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Abstract

We study the “percolation” of information of common interest
through a large market as agents encounter and reveal information
to each other over time. We provide an explicit solution for the dy-
namics of the cross-sectional distribution of posterior beliefs. We also
show that convergence of the cross-sectional distribution of beliefs to
a common posterior is exponential and that the rate of convergence
does not depend on the size of the groups of agents that meet. The
rate of convergence is merely the mean rate at which an individual
agent is matched.

For a setting in which a large number of asymmetrically informed agents
are randomly matched into groups over time, exchanging their information
with each other when matched, we provide an explicit solution for the dy-
namics of the cross-sectional distribution of posterior beliefs. We also show
that convergence of the cross-sectional distribution of beliefs to a common
posterior is exponential and that the rate of convergence does not depend
on the size of the groups of agents that meet. The rate of convergence is
merely the mean rate at which an individual agent is matched. We provide
a market example based on privately held auctions to illustrate information
transmission in decentralized markets such as over-the-counter markets.

Suppose that each agent has A\ meetings per year, in expectation. At each
meeting, say an auction, m — 1 other agents are randomly selected to attend.

*Duffie: Stanford Graduate School of Business, 518 Memorial Way, CA 94305 (email:
duffie@stanford.edu); Giroux: unaffiliated (email: gastongiroux2000@yahoo.ca); Manso:
MIT Sloan School of Management, 50 Memorial Dr, MA 02142 (email: manso@mit.edu).



Each agent at the meeting reveals to the others a summary statistic of his
or her posterior, such as a bid for an asset, reflecting the agent’s originally
endowed information and any information learned from prior meetings. Over
time, the conditional beliefs held across the population of agents regarding
a variable of common concern (such as the payoff of the auctioned asset)
converge to a common posterior. We construct an associated mathematical
model of information transmission and calculate explicitly the cross-sectional
distribution of the posterior beliefs held by the agents at each time. We show
that convergence of these posteriors to a common posterior is exponential at
the rate of A, regardless of the number m of agents at each meeting.

An important role of markets and organizations, as argued for example
by Friedrich Hayek (1945) and Kenneth Arrow (1974), is to facilitate the
transmission of information that is dispersedly held by its participants. Our
results suggest that varying the size of the groups in which individuals ex-
change information does not facilitate information transmission, at least in
terms of the rate of convergence of posteriors. This point is further addressed
at the end of the paper.

Previous studies have considered the problem of information aggregation
in various contexts. For example, Sanford Grossman (1981) proposes the
concept of rational-expectations equilibrium to capture the idea that prices
aggregate information that is disperse in the economy. Robert Wilson (1977),
Paul Milgrom (1981), Xavier Vives (1993), Wolfgang Pesendorfer and Jeroen
Swinkels (1997), and Philip Reny and Motty Perry (2006) provide strategic
foundations for the rational-expectations equilibrium concept in centralized
markets. In a number of important settings, however, agents learn from local
interactions. For example, in over-the-counter markets, agents learn from the
bids of other agents in privately held auctions. Asher Wolinsky (1990), Max
Blouin and Roberto Serrano (2001), and Michael Golosov, Guido Lorenzoni,
and Aleh Tsyvinski (2008) study information percolation in these markets.*
In social learning settings, agents learn from direct interactions with other
agents. Abhijit Banerjee and Drew Fudenberg (2004) study information per-
colation in a social learning context. In contrast to previous studies of learn-
ing through local interactions, we allow for meetings that have more than
two agents, and we explicitly characterize the percolation of information and

! Ariel Rubinstein and Asher Wolinsky (1985) and Douglas Gale (1986a, 1986b) study
decentralized markets without asymmetric information. Mark Satterthwaite and Artyom
Shneyerov (2003) study decentralized markets with private-value asymmetric information.



provide rates of convergence of the cross-sectional distribution of beliefs to a
common posterior.

Our results extend those of Darrell Duffie and Gustavo Manso (2007), who
provided an explicit formula for the Fourier transform of the cross-sectional
distribution of posterior beliefs in the same setting, but did not offer an
explicit solution for the distribution itself, and did not characterize the rate
of convergence of the distribution.

Section I provides the model setting. Section II provides our results for
the traditional search-market setting of bilateral (m = 2) contacts. This also
serves as an introduction to the results for the case of general m, which are
presented in Section III.

I The Basic Model

The model of information percolation is that of Duffie and Manso (2007). A
probability space (2, F,P) and a “continuum” (a non-atomic finite measure
space (G,G,v)) of agents are fixed. Without loss of generality, the total
quantity v(G) of agents is 1. A random variable X of potential concern
to all agents has two possible outcomes, H (“high”) and L (“low”), with
respective probabilities v and 1 — v.

Each agent is initially endowed with a sequence of signals that may be
informative about X. The signals {si,...,s,} primitively observed by a
particular agent are, conditional on X, independent with outcomes 0 and 1
(Bernoulli trials). The number n > 0 of signals as well as the probability
distributions of the signals may vary across agents. Without loss of generality,
we suppose that P(s; = 1| H) > P(s; = 1| L). A signal i is informative if
P(s; =1|H) > P(s; = 1| L). For any pair of agents, their sets of originally
endowed signals are independent.

By Bayes’ rule, the logarithm of the likelihood ratio between states H

and L conditional on signals {s1,...,s,} is
P(X=H|s1,...,8) v
1 =1 0 1
OgP(X:L|sl,...,sn) 1, " (1)

where the “type” 6 of this set of signals is

0 = ; log 72(&1 ‘| ;I)) (2)



The higher the type 6 of the set of signals, the higher is the likelihood ratio
between states H and L and the higher the posterior probability that X is
high.

Any particular agent is matched to other agents at each of a sequence of
Poisson arrival times with a mean arrival rate (intensity) A, which is common
across agents. At each meeting time, m—1 other agents are randomly selected
from the population of agents.? The meeting group size m is a parameter
of the information model that we shall vary. We assume that, for almost
every pair of agents, the matching times and counterparties of one agent are
independent of those of the other. We do not show the existence of such a
random matching process.?

Suppose that whenever agents meet they communicate to each other their
posterior probabilities, given all information to the point of that encounter,
of the event that X is high. Duffie and Manso (2007) provide an example
of a market setting in which this revelation of beliefs occurs through the
observation of bids submitted by risk-neutral investors in an auction for a
forward contract on an asset whose payoff is X. Using the same arguments
as in Proposition 3 of Duffie and Manso (2007), we know that whenever an
agent of type 6 meets an agent with type ¢ and they communicate to each
other their posterior distributions of X, they both attain the posterior type
0 + ¢. Moreover, whenever m agents of respective types ¢1,..., ¢, share
their beliefs, they attain the common posterior type ¢1 + -+ - + ¢p.

We let 1, denote the cross-sectional distribution of posterior types in the
population at time ¢. That is, for any real interval (a,b), p((a,b)) (also
denoted 1 (a,b) for simplicity) is the fraction of the population whose type
at time ¢ is in (a,b). Because the total quantity v(G) of agents is 1, we can
view p; as a probability distribution. The initial distribution g of types is

2That is, each of the m — 1 matched agents is chosen at random from the popula-
tion, without replacement, with the uniform distribution, which we can take to be the
agent-space measure . Duffie and Yeneng Sun (2007) provide a complete construction for
independent random matching from a large set (a non-atomic measure space) of agents,
for the case m = 2.

3For the case of groups of size m = 2, Duffie and Sun (2007) show existence for the
discrete-time analogue of this random matching model. For the case of a finite number of
agent types, the associated exact law of large numbers for the cross-sectional distribution
of the type processes is provided by Duffie and Sun (2005). Gaston Giroux (2005) proves
convergence of the naturally associated finite-agent discrete-time model to the analogous
continuous-time model matching model of Duffie, Nicolae Garleanu, and Lasse Pedersen
(2005) as the number of agents grows large.



that induced by some particular initial allocation of signals to agents. In the
following analysis we assume that there is a positive mass of agents that has
at least one informative signal. This implies that the first moment m; (p) is
strictly positive if X = H, and that my(ug) < 0 if X = L. We assume that
the initial law 4o has a moment generating function, z — [ e 1o(df), that
is finite on a neighborhood of z = 0.

II Two-Agent Meetings

We now calculate the explicit belief distribution in the population at any
given time, and the rate of convergence of beliefs to a common posterior, in
a setting with m = 2 agents at each meetings. This is the standard setting for
search-based models of labor, money, and asset markets. In this setting, the
cross-sectional distribution of types is determined by the evolution equation

t
utzuo+A/(us*us—us)d87 (3)
0

where * is the convolution operator. This is intuitively understood if u; has
a density f;( ), in which case the density f;(0) of agents of type 6 is reduced
at the rate Af;(6) at which agents of type 6 meet other agents and change
type, and is increased at the aggregate rate A [ f;(6 — y) fi(y) dy at which an
agent of some type y meets an agent of type # —y, and therefore becomes an
agent of type 6.

The following result provides an explicit solution for the cross-sectional
type distribution, in the form of a Wild summation.*

Proposition 1 The unique solution of (3) is
e = Z e—)\t<1 o 6_)"5)"_1;18”, (4)
n>1
where p*™ denotes the n-fold convolution of a measure p.

Proof As in Duffie and Manso (2007), we write the evolution equation (3)
in terms of the Fourier transform (-, ¢) of p, as

9 (s, t)
ot
4See E. Wild (1951).

= —A\p(s,t) + Ap?(s, 1), (5)




with solution

¢(s,0)
1- Q0($> 0)) + Q0($> 0)

This solution can be expanded as

pls,t) =D e (1 =)l (s,0), (7)

n>1

Q0($> t) = 6”(

which is identical to the Fourier transform of the right-hand side of (4). =

The Wild summation (4) shows that at each point in time the cross-
sectional distribution of types is a mixture of convolutions of the initial dis-
tribution sy of types. In the Wild summation (4), the term e~ (1 — e~ )1
associated with the n-th convolution of pg represents the fraction of agents
that has been involved in (n — 1) direct or indirect meetings up to time ¢.°

This solution for the cross-sectional distribution of types is converted to
an explicit distribution for the cross-sectional distribution m; of posterior
probabilities that X = H, using the fact that

b v
m(0,0) = g <—oo, log = — log m) ) (8)

Like 1, the beliefs distribution m; has an outcome that differs depending on
whether X = H or X = L.

We now provide explicit rates of convergence of the cross-sectional distri-
bution of beliefs to a common posterior. In our setting, it turns out that all
agents’ beliefs converge to that of complete information, in that any agent’s
posterior probability of the event {X = H} converges to 1 on this event and
to zero otherwise. In general, we say that m; converges to a common posterior
distribution 7., if, almost surely, m; converges in distribution to 7., and we
say that convergence is exponential at the rate a > 0 if, for any b in (0, 1),
there are constants kg and k; such that

e o < |m(0,0) — oo (0,0)] < e ¥hiy.

Thus, if there is a rate of convergence, it is unique.

5Agent A is involved in an indirect meeting with agent C' if agent A is involved in
a direct meeting with agent B after agent B has been involved in a (direct or indirect)
meeting with agent C.



Proposition 2 Convergence of the cross-sectional distribution of beliefs to
that of complete information is exponential at the rate \.

Proof Because of (8), the rate of convergence of m; is the same as the rate
of convergence to zero or 1, for any a, of y,(—o0, a). We will provide the rate
of convergence to zero of y;(—o00,a) on the event X = H. A like argument

gives the same rate of convergence to 1 on the event X = L.
From (4),

pu(—00,a) = e M pp(—00, a). (9)

We fix ng such that my (o) > a/n for n > ny and we let {Y,},>1 be inde-
pendent random variables with distribution po. Then,

> (5-2) <]

i=1

no
p(=s0.0) = 3 M(1—eNytp
n=1

n

> (%) <o oo

i=1

+ Z 6—>\t(1 o e—)\t)n—lp

n=no+1

It is clear that there exists a constant 3 such that, for all ¢, the first term on
the right-hand side of equation (10) is less than Be~*'. Therefore, we only
need to worry about the second term on the right-hand side of equation (10).
From a standard result in probability theory,® if Y is a random variable with
a finite strictly positive mean and a moment generating function that is finite
on (—c¢, 0] for some ¢ > 0, then P(Y <0) < _ci£18f<0E[eSY] < 1. For n > ny,

for some fixed ¢ > 0, we then have that

3 (yl. _ E) < 0] < inf E [6s<z;;1m—a/n>>]
n —c<s<0

i=1
( inf E[es(yl_“/”)])
—c<s<0

e“c< inf F [esyl})

—c<s<0

S €ac’7n, (11)

IN

6See, for example, Jeffrey Rosenthal (2000), pp. 90-92.



with v < 1. The first inequality comes from the standard result in probability
theory stated above and the last inequality comes from the fact that Y has
positive mean and a finite moment generating function.

From (11), we conclude that the second term on the right-hand side of
equation (10) is bounded by e“cﬁe”t. Therefore,

pol—oe,a)e ™ < p(—os,0) < (5+ e L) e (12)

and the proof is complete. m

III Multi-Agent Meetings

For the case of m agents at each meeting, the evolution of the cross-sectional
distribution of types is similarly given by:

t
e = fo + A/ (5™ = ps) ds, (13)
0

as explained in Duffie and Manso (2007). A solution for the cross-sectional
distribution of beliefs at any time ¢ is given explicitly by (8) and the following
extension of the Wild summation formula for the type distribution.

Proposition 3 The unique solution of (13) is

— —(m— n—1 *[(m—1)(n—1)+1
=3 Aoy (1L — el (14)

n>1

where a; = 1 and, forn > 1,

m—1
AUm—1)(n—1)41 = — | 1 — > I @in-ni-vey |- (15)

L] 5eens Z(mil) <n k=1
Y ip=nt+m—2

Proof From (13), the Fourier transform of y; satisfies

(s, t)
ot

= —p(s,t) + A" (s, 1), (16)



whose solution satisfies

. p(s, 00"
M1 = ) 17
wls,1) em=DX(1 — pm=1(5.0)) + pm~1(s,0) (17)
Following steps analogous to those of Proposition 1,
*(m—1 —(m— —(m— n—1, *(m—1)n
,Ut( ) :Ze ( l)At(l_e ( 1)>\t) 1%( n (18)

n>1

Let v; denote the right-hand side of (14). By recursively calculating the
convolution,

*(m—1)
*(m—1 _ —(m— n—1 *[(m—1)(n—1)+1
A (Y e € ) T
n>1
_ Zﬂne—(m—l)kt(l . 6_(m_1))‘t)n_1ug(m_l)n (19>
n>1
—(m— —(m— n—1 *(m—=1)n
_ Ze ( l)At(l_e ( l)At) 1%( ) ’ (20)
n>1
where
m—1
Bn = Z A[(m—1)(ip—1)+1]»

and where the last equality follows from the definition of ajn—1)n-1)+1) for
n > 1. Thus, ;™™ = 7Y and it remains to show that the distribution
[y is uniquely characterized by its convolution of order m — 1. This follows’
from the fact that o, and therefore p* for any ¢ and k, have a moment
generating function in a neighborhood of zero and a non-zero first moment

on the event {X = H}. m

"Because, on {X = H}, the derivative of the moment generating function of yg at zero
is the first moment of g, which is positive, the moment generating function is strictly less
than 1 in an interval (—e¢, 0], for a sufficiently small ¢ > 0. This implies that there is an
analogous explicit solution for the moment generating function of u;", for any n and ¢, on a
small negative interval. The (m — 1)-st root of the moment generating function of y; (mfl),
on such an interval, uniquely determines the associated measure ;. For additional details,

see Patrick Billingsley (1986), p. 408.



Proposition 4 For any meeting group size m, convergence of the cross-
sectional distribution of beliefs to that of complete information is exponential
at the rate .

Proof Again, it is enough to derive the rate of convergence of 1,(—00,a) to
zero on the event {X = H}. From (14),

pu(—00,a) > e~ po(—00, a). (21)

Now, from (18) and our analysis in Section /7, we know that for some con-
stant kK > 0,

1" (00, (m — 1)a) < ke~ (MDA, (22)
From the fact that

(1(=00,0))" ™ < ;"™ (=00, (m — 1)a), (23)
we conclude that

pi(—o00,a) < gpmete M, (24)

From (21) and (24), it follows that the rate of convergence of p;(—o0,a) to
zero is A, completing the proof. m

Because the expected rate at which a particular individual enters meetings
is A per year, independence and a formal application of the law of large
numbers implies that the total quantity of m-agent meetings per year is
A/m, almost surely. So the total annual attendance at meetings is almost
surely A per year, invariant® to m. Our results show that total attendance
at meetings is what matters for information convergence rates.

A simple calculation using equation (18) shows that the average number
of signals observed (directly or indirectly) by an agent grows exponentially
at rate (m — 1)\. This stands in contrast with Proposition 3, which shows

8This is not about large numbers, or uncertainty. For example, suppose each member
of a group {4, B,C,D} of 4 agents holds one meeting with a different member of the
group. For example, A meets with B, and C' meets with D. Then there is a total of two
meetings, and each individual attends one meeting. If the 4 agents meet all together, once,
we have the same total attendance, and the same rate at which each individual attends a
meeting.

10



that convergence to a common posterior is exponential at the rate A, which
is independent of meeting group size. The proof of Proposition 3 sheds
some light on this issue. From equation (21), one can see that the rate of
convergence when m agents meet is at most A due to the first term in the
Wild summation (14), which is associated with agents that have never met
other agents. In our model, after some time has passed, most of the agents
will be very well-informed and meeting only one such well-informed agent is
likely to be enough to move an agent’s beliefs close to the truth. Therefore, it
is the agents who have not been involved in any meetings that are responsible
for slowing down convergence. From the Wild summation representation, the
fraction of agents that have not been involved in any meetings up to time ¢
is equal to e, which is independent of meeting group size.

IV Market Example

In this section, we use our model to study information transmission in a
decentralized market setting similar to that studied in Duffie and Manso
(2007).

In this market example, uninformed buyers hedge the uncertainty in X,
which is assumed to be revealed at some time 7" > 0. A continuum of risk-
neutral sellers are initially endowed with signals about X, so that the initial
cross-sectional distribution of their types is .

When an uninformed buyer arrives at the market he contacts two in-
formed sellers randomly selected from the population and conducts a second-
price auction, to determine the price at which he purchases a financial asset
that pays 1 at time 7' if the true state of nature is H and 0 otherwise. Af-
ter the purchase, the uninformed buyer leaves the market. Each informed
seller participates in a sequence of these auctions with Poisson arrival times
and mean arrival rate (intensity) A. All bids that occur in an auction are
observed by only the buyer and by the sellers participating in that auction.
The discount rate is normalized to 1.

9For the particular market example we study here, it is important to assume that
the probabilities P(s; = 1| H) and P(s; = 1| L) of each of the signals in the economy
are common knowledge among sellers. However, because the equilibrium in each of the
auctions will be independent of the cross-sectional distribution of posteriors, it is not
necessary to assume that sellers know the initial distribution of information endownment
in the population.

11



These second-price common-value auctions are known as “wallet games”
and have been studied by Paul Klemperer (1998). In the unique symmetric
equilibrium of each auction, the sellers bid their posterior probabilities that
X is high. Given that the opponent is following the same strategy, a seller
of posterior p; who wins at price p is pleased to be a winner as long as p; < p
but would lose money for being a winner at any lower price. This equilibrium
is independent of the cross-sectional distribution of posteriors.

Since there is a one-to-one mapping between type and posterior, informed
sellers learn the types of the other seller participating in the auction. The
dynamics of information transmission is thus as described in Section 11.1°

For a numerical example, we let A = 1, so that one unit of time is the
mean time inter-contact time for the informed sellers, and we let v = 1/2
so that the common prior that the state is H is 1/2. Each seller initially
observes a signal s such that P(s = 1|H) + P(s = 1|L) = 1 and P(s = 1|H)
is drawn from a uniform distribution over the interval [1/2,1]. On the event
{X = H} of a high outcome, this initial allocation of signals induces an initial
cross-sectional density f(p) = 2p for the prior likelihood p of a high state,
for p € [0,1]. Using (8) and a change of variable argument, we obtain the
initial distribution g of types. We then use (3) and another simple change
of variables argument to obtain the evolution of the cross-sectional posteriors
on the event {X = H}.

The evolution of the cross-sectional posterior probability is illustrated in
Figures 1. Figure 2 shows that the evolution of the mean of the cross-sectional
distribution of posterior probability of a high state, and the evolution of the
cross-sectional standard deviation of this posterior probability.

10For the case with more than two sellers, in equilibrium, informed sellers do not bid
their types, but the bidding strategy will still be strictly increasing in type. Therefore,
when there are more than two sellers, the results of Section I'IT describe the dynamics of
information transmission.

12
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Figure 1: On the event {X = H}, the evolution of the cross-sectional population density
of posterior probability of the event {X = H}.
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