give an alternative description of the varieties M(n, 1), M0(n, 1) (describe
them more explicitly).

Let
Sn(A2) := (A2)n/Sn

be the variety parametrizing n unordered points {p1, . . . , pn} on A2 (with multiplicities),
pi ∈ A2. This is a singular (Poisson) variety.

The variety Sn(A2) can be resolved by the so called Hilbert scheme of n-points on
A2.

Definition 1.5. The variety Hilbn(A2) is the variety whose C-points are ideals J ⊂
C[x, y] such that dimC[x, y]/J = n.

The following proposition is well-known.

Proposition 1.6. There exist isomorphisms

M(n, 1) ≃ HilbnA2, M0(n, 1) ≃ Sn(A2). (1.1)

Recall that the isomorphism M(n, 1) ∼−→ HilbnA2 above can be constructed as fol-
lows: starting from the ideal J ∈ Hilbn(A2) we can construct the quadruple (X,Y, γ, δ)
as follows: V = C[x, y]/J , X is the multiplication by x, Y is the multiplication by y, γ
corresponds to the embedding C ⊂ V that sends 1 to 1 ∈ C[x, y]/J = V and δ = 0.

The natural question is how to describe the whole deformation Muniv
0 (n, 1) of

M0(n, 1) = Sn(A2) in terms similar to Sn(A2) (without using quiver description).
Recall first that

C[Sn(A2)] = C[A2n]Sn = C[x1, y1, . . . , xn, yn]Sn = e
(
CSn ⋉C[x1, . . . , xn, y1, . . . , yn]

)
e,

where e := 1
n!

∑
g∈Sn

g ∈ CSn is the symmetrizing idempotent. It is also easy to see that

the algebra above can be identified with the center of CSn ⋉ C[x1, . . . , xn, y1, . . . , yn].
The algebra CSn ⋉ C[x1, . . . , xn, y1, . . . , yn] has a one-parametric deformation called
rational Cherednik algebra Hn that can be defined as follows.
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Definition 1.7. Algebra Hn is a quotient of the semidirect product(
CSn ⋉C⟨x1, . . . , xn, y1, . . . , yn⟩

)
⊗ C[κ]

subject to the relations

[xi, xj ] = [yi, yj ] = 0,

[xi, yi] = κ
∑
j ̸=i

(ij),

[xi, yj ] = −κ(ij), i ̸= j

where (ij) ∈ Sn is the transposition i←→ j.

Let Zn ⊂ Hn be the center of Hn. This proposition follows from the results of
Etingof-Ginzburg.

Proposition 1.8. We have an isomorphism of algebras

C[Muniv
0 (n, 1)] ≃ Zn.

So for r = 1 we have some (rather explicit) description of the varieties M(n, 1),
M0(n, 1) and their deformations.

It would be natural if we have some generalization of Zn ⊂ Hn to the case of arbitrary
r. Indeed we have: we just need to replace Sn with the semidirect product Sn ⋉
(Z/rZ)n and then we obtain the algebra Hn,r with center Zn,r. This center will be the
deformation of the algebra of functions of the Poisson variety

(A2n)/(Sn ⋉ (Z/rZ)n) = (A2)n/(Sn ⋉ (Z/rZ)n),

here Sn acts via permutations and each Z/rZ acts on its copy of A2 via [1] · (x, y) =
(e

2πi
r x, e−

2πi
r y). So this is a “biproduct” of the examples (A2)n/Sn and A2/(Z/rZ).

Remark 1.9. It is NOT true that (A2)n/(Sn⋉ (Z/rZ)n) is isomorphic to M0(n, r) (this
is only true for r = 1). Consider the simplest case n = 1. It is easy to see then that we
have isomorphisms

M(1, r) ≃ T ∗Pr−1 × C2, M0(1, r) ≃ Or × C2.

So M0(1, r) is Or × C2 but not A2/(Z/rZ). Note that these varieties have different
dimensions for r > 1!

The (Poisson) varieties

M0(n, r), (A2)n/(Sn ⋉ (Z/rZ)n)

are symplectically dual and the identification M0(n, r) ≃ (A2)n/Sn above corresponds
to the fact that Sn(A2) is selfdual. Let us briefly discuss the concept of symplectic
duality.

—–
Assume that we have some general conical symplectic resolution X → Y . One can

attach to it the following spaces. First of all let AutC×(Y ) be the group of Poisson
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authomorphisms of Y that commute with C×. Let SY ⊂ AutC×(Y ) be a maximal
torus. Set

sY := LieSY , tY := H2(X,C).
It turns out that the space tY is the base of a certain canonical symplectic/Poisson
deformation of X → Y i.e. there are families πuniv : Xuniv → Y univ over tY such that
the fiber over 0 ∈ tY is our π : X → Y (we have already seen such families for quiver
varieties M(n, r)).

Symplectic duality predicts that (every) symlectic resolution X → Y should have
dual one X ! → Y ! and that these two resolutions are closely related. The basic predic-
tion of symplectic duality is:

tY ≃ sY ! , sY ≃ tY ! .

The main example of symplectically dual varieties for us are:

Y = M0(n, r), Y
! = (A2)n/(Sn ⋉ (Z/rZ)n).

Recall that the universal deformation of (A2)n/(Sn ⋉ (Z/rZ)n) is the spectrum of the
center Zn,r of the rational Cherednik algebra Hn,r corresponding to the group Sn ⋉
(Z/rZ)n.

Remark 1.10. From the general prospective of symplectic reflection algebras the number
of parameters of the deformation Hn,r is equal to the number of conjugacy classes of
reflections in Sn⋉(Z/rZ)n so is equal to r (we have conjugacy class of any transposition
in Sn and also r − 1 conjugacy classes of [1], [2], . . . , [r − 1] ∈ Z/rZ). So

SpecZn,r is r parametric deformation of (A2n)/(Sn ⋉ (Z/rZ)n)
i.e.

tY ! = Cr.

The torus SY ! acting on Y ! is C× acting on A2 via t · (x, y) = (tx, t−1y). So

sY ! = C.
Variety Y = M0(n, r) has 1-parametric deformation z(V ) so

tY = C
and M0(n, r) equipped with the action of r-dimensional torus S which can be described
as follows: group PGL(W ) acts naturally on M0(n, r) so a maximal torus A ⊂ PGL(W )
acts. We also have the action of C× given by t · (X,Y, γ, δ) = (tX, t−1Y, γ, δ). Allto-
gether we get S = A× C× ≃ (C×)r. So

sY = Cr.

So we see that for our example we indeed have

tY = C = sY ! , sY = Cr = tY ! .

—–
A much more unexpected (from the first glance) prediction of symplectic duality is

the so-called (equivariant) Hikita-Nakajima conjecture that will be the main topic of
our talk.
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—–
Recalling what we have already discussed:

T ∗(Pr−1)→ Or is symplectically dual to Ã2/Γ→ A2/Γ,

Γ = Z/rZ.

Hilbn(A2)→ Sn(A2) is symplectically dual to Hilbn(A2)→ Sn(A2) = (A2n)/Sn

and more generally

M(n, r)→M0(n, r) is symplectically dual to (A2)n/(Sn ⋉ (Z/rZ)n),

Remark 1.11. Recall that the universal deformation of (A2n)/(Sn ⋉ (Z/rZ)n)
is SpecZn,r, where Zn,r ⊂ Hn,r is the center of the rational Cherednik algebra
corresonding to Sn ⋉ (Z/rZ)n.

M(Q) is symplectically dual to the Coulomb branch corresponding to Q.

2. Equivariant Hikita-Nakajima conjecture (general version)

Let X → Y , X ! → Y ! be a pair of symplectically dual varieties. Equivariant Hikita-
Nakajima conjecture is a conjecture that relates the topology of X with the algebraic
structure of Y !.

We start from some general notion. Assume that Y is an affine variety equipped
with an action of the group C×. The action of C× on Y is the same as the action of
C× on B := C[X] by algebra authomorphisms so is the same as the grading

B =
⊕
k∈Z

Bk

such that Bk ·Bl ⊂ Bk+l.

We define the schematic fixed points Y C×
as follows

Y C×
= Spec

(
B/(fi, fi ∈ Bi, i ̸= 0)

)
.

Remark 2.1. Consider the simplest example: assume that Y = A1 and C× acts on X
via multiplication t · y = ty. Then B = C[A1] = C[y] and the grading is given by
deg yk = k. We see that passing to C×-fixed points we just mod out by all positive
powers of y so we get

(A1)C
×
= Spec(C) = {0} ⊂ A1

so this is just one point as expected.

Consider now the following example (our main example):

Y := N = {(a, b, c) | a2 = bc}
so

C[N] = C[a, b, c]/(a2 − bc).
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We have an action of C× on N given by

t · (a, b, c) = (t−1a, tb, c).

Then as a set NC×
consists only of one point (0, 0, 0). Indeed since point is fixed we

must have a = b = 0 but then 0 = bc = a2 so a = 0 and we get the unique fixed point
(0, 0, 0). But as an algebra we get something two-dimensional:

C[NC×
] = C[N]/(b, c) = C[a, b, c]/(b, c, bc− a2) = C[a]/(a2).

Note that something interesting happens at the point (0, 0, 0) ∈ N that is distin-
guished since this is a singular point of N.

Proposition 2.2. If X is smooth then XC×
is smooth. In particular, if X is smooth

and the set of C×-fixed points of X is finite then the schematic fixed points XC×
is

just the spectrum of
⊕

p∈XC× C i.e. just the set of C×-fixed points of X without any

interesting scheme structure.

Assume now that we have a pair X → Y , X ! → Y ! of dual symplectic resolutions.
Let ν : C× → SY ! be a generic cocharacter of the torus SY ! . This conjecture belongs to
Hikita and Nakajima, we will call it Hikita-Nakajima conjecture.

Conjecture 2.3. There is an isomorphism of algebras over C[sY ]:

H∗
SY

(X,C) ≃ C[(Y !,univ)ν(C
×)].

In nonequivariant form it says that we should have an isomorphism of algebras

H∗(X,C) ≃ C[(Y !)ν(C
×)].

In the example T ∗P1 → N that we like we have already computed C[NC×
] and got

C[a]/a2. Note now that

H∗(T ∗P1,C) = H∗(P1,C) ≃ H∗(S2,C) ≃ C[a]/a2

so the Hikita conjecture is clear in this case.
Let me now formulate the main theorem of this talk. Recall that we have the

symplectically dual pair

X = M(n, r), Y ! = (A2)n/(Sn ⋉ (Z/rZ)n)

and Y !,univ = SpecZn,r is the spectrum of the center ofHn,r (rational Cherednik algbera
corresponding to Sn ⋉ (Z/rZ)n).

Theorem 2.4. [K-Shlykov] Hikita-Nakajima conjecture holds for X = M(n, r), the
ADHM space. More detailed we have an isomorphism of algebras

H∗
S(M(n, r),C) ≃ C[(SpecZn,r)

C×
].

Remark 2.5. For r = 1 (i.e. when M(n, r) = Hilbn(A2)) the nonequivariant version
of this theorem was proved by Hikita. For n = 1 the nonequivariant version was again
proved by Hikita, the equivariant version (for n = 1) follows from the results of Kam-
nitzer, Tingley, Webster, Weekes, and Yacobi.
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3. Equivariant Hikita-Nakajima conjecture for Hilbn(A2)

Consider the case r = 1 so M(n, 1) = Hilbn(A2). We want to identify the algebras

H∗
C×(Hilbn(A2)), C[Muniv

0 (n, 1)C
×
].

Let us, first of all, study the algebra of equivariant cohomology. Here (since quiver
varieties are very well studied) it is not so important that we are dealing with the Hilbert
scheme so let us consider any quiver variety M(Q) corresponding to some dimension
and framing vectors (vi)i∈I0 , (wi)i∈I0 . Recall that to every vertex i ∈ I0 of Q we can
associate the tautological vector bundle on M(Q) to be denoted by Vi, the rank of this
vector bundle is equal to vi. For example for M(n, r) we have only one tautological
bundle V and its rank is equal to n, this tautological bundle just associates to (X,Y, γ, δ)
the vector space V that we use in the definition of M(n, r). This is the reason why it
is called tautological. Recall also that S is the torus acting symplectically on M(Q).

The following facts are known about H∗
S(M) and follow from the results of Nakajima,

MacGerty and Nevins:
(1) H∗

S(M(Q)) is a free module over H∗
S(pt)

(2) As a module over H∗
S(pt) algebra H∗

S(M(Q)) is generated by ci(Vj), i = 1, . . . , vj .
Consider now the set of S-fixed points of M(Q) and denote by ι the embedding

ι : M(Q)S ⊂M(Q).

The localization theorem tells us that the pull back homomorphism H∗
S(M(Q)) →

H∗
S(M(Q)S) becomes isomorphism after tensoring by the field C(s) of the rational

functions on s = LieS. Since H∗
S(M(Q)) is a free C[s]-module (fact (1)) we conclude

that ι∗ induces the embedding:

ι∗ : H∗
S(M(Q)) ⊂ H∗

S(M(Q)S) = C[s]|M(Q)S |, ci(Vj) 7→ (ci(Vj |p))p∈M(Q)S ,

where ci(V|p) is simply ei(α1, . . . , αvj ), here αk are weights of s acting on the fiber Vj |p
(of Vj at p) and ei is the elementary symmetric polynomial.

In the case of M(Q) = Hilbn(A2) the fiber of the tautological bundle V at the point

(ideal) J ∈ Hilbn(A2) is the vector space C[x, y]/J . Recall also that (Hilbn(A2))C
×

is parametrized by Young diagrams P(n) with n boxes (partitions of n) and this
parametrization is very explicit: it associates to Y ∈ P(n) certain explicit monomial

ideal JY ∈ C[x, y]. Using this explicit description of Hilbn(A2)C
×
it is easy to see that

ι∗ : H∗
C×(Hilbn(A2),C) ⊂ H∗

C×(Hilbn(A2)C
×
,C) = C[κ]|P(n)|,

is given by

ci(V) 7→ (ei(κ ct1(Y), . . . , κ ctn(Y)))Y∈P(n),
where ct1(Y), . . . , ctn(Y) is the multiset of contents of boxes of Y.

So we see that the algebra H∗
C×(Hilbn(A2)) that we are interested in is embedded

inside very simple algebra C[κ]|P(n)| and the embedding is very explicit on generators.

So in order to identify it with C[Muniv
0 (n, 1)C

×
] it is enough to:

(a) Construct some embedding C[Muniv
0 (n, 1)C

×
] ⊂ C[κ]|P(n)|
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(b) Find generators of C[Muniv
0 (n, 1)C

×
] such that their images under the embedding

above coincide with the images of ci(V).

Let us describe briefly how to deal with (a), (b).
We have the resolution morphism

Muniv(n, 1)→Muniv
0 (n, 1).

This morphism is C×-invariant so induces morphism at the level of fixed points:

(Muniv(n, 1))C
× → (Muniv

0 (n, 1))C
×

and so the homomorphism of algebras

C[(Muniv
0 (n, 1))C

×
]→ C[(Muniv(n, 1))C

×
].

Note now that on the LHS we have exactly the algebra that we are interested in
and on the RHS we have schematic fixed points of smooth variety! Torus C× acts
fiberwisely on our deformation Muniv(n, 1) → A1 and fixed points of every fiber can
be easily described and are parametrized by P(n) (as they do for the zero fiber that is
Hilbn(A2)).

One can show that the fiber of Muniv(n, 1)→ A1 over nonzero point can be identified
with so-called Calogero-Moser variety C(n) that parametrizes pairs of matrices (X,Y ) ∈
End(Cn) such that [X,Y ]− id has rank 1:

C(n) := {(X,Y ) ∈ End(Cn)⊕2 | rk
(
[X,Y ]− Id

)
= 1}/GLn .

This is a smooth variety and its C×-fixed points can be explicitly described (this is the
result of Wilson).

We conclude that C[(Muniv(n, 1))C
×
] = C[κ]|P(n)| and the desired embedding

C[(Muniv
0 (n, 1))C

×
] ⊂ C[κ]|P(n)| is just the pull back of function on (Muniv

0 (n, 1))C
×
to

(Muniv(n, 1))C
×
. So we have figured out with (a).

To deal with (b) we just need to find some generators of C[(Muniv
0 (n, 1))C

×
] and to

compute their values on fixed points. Using results of Lusztig on the generators of
C[(M0(n, 1)] one can show that the following functions are the desired generators:

Lemma 3.1. The algebra C[(Muniv
0 (n, 1))C

×
] is generated by functions

(X,Y, γ, δ) 7→ ei(α1, . . . , αn),

here α1, . . . , αn is the multiset of eigenvalues of the operator Y X (in other words, our
functions above are ± coefficients of the characteristic polynomial of Y X).

In order to prove (b) and so finish the proof of Hikita-Nakajima conjecture for
M(n, 1) it remains to compute the values of the functions above on the fixed points

(Muniv(n, 1))C
×
. This computation reduces to the calculation of eigenvalues of the

operator Y X for

(X,Y ) ∈ C(n)C
×
.
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Recall that the set C(n)C
×
is parametrized by P(n). It is easy to see that the eigenvalues

of Y X corresponding to Y ∈ P(n) are precisely the contents of the Young diagram Y
(this was implicitly observed already in Wilson’s paper [W]). This finishes the proof.

Consider the example. Assume that n = 3. Let us describe the C× fixed points of
C(3). Recall that

P(3) =
{

, ,
}
.

The corresponding C×-fixed points of C(3) can be described as follows:

Y =

0 0 0
1 0 0
0 2 0

 , X =

0 1 0
0 0 1
0 0 0

⇒ Y X =

0 0 0
0 1 0
0 0 2

 ,

Y =

0 0 0
1 0 0
0 −1 0

 , X =

0 1 0
0 0 1
0 0 0

⇒ Y X =

0 0 0
0 1 0
0 0 −1

 ,

Y =

 0 0 0
−2 0 0
0 −1 0

 , X =

0 1 0
0 0 1
0 0 0

⇒ Y X =

0 0 0
0 −2 0
0 0 −1

 .

We see that the diagonal terms of XY are precisely the contents of the corresponding
Young diagrams!

4. Equivariant Hikita-Nakajima conjecture for ADHM spaces

Let us now discuss the proof of Hikita-Nakajima conjecture for M(n, r) (now we do
not assume that r = 1). So we want to prove that

H∗
S(M(n, r),C) ≃ C[(SpecZn,r)

C×
],

where Zn,r ⊂ Hn,r is the center.
The set of S fixed points of M(n, r) are now parametrized by the r-multipartitions

of n (to be denoted P(r, n)) and as in the Hilbert scheme case we have the embedding

H∗
S(M(n, r),C) ⊂ H∗

S(M(n, r)S ,C) = C[s]|P(r,n)|

which sends generators ci(V) to certain very explicit elements of C[s]|P(r,n)| (“shifted
multicontents” of P(r, n)). So as in the Hilbert case it remains to construct the corre-
sponding embedding

C[(SpecZn,r)
C×

] ⊂ C[s]|P(r,n)|

and find generators corresponding to ci(V). Again the same approach as for the Hilbert
scheme works to construct the embedding (consider the resolution of SpecZn,r and pull
back to its fixed points). To make it more explicit let us reinterpret this approach
in terms of representation theory of Hn,r. So we want (using representation theory)
construct the embedding above, find generators and compute their images (and this
will finish the proof of Hikita-Nakajima conjecture for M(n, r)).
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The Rational Cherednik algebra Hn,r (corresponding to the group Γ = Sn⋉(Z/rZ)n)
is generated by

x1, . . . , xn, y1, . . . , yn, Sn ⋉ (Z/rZ)n

subject to certain relations. The C×-action with respect to which we are taking
(schematic) fixed points corresponds to the following grading on Hn,r:

deg xi = 1, deg yi = −1, deg Γ = 0.

Recall that the algebra of schematic points that we are studying is defined as

Qn,r := Zn,r/(fi deg fi = i ̸= 0).

The set of irreducible representations of Γ are in bijection with P(n, r), let S(λ) be
the representation corresponding to λ. Consider the induced module

∆(λ) := Ind
Hn,r

(C[s]⊗CΓ)⋉C[x1,...,xn]
(S(λ)⊗ C[s])

that can be considered as a (universal) Verma module for Hn,r (with highest weight
S(λ)) and let L(λ) be the irreducible quotient of ∆(λ).

The center Zn,r acts on L(λ) via some scalar, this scalar is determined by the ac-
tion on the highest component and so factors through Qn,r. Summing through all
representations we get the desired embedding.

Qn,r ⊂
⊕

λ∈P(r,n)

EndHn,r(L(λ)) = C[s]|P(r,n)|.

Generators of Qn,r come from so called Dunkl-Opdam elements in Hn,r. They are
defined as follows:

ui =
1

r
yixi + JMi+?,

where JMi ∈ CΓ are the Jucys-Murphy elements of Γ (that act on irreducible repre-
sentations of Γ via the multiplication by the content of i’th box) and ? corresponds to
certain linear combination of generators of (Z/rZ)n.

The following lemma finishes the proof of the Hikita-Nakajima conjecture forM(n, r).

Lemma 4.1. The algebra Qn,r is generated by the classes of ei(u1, . . . , un). Via the
embedding above the element ei(u1, . . . , un) maps to the same element as ci(V).

5. Possible generalizations and conjectures

Recall that if Q is a quiver and M(Q) is the quiver variety then the symplectically
dual variety is the Coulomb branch M(Q) that is defined as the spectrum of a certain

algebra of equivariant homology HGV
∗ (R) of some space R = R(Q) (space of triples).

The universal deformation Muniv(Q) also can be realized in this terms: we need to

consider the algebra HGV ×S
∗ (R) i.e.

Muniv(Q) = SpecHGV ×S
∗ (R).

We want to identify the algebras

H∗
S(M(Q),C), C[(SpecHGV ×S

∗ (R))C
×
].
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Recall that the LHS has generators ci(Vj). Note now that the RHS also have similar
generators! Indeed for every vertex i ∈ I0 one can consider the trivial vector Ej :=
R × Vj with GV × S-equivarinat structure being induced by the action natural of

GV =
∏

l GL(Vl) ↠ GL(Vj) on Vj . Then ci(Ej) are interesting elements of HGV ×S
∗ (R).

Remark 5.1. the fact that [ci(Ej)] are indeed generators of schematic fixed points follows
from the results of Finkelberg, Tsymbaluk, Weekes, and the detailed proof will appear
in the work of Kamnitzer, Webster, Weekes and, Yacobi.

One can show that in the case of X = M(n, r) the Hikita-Nakajima isomorphism
identifies ci(Vj) with ci(Ej).

So we can formulate the conjecture:

Conjecture 5.2. There exists the isomorphism algebras

H∗
S(M(Q),C) ≃ C[Spec(HGV ×S

∗ (R(Q))C
×
] (5.1)

that sends ci(Vj) ∈ H∗
S(M(Q),C) to [ci(Ej)] ∈ C[Spec(HGV ×S

∗ (R))C
×
], here i ∈ I0,

k = 1, . . . , vi.

One can try to use the same approach to the proof of this conjecture as we did.
Elements ci(Ej) can be considered as functions on Muniv(Q). The goal is to show that
their value on C×-fixed points of Muniv(Q) coincide (in the appropriate sense) with the
S-characters of Vi at the S-fixed points of M(Q).

Let us also mention that there are many directions in which one can generalize the
results that we discussed in this talk. One direction is to still deal with X = M(n, r)
but replace H∗

S(M(n, r)) by KS(M(n, r))-theory, another direction is to add additional
equivariance with respect to the contracting C×-action. Another direction is to replace
M(n, r) with some other quiver variety (for example consider Q to by the cyclic quiver
with m vertices).
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