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Abstract
Knowledge distillation has been used to capture the knowl-
edge of a teacher model and distill it into a student model with
some desirable characteristics such as being smaller, more
efficient, or more generalizable. In this paper, we propose a
framework for distilling the knowledge of a powerful discrim-
inative model such as a neural network into commonly used
graphical models known to be more interpretable (e.g., topic
models, autoregressive Hidden Markov Models). Posterior of
latent variables in these graphical models (e.g., topic propor-
tions in topic models) is often used as feature representation
for predictive tasks. However, these posterior-derived features
are known to have poor predictive performance compared
to the features learned via purely discriminative approaches.
Our framework constrains variational inference for posterior
variables in graphical models with a similarity preserving con-
straint. This constraint distills the knowledge of the discrimi-
native model into the graphical model by ensuring that input
pairs with (dis)similar representation in the teacher model
also have (dis)similar representation in the student model. By
adding this constraint to the variational inference scheme, we
guide the graphical model to be a reasonable density model for
the data while having predictive features which are as close
as possible to those of a discriminative model. To make our
framework applicable to a wide range of graphical models, we
build upon the Automatic Differentiation Variational Inference
(ADVI), a black-box inference framework for graphical mod-
els. We demonstrate the effectiveness of our framework on two
real-world tasks of disease subtyping and disease trajectory
modeling.

1 Introduction
Distilling knowledge of a teacher model in a student model
was originally motivated by compressing larger neural net-
works into smaller ones (Hinton, Vinyals, and Dean 2015).
However, later it has been applied to a diverse set of areas
such as adversarial defense (Papernot et al. 2016) or privi-
leged learning (Lopez-Paz et al. 2015). The distinguishing
factor among these applications is the desirable characteristic
of the student model (e.g. higher inference speed, smaller
size). In all these applications, the student model mimics
the performance of the teacher model while maintaining the
desirable characteristic.
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In this paper, we propose a framework for distilling the
knowledge of a discriminative model into a probabilistic
graphical model. Probabilistic graphical models such as topic
models or autoregressive hidden Markov models (AR-HMM)
have been widely used for building density models of ob-
served data. Two factors that have helped their widespread
adoption are their simplicity and the possibility of bypassing
custom inference for them by using probabilistic program-
ming languages. In these models, posterior of the latent vari-
ables (e.g. topic proportions in a topic model) or a function of
it is often used as low-dimensional feature representation for
a downstream task such as predicting labels associated with
each data point (Halpern et al. 2012; Lehman et al. 2015b).
However, as shown by Halpern et al. (2012) and Hughes
et al. (2018), this two-stage process of extracting features and
then training a discriminative model, performs subpar com-
pared to purely discriminative approaches. Semi-supervised
variants of these models, where labels and observations are
modeled jointly, have been developed but their performance
is not significantly different from the two-stage approaches
(Hughes et al. 2018).

Our goal is to enhance the feature representation of these
graphical models so they incorporate the knowledge of their
discriminative counterparts while being reasonable density
models for the data. Optimizing for matching the observed
data can be achieved by maximizing the variational lower
bound of the marginal likelihood. To incorporate the knowl-
edge of a powerful discriminative model (i.e. our teacher
model), we add a knowledge distillation constraint to the
variational inference optimization objective. This constraint
ensures that we have the best generative model for the data
while having feature space which is close to that of a discrim-
inative model.

Given the distinct nature of the feature space between the
teacher and student models in our framework, we propose to
use the similarity-preserving knowledge distillation scheme
introduced by Tung and Mori (2019) as our constraint. This
scheme, instead of the common approach of matching the
smoothed class scores of the teacher and student models,
matches the pairwise similarity matrix in the student model
with that matrix in the teacher model. A pairwise similarity
matrix consists of pairwise distances between the feature
representations of inputs to a model. As mentioned by Tung
and Mori (2019), this scheme is inspired by the observation



Figure 1: Knowledge Distillation via Constrained Variational Inference: Illustration of our framework for distilling knowledge
from a teacher model (D) with high predictive power into a probabilistic graphical model with local variables z, global variables
θ, and N observations. Dashed lines represent relations in the variational approximation. Ft and Fs are feature representation
matrices from the teacher and student models. Pairwise similarity matrices are built based on these matrices for the teacher and
student models. To make our approach flexible, we use a black-box variational inference scheme for our student model.

that semantically similar inputs tend to have similar feature
representations. Fig. 1 illustrates our framework.

To make our framework applicable to a broader range of
probabilistic models, we build it upon the Automatic Dif-
ferentiation Variational Inference (ADVI) (Kucukelbir et al.
2017). ADVI is a black-box variational inference method that
only requires defining a probabilistic model and a dataset, and
it is adopted in probabilistic programming languages such
as Stan (Carpenter et al. 2017). ADVI, in its standard form,
marginalizes over local latent variables (e.g. cluster assign-
ments in a Gaussian mixture model); this is not a limitation
if we are only interested in global latent variables such as
means and variances of the mixture components in Gaussian
mixtures. However, since we are interested in using the poste-
rior distribution of a local latent variable (or a function of it)
as a feature representation in our method, we need to modify
ADVI to support our use case. We utilize the Autoencoding
Variational Bayes (AEVB) framework (Kingma and Welling
2013) and inference amortization for this purpose. The com-
bination of ADVI with the AEVB framework gives us the
flexibility to support a wide range of probabilistic graphical
models.

We demonstrate the flexibility of our method by applying
it to two real-world tasks of disease subtyping in Chronic
Obstructive Pulmonary Disease (COPD) and disease trajec-
tory modeling in MIMIC-III dataset (Johnson et al. 2016).
We show knowledge distillation in probabilistic graphical
models can improve their predictive performance while not
degrading their generative performance.

2 Related Work
Knowledge Distillation Knowledge distillation has been
widely used in the neural networks literature for capturing
the knowledge of a teacher model to train a student model
which has some desirable characteristics. The desirable char-
acteristic has originally been efficiency (Hinton, Vinyals,
and Dean 2015; Ahn et al. 2019; Hegde et al. 2020); how-
ever, later more diverse set of applications have emerged.

For instance, in privileged learning (Lopez-Paz et al. 2015),
a teacher model with access to privileged data is distilled
to train an unprivileged student model. Li et al. (2017) uti-
lized knowledge distillation for learning from noisy labels.
Recently, Ravina et al. (2021), have proposed an approach
for distilling interpretable models into human readable code
where the desirable characteristic is human-readability and
the target is a concise human-readable code. In this paper,
the desirable characteristic is interpretability and our target
model is a commonly used graphical model (e.g. topic model
or an AR-HMM). Nanfack, Temple, and Frénay (2021) also
proposed a framework for distilling the knowledge of a black-
box model into an interpretable model; however, in contrast
to our model, they used a decision rule-based explanation
instead of commonly used graphical models.

Black-Box Variational Inference Black-box variational
inference (BBVI) methods generalize variational inference
and typically only require computing the gradients of the vari-
ational approximation (Ranganath, Gerrish, and Blei 2014;
Salimans and Knowles 2014). Kingma and Welling (2013)
simplify the optimization process using the reparameteriza-
tion trick. Kucukelbir et al. (2017) build upon these works
and ADVI, a general framework for data analysis which only
requires a probabilistic model and a dataset. There are also
BBVI methods that are developed for specific domains; for
instance, Archer et al. (2015) introduce a BBVI variant for
state-space models, or Ambrogioni et al. (2021) propose an
approach for BBVI with structured variational family. Our
method combines ADVI and AEVB in order to support in-
ference in graphical models with both local and global latent
variables.

(Semi-)Supervised Learning with Probabilistic Graphi-
cal Models Many models have been developed with the
goal of being a reasonable density model of observed data
while having high predictive power. The basic approach of
using the inferred latent variables from a graphical model
as features for training a discriminative model have been



employed in various applications such as predicting psycho-
logical state (Resnik, Garron, and Resnik 2013), patient’s
health in ICU (Lehman et al. 2012, 2015a), or patient mon-
itoring (Lehman, Mark, and Nemati 2018). This approach
has limited success due to the fact that the inferred features
may not be relevant for the prediction task. Hence, other ap-
proaches have been proposed that model the data and labels
jointly by including label generation as part of the generative
process (Blei and McAuliffe 2010; Li, Ouyang, and Zhou
2015; Chen et al. 2015). Our approach can improve the per-
formance of these methods by distilling the knowledge of a
pre-trained discriminative model into the generative model.
Hoyle, Goel, and Resnik (2020) also use a knowledge distilla-
tion approach for improving the performance of topic models
via pretrained transformers. Their approach is specifically
designed for topic models, while our approach can be applied
to any probabilistic graphical model.

Constrained Inference To improve upon the (semi-
)supervised approaches, constrained inference or posterior
regularization approaches have been proposed (Hughes et al.
2018; Zhu, Ahmed, and Xing 2012; Zhu, Chen, and Xing
2014). These approaches are highly specific to their applica-
tions and constrain the posterior by enforcing explicit perfor-
mance constraints. In contrast, our approach is general and
can even be used in combination with these methods. Further-
more, instead of constraining the posterior by performance,
we constrain it by the feature space of another pre-trained dis-
criminative model. In another less related area, constrained
variational inference has also been used for encoding human
knowledge into the inference procedure (Unhelkar and Shah
2019).

3 Method

The class of student models we support consists of graphical
models with (1) local latent variables Z = z1:N , (2) global
latent variables θ, and (3) a dataset with N observations
X = x1:N . A local latent variable zn encodes the hidden
structure that governs the nth observation and the global
variables θ are the model parameters that are provided with
some prior distribution. As shown by Hoffman et al. (2013),
these graphical models are general and cover widely used
families of models such as sequential models, mixture models
or topic models. In Section 4, we provide examples of our
framework applied to different families of graphical models.

The graphical model defines a joint likelihood over the
observations and the latent variables p(x, z, θ). Identifying
patterns in the data and prediction tasks usually amounts to
computing the posterior p(z, θ|x) in these models. Given the
intractability of the posterior for many graphical models, ap-
proximate inference techniques such as variational inference
have been proposed. However, to avoid custom optimization
routines for variational inference, BBVI frameworks have
been developed and are commonly used in probabilistic infer-
ence software packages such as Stan (Carpenter et al. 2017).
In such frameworks, the goal is to maximize the Evidence
Lower BOund (ELBO) with respect to the variational param-

eters ϕ = {ϕθ, ϕz}:

L(ϕθ, ϕz;x) ≜ Eqϕ [log p(x, z, θ)− log qϕθ
(θ) (1)

− log qϕz
(z|x)],

without painstaking derivations of the variational update equa-
tions. As demonstrated by Kucukelbir et al. (2017), sidestep-
ping these derivations allows these frameworks to be applica-
ble to much larger families of graphical models that do not
assume conditional or full conjugacy. To expand the appli-
cability of our approach, we develop our framework based
on the ideas from BBVI frameworks. In particular, we utilize
ADVI for approximating the posterior of our global variables
θ and recognition network as posterior approximator for our
local variables z. This allows us to avoid a parameter space
that grows (at least) linearly with the number of observations
for our local variables.

3.1 Global Latent Variables θ
We follow the approach proposed by Kucukelbir et al. (2017)
for our global variables which we assume are continuous
and hence differentiable. This limitation can be alleviated by
adopting some of the latest techniques for gradient estimation
in models with discrete latent variables (Tucker et al. 2017;
Grathwohl et al. 2018; Kool, van Hoof, and Welling 2020).

ADVI recipe for developing a general variational infer-
ence algorithm is to transform the latent variables θ (with
K dimensions) such that they live in the real coordinate
space RK : T : supp(p(θ)) → RK , where T is the transfor-
mation and supp is the support of the distribution. This im-
plicitly defines the variational approximation in the original
space as q(θ;ϕθ) = q(T (θ);ϕθ)|det(JT (θ))|. Consequently,
ADVI can choose the variational distribution independent of
the generative model.

After the transformation, one can assume a factorized
Gaussian distribution as the variational approximation for
the transformed latent variables Θ = T (θ):

q(Θ;ϕθ) = N(Θ;µ, diag(exp(ω)2)), (2)

where ϕθ = (µ1, · · · , µK , ω1, · · · , ωK) are the variational
parameters in the unconstrained space of R2K . We will
rewrite the variational objective in Eq. 1 with this transforma-
tion for the global latent variables in Section 3.3.

3.2 Local Latent Variables z
To have an efficient input-dependent variational approxima-
tion, we employ a recognition network for amortizing infer-
ence of our local latent variables z (with L dimensions). Our
recognition network maps observations x into the approxi-
mate posterior q(z|x). However, to ensure the applicability
of the recognition network to various types of latent variables,
we follow the ADVI recipe for transforming the local latent
variables into a variable in real coordinate space: ζ = T (z).
Similar to Eq. 2, we assume a factorized Gaussian distribution
for the variational distribution of ζ:

qϕz (ζ|x) = N(µϕz
(x), diag(exp(ωϕz (x))

2)), (3)

where ϕz denotes the parameter set of the recognition net-
work.



3.3 Variational Objective L(ϕ;x)
Given the transformations in Sections 3.1 and 3.2, we rewrite
the ELBO in real coordinate space for datapoint xi as follows:

L(ϕθ, ϕz;xi) ≜ Eqϕ [ log p(xi, T
−1(Θ), T−1(ζ))

+ log |det(JT−1(Θ))|
+ log |det(JT−1(ζ))|]
+H(qϕθ

(Θ)) +H(qϕz
(ζ|xi)).

This can be optimized in the real coordinate space by
differentiating L(ϕθ, ϕz;xi) with respect to ϕθ and ϕz . To
push the gradient operation inside the expectation, we use the
“reparameterization trick” (Kingma and Welling 2013) and
write the expectation in terms of a standard Gaussian density
with L+K dimensions:

L(ϕθ, ϕz;xi) ≜ EN(ϵ;0,I)[log p(xi, T
−1(Θϵ), T

−1(ζϵ))

+ log |det(JT−1(Θϵ))|+ log |det(JT−1(ζϵ))|]
+H(qϕθ

(Θ)) +H(qϕz
(ζ|xi)),

(4)

where Θϵ = diag(exp(ω))⊙ ϵ1:K + µ, and

ζϵ = diag(exp(ωϕz
(xi))⊙ ϵK+1: + µϕz

(xi).

3.4 Prediction Based on Local Latent Variables
The local latent variables z1:N inferred via a recognition net-
work are often used as features for another predictive task
where we predict labels y1:N . Examples of these features in-
clude posterior topic proportions in a topic model or marginal
posterior of latent states in a hidden Markov model. As men-
tioned in Section 2, a two-stage process or supervised variants
of latent variable models are two possible approaches for pre-
diction based on the latent variables in these models. Hughes
et al. (2018) show that constraining the space of a genera-
tive model with a prediction-based constraint significantly
improves the predictive performance of these models. Our
knowledge distillation method, which adds distillation as a
constraint to our optimization problem (Eq. 4), is inspired by
this observation.

3.5 Knowledge Distillation Constraint
The distinct nature of the representation space between the
teacher model–typically a neural network–and the student
model calls for a different approach than simply mimicking
the teacher model’s representation by the student model. In-
spired by the observation that semantically similar inputs
should generate similar feature representation in a trained
neural network, and similar to the approach introduced by
Tung and Mori (2019), we propose a similarity-preserving
knowledge distillation method. We distill knowledge in the
student model such that input pairs that produce (dis)similar
feature representations in the teacher model have (dis)similar
representations in the student model.

For a dataset of size N , we denote the feature represen-
tation extracted from the teacher and the student models by
F t ∈ RN×Ct and F s ∈ RN×Cs , correspondingly. Here Ct

and Cs are the sizes of the feature vectors for the teacher
and student models. For the student model, we assume each

row n of F s is a function of the corresponding inferred local
latent variable: F s

[n,:] = f(qϕz (zn|xn)). Note that this can
also be an identity function; for instance, in the case of a
topic model we use topic proportions as feature representa-
tion in the student model. Following Tung and Mori (2019),
we define the knowledge distillation constraint to ensure the
differences between the ℓ2-normalized outer products of F s

and F t are less than some predefined tolerance level η.
Concretely, we first compute the similarity between the

feature representations via a dot product and obtain the fol-
lowing N ×N matrices:

F̃ s = F s · F s⊤ and F̃ t = F t · F t⊤. (5)

Next, we normalize F̃ s and F̃ t by applying ℓ2 normalization
to each row and obtain F̄ s and F̄ t. Finally, we define the
constraint as: 1

N2

∥∥F̄ s − F̄ t
∥∥2
F
< η. Where ∥ · ∥F denotes

the Frobenius norm. We write our constrained optimization
problem as:

min
ϕθ,ϕz

− L(ϕθ, ϕz;xi) (6)

s.t.
1

N2

∥∥F̄ s − F̄ t
∥∥2
F
< η.

Using the Lagrange multipliers, the constrained version
of Eq. 1 can be written in an unconstrained format with a
multiplier γη > 0 corresponding to a tolerance level η:

min
ϕθ,ϕz

−L(ϕθ, ϕz;xi) + γη
1

N2

∥∥F̄ s − F̄ t
∥∥2 . (7)

In practice, we use stochastic optimization and subsample
data in mini-batches of size B. We estimate the gradients
of the objective function for the full dataset based on the
mini-batches. Furthermore, since there is no analytic form
for the relationship between γη and η, we treat γη as a hyper-
parameter.

4 Experiments
4.1 Disease Subtyping in Chronic Obstructive

Pulmonary Disease (COPD)
Task COPD, one of the leading causes of death worldwide
(World Health Organization 2018), is characterized by inflam-
mation of the airway, and is a highly heterogenous disease
(Castaldi et al. 2017; Chen, Xu, and Xiao 2013). Computed
tomography (CT) imaging, is used for qualitative and quan-
titative evaluation of tissue inflammation and destruction in
COPD.

Given that there are differences between risk factors of
COPD subtypes, understanding disease subtypes is impor-
tant (Shapiro 2000). Different disease subtypes can manifest
themselves as different tissue patterns in a CT image and
multiple subtypes may be present simultaneously in a patient
(Batmanghelich et al. 2015). Hence, we can view the CT
image of a patient as a mixture of typical imaging patterns
that are common across the population and apply a topic
model with appropriate observation model. Our goal is to
identify tissue subtypes which are relevant for predicting clin-
ical measurements indicative of disease severity. The clinical
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Figure 2: Pairwise similarity matrices for the test dataset of
the disease subtyping experiment: Each row and each col-
umn corresponds to a patient in the test dataset. Brighter
colors indicate higher similarity values. The distillation con-
straint encourages the pairwise similarity matrix of the stu-
dent model (KD-LDA) to be similar to that of the teacher
model (Section 3.5). Compared to the G-LDA model (d)
which is unsupervised, the matrix for the supervised G-LDA
(c) is more similar to that of the teacher.

measurements that we are interested in are four positive real
variables, including percent predicted values of Forced Ex-
piratory Volume in one second (FEV1pp) and its ratio with
Forced vital capacity (FEV1/FVC), percent predicted val-
ues of Forced vital capacity (FVCpp) and Distance Walked.
These clinical-relevant variables are highly correlated with
disease severity and are described in details in the appendix.
In what follows, we use topic and subtype interchangeably.

Dataset We base our evaluation on a large-scale dataset
from COPDGene study (Regan et al. 2011) with lung CT im-
ages for 7,292 subjects. To extract features for each subject,
we first segment the lung volume into spatially homogeneous
regions using the SLIC superpixel segmentation algorithm
(Holzer and Donner 2014). Then for each supervoxel, we
extract a 32-bin intensity histogram features (Sorensen et al.
2012) and concatenate it with a rotationally invariant de-
scriptor (sHOG) proposed by Liu et al. (2014). This feature
representation has been shown to be relevant in characteriz-
ing emphysema (Shaker et al. 2010). The details of our data
preprocessing is provided in the appendix. We randomly split
the data into a 70% train, 15% validation and 15% test splits.

Student model We use a variant of Latent Dirichlet Alloca-
tion (LDA) with D-dimensional Gaussian observations as our
student model. In other words, each subtype k is represented
by a mean µk ∈ RD and a covariance Σk ∈ RD × RD. For
a population of S patients with K possible subtypes the nth

supervoxel of patient s, vsn, is generated by the following
generative process:

πs ∼ Dir(α0) s ∈ {1 · · ·S}
µk,Σk ∼ NIW(ξ0) k ∈ {1 · · ·K}

zsn ∼ Cat(πs) s ∈ {1 · · ·S}
vsn ∼ N(µzsn ,Σzsn) s ∈ {1 · · ·S} n ∈ {1 · · ·Ns}

where Dir(α0) is the Dirichlet distribution with concentra-
tion parameter α0, NIW(ξ) is the Normal-Inverse-Wishart
distribution with hyper-parameter ξ, Cat indicates the cate-
gorical distribution, πs is the topic distribution for patient

s, zsn represents the topic assignment for supervoxel n of
patient s, and Ns is the number of supervoxels in patient s.

For inference, we use ADVI scheme for global latent vari-
ables µk and Σk, a recognition network for local latent vari-
ables πs, and marginalize over supervoxel’s topic assignment
zsn. As mentioned in Section 3.1, in our scheme we need
a transformation to real coordinate space for the variables
not in this space. To transform the πs variables drawn from
the Dirichlet distribution, we apply an inverse stick-breaking
transformation which maps the variables on a simplex of K
dimensions to an unconstrained space of dimension K − 1
(Linderman, Johnson, and Adams 2015).

We use the approximate posterior of subtype proportions
for patient s (πs) as feature representation of that patient.
Our goal is to predict the clinical measurements mentioned
above from πs for each patient. Our knowledge distillation
constraint is also applied to this local variable.

Teacher model For the teacher model we use the Sub-
ject2Vec (Singla et al. 2018) which is among the best dis-
criminative approaches for predicting disease severity on the
COPDGene dataset. The model is inspired by deep sets (Za-
heer et al. 2017) and transforms the input set of supervoxels
to a fixed-length representation. To aggregate the supervoxels,
it adaptively weights each one based on its contribution to the
prediction of disease severity. We use the 128-dimensional
learned feature vectors from this model for our knowledge
distillation constraint. The predictive performance of this
model is shown in Table 1 to present the performance up-
per bound. The pairwise similarity matrices for the student
and teacher models along with those for the baselines are
presented in Fig. 2.

Baselines We denote the basic model without any knowl-
edge distillation or supervision by G-LDA, the model with
joint modeling of labels and observations by Supervised G-
LDA, and the model with knowledge distillation by KD-LDA.
For predicting the clinical measurements in the G-LDA base-
line, we train a linear regression model on the posterior of
topic proportions q(πs|vs.). For the supervised G-LDA, we
model label ys as ys|πs ∼ N(f(πs), σ0), where f is a learn-
able linear function and σ0 is a hyperparameter. For the KD-
LDA, similar to G-LDA, we train a linear model on the in-
ferred topic proportions. See appendix for the hyperparameter
setting and details of all the experiments.

Results To evaluate our model we need to show improve-
ment of the predictive performance while not significantly
affecting the generative aspect of the model. Table 1, shows
that our model outperforms the baselines in terms of the co-
efficient of determination R2 of the prediction. To show our
method does not significantly affect the generative aspect of
the model, we report ELBO in Table 2. While the supervised
G-LDA can result in worse ELBO values for some clinical
measurements, our method does not have a significant impact
on ELBO. We visualize the learned subtypes in Fig. 3a, which
shows that different subtypes focus on different anatomical
regions. Furthermore, we show the average distributions of
subtypes and their relation with disease severity in Fig. 3b.
To categorize the disease severity, we use Global Initiative
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Figure 3: Disease Subtyping Experiment: (a) Visualization of spatial average of the learned subtypes across the population shown
on a coronal slice of a lung atlas. (b) Subtype proportions averaged over subsets of the population with GOLD score values
0, 1, 2, 3, and 4. Higher values mean more severe disease. All bars have equal sizes but the proportion of subtypes varies. The
proportion of subtype 1 increases and subtype 2 decreases as we move from GOLD score 0 to 4 (indicating severely diseased).

R2

Subject-Level Descriptor FEV1pp FEV1/FVC FVCpp Distance Walked

Subject2Vec (Teacher) 0.65 0.70 0.28 0.16

G-LDA 0.16 ±0.04 0.30 ±0.05 0.03 ±0.01 0.05 ±0.01
Supervised G-LDA 0.29 ±0.05 0.49 ±0.05 -0.47 ±0.07 0.06 ±0.02
KD-LDA 0.49 ±0.01 0.61 ±0.02 0.15 ±0.01 0.14 ±0.01

Table 1: Performance of predicting clinical-relevant variables
(FEV1pp , FEV1/FVC, FVCpp, and distance walked) com-
pared across G-LDA, supervised G-LDA, and our method
KD-LDA. Our method outperforms the rest in all clinical
metrics. Results are averaged across 5 runs for each method.
The teacher (Subject2Vec) model’s performance is added as
a reference. Note that for G-LDA, we need to train a separate
model for each clinical variable.

ELBO (×103 )

Subject-Level Descriptor Unsupervised FEV1pp FEV1/FVC FVCpp Distance Walked

G-LDA -2.88 ±0.08 - - - -
Supervised G-LDA - -2.72 ±0.01 -2.73 ±0.01 -3.01 ±0.01 -3.09 ±0.01
KD-LDA -2.73 ±0.01 - - - -

Table 2: ELBO values for the G-LDA, Supervised G-LDA,
and KD-LDA. Results are averaged across 5 runs for each
method. Note that only the supervised G-LDA has different
ELBO values depending on the clinical measurement we
want to predict. This is due to the fact that we are modeling
the observations and labels jointly in this model. The differ-
ence between KD-LDA and G-LDA is not significant.

for Obstructive Lung Disease (GOLD) which is a discrete
variable between zero and four. Zero is used for people at risk
(normal spirometry but chronic symptoms), and 1-4 denote
mild to very severe COPD. In Fig. 3b, each bar represents
a sub-population of patients with a particular GOLD score
and colors within the bar are the average proportion of a sub-
type within that sub-population. The results in Fig. 3b show
that the proportion of subtype 1 increases as we move from
GOLD score 0 to 4 (indicating severely diseased). Subtype 2
and 5, in contrast, decrease with increased severity.

4.2 Dynamics Modeling of Patients’ Clinical States
for Sepsis Monitoring

Task We focus on the task of sepsis disease progression
monitoring in the intensive care unit (ICU). Our aim is to
identify patients’ clinical states of health to generate early
alerts of impending physiological deterioration of patients
at high-risk of in-hospital mortality. We evaluate the clinical
utility of the state marginals learned from our approach in
estimating patients’ mortality risks. We also demonstrate that
the latent states learned through our approach contain clini-
cally rich information that are more informative of patients’
end-organ status, as indicated by the widely-used Sequen-
tial Organ Failure Assessment (SOFA) score (Vincent et al.
1996), in comparison to the baselines. In what follows, we
use latent state and clinical state interchangeably.

Dataset We extract the cohort from MIMIC-III (Johnson
et al. 2016), a public, de-identified critical care database. We
use the criteria defined by Singer and et al. (2016) for our
sepsis cohort and limit to patients with at least 48-hours of
ICU data, giving a total cohort of 11648 patients. The dataset
includes a total of 29 time-varying physiological and clinical
variables. We randomly split the dataset into 70% train, 15%
validation, and 15% test splits.

Student model We use an autoregressive hidden Markov
Model (AR-HMM) as our student model. For a population of
S patients, each with covariates of dimension D and length
Ts, we model the cohort times series as an order 1 switching
vector autoregressive process with K possible latent states,
with the k-th state parameterized by θk = {Ak, bk,Σk},
where AR coefficients Ak ∈ RD×RD, bias vector bk ∈ RD,
noise covariance Σk ∈ RD × RD. Let xs

t represents the
covariate of patient s at time step t. The generative process is
as follows:



(a) (b)

Figure 4: Dynamics Modeling of Clinical States Experiment: (a) Distribution of SOFA scores, a clinical measure of patients’ end-organ
function, for learned latent states. Higher SOFA indicates worse end-organ function. The distributions are more distinguishable for KD-
ARHMM than for G-ARHMM, which indicates our proposed approach infers clinically meaningful latent states. (b) Segmentation of inferred
clinical states for a high-risk patient with worsening end-organ function. KD-ARHMM segmentations correlate more with SOFA score
trajectory.

πk ∼ Dir(α) k ∈ {1 · · ·K}
zst ∼ Cat(πzs

t−1
)

xs
t ∼ N (Azs

t
xs
t−1 + bzs

t
,Σzs

t
),

where πk is the state-specific transition distribution for state
k, and zst represents the latent state for covariates of patient
s at time t. For a patient s, we use the average marginal
of approximate posterior distribution for the clinical states
(zs) as feature representation of that patient. Our goal is to
model the progression of patients’ health states, and predict
in-hospital mortality from zs for each patient.

Teacher model For the teacher model, we use a long short-
term memory network (LSTM) which has shown to be ef-
fective in prediction-based healthcare related tasks (Tomašev
et al. 2019; Xiao, Choi, and Sun 2018; Choi et al. 2016). We
use the hidden state representations from this model at the
final timestep for our knowledge distillation constraint. The
predictive performance of this model is shown in Table 3 to
present the performance upper bound.

Baselines We denote the basic model without any knowl-
edge distillation or supervision by G-ARHMM, the model
with joint modeling of labels and observations by Supervised
G-ARHMM, and the model with knowledge distillation by
KD-ARHMM. For predicting in-hospital mortality in the G-
ARHMM and KD-ARHMM, we follow a two-stage process
similar approach to the one in Section 4.1. For the supervised
G-ARHMM, we have the same generative process for the
labels as supervised G-LDA.

Results Table 3 shows that our model outperforms the
baselines in terms of AUROC of the prediction, with 95%
confidence intervals (DeLong, DeLong, and Clarke-Pearson
1988). In terms of ELBO our method even improves the gen-
erative performance. In Fig. 4a and Fig. 4b we show that
KD-ARHMM infers clinically meaningful latent states in
comparison to the baseline. See appendix for the pairwise
similarity matrices for the student and teacher models and

AUROC (95% CI) ELBO (×105)

LSTM (Teacher) 0.71 (0.68, 0.74) N/A

G-ARHMM 0.56 (0.52, 0.59) -55.24
Supervised G-ARHMM 0.56 (0.52, 0.59) -55.24
KD-ARHMM 0.65 (0.61, 0.68) -3.94

Table 3: Performance of predicting in-hospital mortality compared
across G-ARHMM, supervised G-ARHMM, and our method KD-
ARHMM. The teacher (LSTM) model’s performance is added as a
reference.

the hyperparameter settings.

5 Concluding Remarks

We introduced a framework for knowledge distillation
in probabilistic graphical models by adding a similarity-
preserving constraint to the variational objective function.
The constraint encourages the pairwise similarity matrix of
the student model (i.e. graphical model) to be similar to that
of the teacher model (i.e. a discriminative model with supe-
rior predictive performance). To make the framework general,
we employed BBVI framework and combined ADVI and
AEVB to handle both local and global variables. We demon-
strated the performance of our model compared to reasonable
baselines and showed that improvement in the predictive
performance in our model does not significantly impact the
generative aspect of it. Following black-box variational in-
ference means we are vulnerable to its known weaknesses:
underestimating the posterior variance, sensitivity to initial-
ization, and amortization gap (Cremer, Li, and Duvenaud
2018). On the other hand, building our method based on
BBVI means we can benefit from the new developments that
try to tackle these issues (e.g. (Giordano, Broderick, and
Jordan 2018; Cremer, Li, and Duvenaud 2018)). An avenue
for future research and further theoretical analysis could be
understanding these limitations in the context of knowledge
distillation.
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