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1 Introduction

Linguists define a phoneme as a shorthand notation for a set of features which
describe the operations of the articulators required to produce the meaningful
aspects of a speech sound. In this paper we discuss a method of representing
the speech waveform in terms of the same set of distinctive linguistic features,
rendering it appropriate for a linguistically-motivated method of lexical access.

Spoken words are composed of phonemes in the same manner that written
words are composed of letters; as handwritten script bears the characteristics
of an individual writer, acoustic realizations of phonemes bear characteristics
specific to an individual speaker. For the sake of minimal effort in generation,
both handwritten text and continuous speech trains are subjected to a defor-
mation of the individual building blocks of the message in order to smoothly
link components into a unified chain.

However, in both handwriting and speech, the variations to the prototypical
building blocks must not be so large as to distort the inherent qualities of the
units if the result is to be understandable by other individuals. This fact suggests
a description of the characters in terms of a set of attributes which are preserved
under allowable deformations of the generic unit.

Just as letters may be described in terms of the strokes of the pen needed
to produce them or by the manifestations of these actions such as line segments
and curves, phonemes may be described in terms of the actions of a speaker
needed to produce them, as well as time-varying frequency spectra which result
from these actions.

In this paper the second representation is viewed as a set of observations
which provide information about the first; estimates of the speaker-independent
actions required to produce a sound are derived from the speaker-dependent
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acoustic manifestations. We construct a flexible framework whose structure mir-
rors phenomena which occur in the speech signal to represent the speech wave-
form in terms of the speaker actions used to describe abstract speech sounds.
Statistical models of arbitrary complexity may be incorporated into the general
framework.

Although the introduction of an intermediate level of abstraction between
the physical and lexical representations of speech corresponds to a loss of in-
formation in an information theoretic sense, the goal of a representation for
the purposes of recognition is not necessarily to preserve the raw information
content of the signal but to concisely capture those aspects of it which reflect
distances from lexical items in a form which can be readily modeled. The suc-
cess of our simple Gaussian models, as demonstrated in section ?7, highlights
the fact that the underlying framework is capturing aspects of the signal which
convey information relevant to phonemic distinctions.

In section 77 we discuss physical and abstract representations of speech and
their implications for modeling and lexical access. In section 77 we describe
our framework for parameterizing the speech waveform in terms of linguistic
features. This representation of the speech waveform is appropriate for lexical
access on the basis of features in the task of continuous speech recognition; an
application of this method of lexical access, secondary classification in keyword
spotting, is described in section ?7.

2 Representations of Speech

Related to the method of lexical access enabled by any representation is
the notion of distance between phonemes implied by it. Most automatic speech
recognition systems represent lexical entries in terms of a phonemic spelling and
access words in terms of sequences of phonemes. That representation, however,
disregards some of the phenomena which occur in conversational speech. In
particular, relaxation of requirements on the production of a particular feature
may occur. The following discussion is patterned after one given by Stevens [?].
Consider the expression “did you” which, when pronounced carefully, corre-
sponds to the phonemes [D-IH-D-Y-UW]. When pronounced casually, however,
the result may correspond to the phonemes [D-IH-JH-UH]. Phonemically, a con-
siderable change has taken place in going from the theoretical representation of
the expression and the representation corresponding to the utterance produced.
Table ?? provides a representation of each of the pronunciations in terms of
linguistic features, as will be described in section ??. In the feature represen-
tation of the utterances, we see that the matrix entries remain largely intact in
going from the first pronunciation to the second, with only the features anterior
and strident changing in the collapsing of the D-Y to JH and the feature tense
changing in the final vowel. The task of recovering the word sequence is more



tractable from the second representation than from the first, since in the feature
representation distance reflects directly phonemic differences, while distance in
the waveform space is taken as geometric distance between spectra which may
be swamped with differences which are not phonemically relevant. This claim
is verified by our experimental results of section ??7 in which performing lexical
access on the basis of features rather than phonemically improves discrimination
among potential occurrences of a word of interest.

As another example, while one may feel that the phonemes “m” and “b” are
close in some perceptual space, these sounds are quite different spectrally. In
the feature representation, however, they differ in only one feature, so that the
intuitive proximity is captured.
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Table 1: Feature matrices for careful as well as casual pronunciations of “did you.”

In section 7?7 we discuss a physical representation used for automatic speech
recognition; in section ?? we describe an intermediate, abstract representation
of speech in terms of linguistic features.

2.1 A Physical Representation

Recognition is simply a representation at a certain level of abstraction. For
example, a hidden-Markov-model-based continuous speech recognition system
(HMM) with a null grammar finds the most likely sequence of lexical items to
represent a waveform, thereby transforming the physical representation directly
to a representation at the word level. With a language model, an HMM trans-
forms the waveform to a representation at the phrase level. As the HMM goes



directly from the physical representation to one in terms of lexical items, lexical
access is necessarily performed on the basis of the physical features.

Data Reduction

We begin our discussion of HMM representations with a description of the
physical features used in its models. The speech waveform is subjected to a data-
reduction stage whereby an attribute vector is extracted every 10ms to describe
the signal. At each frame, the waveform is assumed to be stationary over a 20ms
Hamming window. The short-time Fourier transform of each windowed section
of the waveform is computed and the logarithm of the squared magnitude of
the spectrum is retained. The frequency axis is warped according to a mel
transformation [?] to imitate the processing performed in the human auditory
system, where spectral components at low frequencies are replicated with higher
spectral resolution than those which occur in high frequency regions. The inverse
FFT of the result is truncated to 14 cepstral coefficients to form the basic signal
representation in the neighborhood of the current frame. The Hamming window
is advanced 10ms and the computation is repeated to form the representation
of the next frame.

The average cepstral vector is computed for each utterance, and that average
is subtracted from each frame to provide the normalized representation used in
modeling. In the case of a stationary channel response convolved with the input
waveform, the result in the frequency domain is a multiplication of the channel
spectrum with the input spectrum. The logarithmic operation in computing the
cepstrum turns that multiplication into an additive operation which is canceled
through subtraction. Here we are assuming that every utterance is long enough
so that we have similar spectra in each utterance and long-term differences
between utterances are due only to channel variations.

Additionally, first and second derivatives of the cepstral vector are estimated
at frame for use as waveform attributes to be modeled.

Model Topology

Figure 77 shows the topology used to model the acoustic attributes which
result from the utterance of a single phoneme. The Markov model consists of 5
states connected in a left-to-right progression with skips allowed.

At each state a probability density function is parameterized to model the
variability in feature space incurred in physical attribute vectors aligning to
that state; transitions between states model variability in time as exponentially
distributed. Models for words are formed by concatenating the models of the
constituent phonemes.

Implicit in the Markov modeling of words in terms of physical attribute
vectors lies the assumption that the physical features are constant over short
periods, as the frames aligning to each state are modeled with static density



Figure 1: HMM topology for a single phoneme. Words are modeled by concate-
nating the models for the constituent phonemes.

functions. Going to an intermediate, linguistic feature representation, on the
other hand, allows for a relaxation of this constraint. In particular, the global
processing stage of our algorithm described in section ??, looks only at transi-
tional regions in assessing the linguistic feature content of the signal. Thus it
assumes that the abstract features, but not necessarily the physical ones, are
piecewise constant.

In contrast to the physical representation described in this section, we de-
velop in section ?? an intermediate interface between the physical and lexical
representations of speech.

2.2 An Intermediate, Linguistic Feature Representation

The set of features which distinguish English phonemes is not unique; several
sets have been introduced in the literature. The set which we shall adopt is,
for the most part, that of Chomsky and Halle [?]. Specifically, we consider the
following linguistic features, defined in terms of the required actions of a speaker
in producing that sound and accompanied by specific spectral characteristics:

VOCALIC Sounds produced with an unconstricted oral cavity and with vocal
cords which are positioned so as to allow spontaneous voicing. Vocalic
sounds are typically loud in relation to non-vocalic sounds and exhibit
visible formants (vocal-tract resonant frequencies) in the spectrum.

CONSONANTAL Includes sounds produced by forming an obstruction in
the midsagittal region of the vocal tract, resulting in a lower total energy
and lower first formant than non-consonantal sounds.

HIGH Sounds produced with the tongue body near the palate, resulting in a
lowered first formant.



LOW Sounds produced with the tongue and jaw lowered, resulting in a high
first formant.

BACK Includes those sounds produce with the tongue body toward the back
of the mouth, resulting in a lowered second formant.

ANTERIOR Sounds produced with a constriction of the vocal tract anterior
to the alveolar ridge.

CORONAL Includes those sounds for which the tongue blade is raised.

ROUND Sounds produced with rounded lips, causing all formants to lower
in frequency.

TENSE Sounds produced with a deliberate and accurate gesture. Tense
sounds are typically longer in duration with more extreme formant po-
sitions than non-tense sounds.

VOICE Sounds produced with the vocal folds vibrating, causing spectral res-
onances to become visible.

CONTINUANT Includes sounds for which the primary constriction of the
vocal tract is not so narrow as to block the air flow past it, resulting in
a smooth transition between the spectra associated with its predecessor
and the spectra representing a continuant sound.

NASAL Sounds produced with the velum open. For nasal consonants the
second formant is low in intensity and formant bandwidths are wide.

STRIDENT The air stream is directed against an obstructing surface, re-
sulting in a noisy spectrum with substantial high-frequency energy.

LABIAL The primary constriction is formed at the lips, leading to a lowered
first and second formant.

Tables 77 through ?? depict the binary linguistic feature representation of
each of the vowels and the consonants we model. We refer to phonemes by the
typewritten symbols used for labeling the TIMIT database. The “+” and “-”
entries in the tables indicate the state of the corresponding articulator in the
production of the sound. For example, sounds which are formed by rounding
the lips are “+round” while sounds which do not involve lip rounding are “
round.” Note that diphthongs have been excluded from the set of phonemes, as
they consist of a transition from one feature vector to another, and therefore are
the concatenation of two phonemes in this representation. In addition, neutral
vowels have been omitted as the feature configurations for these sounds are
volatile and “H” has been excluded because of its difficulty in fitting into the
linguistic feature framework [?]. We include a representation of quiet in order
to represent full closures in the same manner as the phonemes. We follow the



TIMIT notation of treating stop gaps as separate entities from the release even
though linguistically these two units together comprise a single phoneme.
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Table 2: Linguistic features for each of the vowel sounds considered.
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Table 3: Linguistic features for each of the glide, liquid, nasal, and affricate phonemes
considered, as well as the linguistic feature description of quiet.
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Table 4: Linguistic features for each of the plosive and fricative sounds considered.

Modern linguistic theory has departed from the notion of each phoneme
being represented by the entire set of features. For example, since the production
of vowels does not involve blocking the air flow through the vocal tract, the use
of the feature continuant to describe vowels is unnecessary. The reduction of
the representation to the non-redundant features describing each phoneme is
efficient for the purposes of coding. However, from the viewpoint of recognition,
the redundancies are desirable for recovery from errors as well as algorithm
simplicity. We include the full set of feature descriptors for each phoneme as a
sort of place keeper which will allow mathematical manipulation of our results,
in much the same way that vectors lying in the x-y plane are specified as [z,,0]
in three dimensions.

Alternatives to the notion of “feature bundles,” which connotes a lack of
structure of the features, have been explored [?], [?]. Studies in feature geome-
tries attempt to define hierarchical structures whose terminal nodes are the
distinctive features.

In that spirit, we classify features as being primary or secondary:

e Primary features: Sonorant, Vocalic, Consonantal, Instant Release, Con-
tinuant

e Secondary features: Strident, Tense, High, Back, Low, Anterior, Coronal,
Labial, Voice, Round, Nasal

where we have included in the list some commonly-discussed features which are
not included in the inventory of Chomsky and Halle. Our algorithm embodies




a two-stage hierarchical graph, with secondary features conditional upon pri-
mary feature configurations. This is similar conceptually to imposing a Markov
random field structure on the features in which a neighborhood is defined as a
primary feature configuration.

We contend that the primary features determine the gross spectral charac-
teristics of the resulting speech waveform; the other features modulate or make
fine structural changes to the basic pattern defined by the primary ones. There-
fore sounds which are characterized by the same primary features have similar
spectra qualitatively, while sounds which have different primary features are
fundamentally different. This fact implies that the features are encoded in the
waveform hierarchically, with the manifestation of secondary features dependent
on the configuration of the primary ones. For example, because G and IY have
different configurations of primary features, the feature +high will be encoded
differently in the waveform for the two phonemes.

The two-stage hierarchical search for features which is described in section 77
is essentially a search first for the manifestations of encoding a set of primary
features in the neighborhood of each frame and then, given those features, a
search for the secondary features, as well as a verification of the primary ones.
The estimation of the broad class as a whole, as will be described, is meant to
capture dependencies among the primary features.

3 Algorithm for Waveform Representation

In this section we describe the algorithm which results in a linguistic feature
representation of speech waveforms. Initially we represent the waveform in
terms of cepstra and their derivatives. The final representation is a probability
vector at each frame; each component of the vector denotes the probability of a
particular linguistic feature being encoded in the neighborhood of that frame.

An overview of the procedure is shown in figure ?7. The initial stage of the
hierarchical processing estimates the broad class of speech sounds represented.
Based upon this estimate, we make both local and global inquiries as to the
nature of the feature composition in the neighborhood of each frame. The
terms local and global are chosen to emphasize that probabilities of features for
a given frame are derived from narrow as well as wider windows in time around
that frame. The outputs of the two levels of processing are averaged in order
to arrive at the final estimate of the probability of each feature being encoded
in the neighborhood of each frame.

Section 7?7 describes the broad class estimation stage of processing. Sec-
tion 7?7 describes the temporally-local processing scheme by which we assign
probabilities of features being encoded in the waveform in the neighborhood of
each frame, while section 7?7 describes the temporally-global stage of processing.
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Figure 2: Overview of the system for assessing the linguistic feature content of
a speech waveform.

3.1 Broad Class Modeling

The acoustic manifestation of a linguistic feature is dependent on the broad
class of speech sounds to which the principally-represented phoneme belongs.
For example, as mentioned in section 72, the feature +high will be encoded in
the speech waveform differently in the cases of the vowel IY and the plosive G.
Furthermore, all frames of a phone which corresponds to the presence or absence
of a feature need not be spectrally similar. To capture time variations of the
acoustic correlates of the features, we model separately the beginning, middle,
and ending portions of the phones representing each broad class.

Each time frame t in the training set is assigned a truth label, 7(t) €
{1,...,8}, reflecting the broad class of speech sounds which that frame rep-
resents. Our experiments are done on the TIMIT database which provides
phonetic time markings. The broad-class label is the result of a many-to-few
mapping of the TIMIT labels, as indicated in table ?7.

[TYPE OF SOUND || CONSTITUENT TIMIT LABELS ]
VOWEL Y, UW, EY, OW, AA, IH, UH, EH, AH, AO, AE
GLIDE Y, W
LIQUID L, EL, R, ER, AXR
NASAL M, EM, N, EN, NG
PLOSIVE P,B,G,T,D,K
AFFRICATE CH, JH
FRICATIVE F,V, TH, DH, S, Z, SH, ZH
QUIET/VOICE BAR || H#, PCL, TCL, KCL, BCL, GCL, DCL, EPI, PAU

Table 5: Mapping from TIMIT label to broad class label.

Furthermore, each frame ¢ of the training set is assigned a section label,
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a(t) € {1,2,3}, indicating whether the frame represents the initial, middle, or
final third of a phone. Each phone is divided into three pieces of equal duration
in order to enable modeling of the time variation of the manifestation of a feature
within each broad class.

The broad class and section labels are used to segregate the frames in the
training set for the purposes of parameterizing statistical models. We have
chosen unimodal Gaussians to model each broad class portion. However, more
sophisticated models such as Gaussian mixtures or neural networks may be
easily substituted. For section 7 € {1,2,3} of phones representing broad class
k € {1,...,8} we estimate the model parameters as follows:

Ne, = Z 1

{tlo(t)=1,7(t)=k}

1

Peo = - Z z(t)
Y {tlo(t)=1,7(t)=k}

" 1 o

e, = o X, o(t) 27 (t) — A, ik,
ks telo(t)=i,7(t)=k}

That is, Ni, is the total number of frames in the training set estimated as being
drawn from the i-th third of a phone representing a phoneme in broad class
k, ik, is the sample average (vector) over those same frames, and 3, is the
sample covariance of that set of frames. We have that N, ~ N, ~ N;, with
differences arising due only to roundoff errors in dividing phones into thirds.
Given that section 7 of a phone representing broad class k is being produced,
the N —dimensional probability density function for observations is taken as:

L )

(2m) % |2, |2

The probability of each broad class being represented by each frame is calcu-
lated according to equation ??. These values will be used in the local processing
scheme described in section ??. For the global processing scheme of section 77
we need to go a step further and estimate the sequence of broad class portions
which each frame represents in a particular sentence. We assume a 3-state
left-to-right Markov model of broad classes to find the most likely broad class
sequence through an utterance. To estimate the transition probabilities among
states, the number of transitions on a frame-by-frame basis among the broad
class and section labels from the training data are counted. If we define the
number of transitions from state s; to state ¢; in the training set as T}, t,, then
the transition probability between these two states is estimated as the number
of transitions from state s; to state t; divided by the total number of transitions
from state s;:

p(z|t =k, 0 =1)

Ts,+,
8 3
Zf:l Zj:l T’l t;

[ 7% P
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We assign initial state probabilities as:

{1 s=8andi=1
o

1

~ 1 0 otherwise

Dynamic programming is used to find the most likely sequence of broad
classes arising in each sentence:

M
So*,...,Su" = arg 501'1.1.%&“ 7S, ’;I;[l p(2(t) | Sm) &5y 5

where Sp, € {s: :s € {1,...,8},1 €{1,2,3}} Vm.

3.2 Local Processing

The clustering provided by the broad class labels is used in building models for
frames which represent a given linguistic feature being encoded in the waveform
as well as for frames which represent the absence of that feature. Again we have
chosen unimodal Gaussian models, but more sophisticated statistical techniques
may be incorporated in the general framework. Each frame z(t) of the training
set is assigned a label 7/(t) € {0, 1} indicating whether that frame corresponds
to a “” value (r/ = 0) or a “+” value (r/ = 1) of each linguistic feature
f € {1,...,14}. All frames in the TIMIT training set in a given portion of
a broad class are divided into “feature +” and “feature -” subgroups for each
linguistic feature to be modeled.

Gaussian models of the waveform attribute vectors are parameterized for
each subgroup. We estimate the following model parameters:

N,{‘+ = Z 1
{t|o(t)=1,7(t)=k,77(t)=1}
N7 = 3 1
{t|o(t)=i,7(t)=k,7/(¢)=0}
AfF 1
i, = N > z(t)
ke {tlo(t)=t,7(t)=k,71(t)=1}
- 1
~f —
Pe, = NI Z: 2(£)
ky  {tlo(t)=1i,7(t)=k,7f(t)=0}

aft 1 e s

E{. - F Z z(t) 2T (t) — ;A{,‘ p.;:‘ +
ko {tle(t)=i,7(t)=k,77(t)=1}

N 1 =

B, = — a(t) 2T (t) - pf pf, T

Nk‘ {tlo(t)=1,7(t)=k,74(t)=0}
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where N ,{f indicates the number of frames which belong to portion i of a phone
representing broad class k and which correspond to a “+” value of feature f.

p{ * and f){j represent the sample mean and sample covariance, respectively, of
this set of frames. Similarly, N kf‘- indicates the number of frames which belong
to portion ¢ of a phone representing broad class k and which correspond to a

“.” value of feature f, with /.’2{‘_ and )f){ representing the sample mean and
sample covariance of these frames.

The N —dimensional probability density function of frames which represent
the presence of a given feature for portion i of a phone representing broad class
k is modeled as:

gt reart -1 .yt
A ~3=al T[] -4

p(zlkymf =1)= ——————e
K CORIME

Similarly, the density function of frames which represent the absence of a given
feature within the broad class portion is modeled as:

1 ~Ye-a )BT TMe-al)

p(zlki, 7l =0) = —5——+
( |! ) (27(‘)%|E£‘ ]_2_

We use Bayes’ Rule to give the probability of a given feature being encoded
in the neighborhood of a given frame:

p(r! =1z)p(z) = > p(zlks, = p(r! = 1]k:)p(k:|z)
i,k

p(r! =0le)p(z) = D plalki, v = 0)p(r! = O|k:)p(k:|z)
i,k

p(tf = 1|z)
p(rf =1jz) + p(r/ = 0|z)

Pr(tf = 1|z)

The local processing algorithm has some shortcomings which are addressed
through the complementary global processing of the next section. The primary
weakness of the local processing is that decisions about the feature composition
of each frame are made based upon a small neighborhood around that frame.
Information about spectra elsewhere in the waveform is incorporated into the
attribute vector describing each frame only through the use of cepstral deriva-
tives. A second weakness of the local processing is its failure to fully model the
interaction among features within each phoneme. Features are modeled within
estimated broad class regions, thereby modeling the dependence of the sec-
ondary features on the configuration of primary features. However, correlations
among secondary features are lost.
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3.3 Global Processing

The weaknesses of the the local processing discussed in section ?? are ad-
dressed through the complementary global processing described in this section.
The global processing takes into account the information present in the spectra
associated with one sound in describing the feature composition of a neighbor-
ing sound by explicitly modeling transitional regions, resulting in a more global
process than the procedure described in section ?7. In contrast to the bottom-
up procedure of the local processing, in which frames representing the “+” and
“” yalues of each feature were modeled directly within each broad class portion,
we use a top-down procedure in this section. Models here are at the diphone
level, and a mapping is performed to transform probabilities of phones into
probabilities of features. This method captures the potential interdependence
of features by modeling entire feature sets, or phonemes.

The coarticulatory effects introduced in continuous speech warrant process-
ing at a global level in order to incorporate information about a sound which
appears in the spectra outside of the corresponding phone as well as the defor-
mation of that phone due to feature spread across transitional regions.

The global algorithm relies on models of spectra in the neighborhood of tran-
sitions. We shun the notion of explicitly segmenting the waveform or searching
for “landmarks” as a preprocessing technique. Rather, we have viewed segmen-
tation as a byproduct of recognition on a course scale; a change in a broad
class estimate implies that a transition from one sound to another has occurred.
This approach is motivated by a view of segmentation as a phenomenon on
an abstract level rather than a physical one. The method for inferring a seg-
mentation is able to incorporate durational cues directly through the transition
probabilities in the Markov model.

We construct an attribute vector & for a transition occurring at time ¢, where

Zi:o z(t - k)

Zi=1 o(t + k)

and z is a 42-dimensional vector consisting of 14 normalized cepstra and their
first and second time derivatives.

T is defined to be the set of transitions in the data set; for training we take
T = {t: ¢(t) # ¢(t + 1)}, where ¢(t) is the TIMIT label occurring at frame ¢.
For testing, we take 7 = {t : 6(t) = 3,6(t + 1) = 1}, where &(t) € {1,2,3} is
the portion of a broad class at time ¢.

The limited number of training tokens of each transition mandates the use
of reduced-order models. We have used linear-discriminant analysis to reduce
the original 84 dimensions to 25. This technique consists of defining a set
of classes and computing the “within-class” and “between-class” covariance
matrices of the training samples. The within-class matrix W is defined as
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E[(% — peg)(% — pes)T] where ¢z is the class of observation & and p., is the
mean of that class; classes for the global processing LDA are phoneme transition
pairs. The between-class covariance matrix B is defined as E[(y — p)(y — p)7]
where p is the average across all the training data. The eigenvectors associ-
ated with the N largest eigenvalues of W~'B are taken as the N rows of the
dimension-reduction matrix 4.

For each transition in testing, we perform the transformation z’ = AZ and
evaluate the Gaussian models for each possible phone transition. The following
quantities are calculated for transitions from phoneme « to phoneme [ for each
a# B

1

Hop = > @(t) = Apap
B {11g(t) = ¢(t+1)=5)
1 PP 4 T
w T 3 Y ) — s = ATapAT

[+

P 1416(t)=ard(t+1)=B}

We shall say that o > f if the feature f is specified as “+” in the vector
of features representing phoneme «. We have that the probability of feature f
being encoded in the waveform in the left neighborhood of a transition at time
t is:

p(fle’) = Y p(6(t) = alz))

adf
= 33 p(6(t) = e (2 + 1) = Ble’)
adf B«
B ?(1—) 2 2 p(18(t) = e g(t+1) = Hlp(#(t) = e $(t + 1) = B)
a3 f f#a

This procedure sums over all possible right contexts for a given phone, and then
sums over all phones in which a given feature has the value “4” in order to arrive
at the probability that a feature is encoded in the neighborhood to the left of
the transition. We can also assess this probability for the frames to the right
of a transition by summing over left contexts. We have that the probability
of feature f being encoded in the waveform in the right neighborhood of a
transition at time 7 is:

p-(flz') = ZP(¢(7‘ +1) = a|z’)
adf
= Y > p(é(r) =B, é(r+1) = alz)
adf fEa
= Sy O 2w 18() = B.4(r + 1) = @)p(é(r) = A, ¢(r + 1) = a)

adf fEax
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The average of the probabilities derived from the left and right transitions
provides a globally-derived estimate of the probability of feature f being encoded
between the two transitions. That is, Vs : r < s < t, ps(flz’) = 3(pr+(fl2') +
pi—(fla"))-

In order to combine this global estimate of the probability of a given feature
being encoded in the waveform in the neighborhood of each frame with the local
estimate described in section ?? the average of the probabilities derived from
these two processes is taken.

4 Lexical Access by Features

The benefit of the feature representation lies in its enabling of a linguistically-
motivated method of lexical access. We have viewed the task of assessing con-
fidence in the recognition of a particular word of interest as an opportunity to
perform lexical access on the basis of linguistic features.

In our paradigm, a continuous speech recognition system finds the most
likely word sequence to account for an utterance. In addition, a set of keywords
is chosen. Each time one of the keywords is hypothesized, the event is labeled
with a score which is the average likelihood of the frames along the recognition
path of the HMM which pass through the keyword. This HMM score can be
interpreted as confidence in the hypothesis. From a receiver point of view,
hypothesizing a word of interest when that word was uttered corresponds to
a detection while incorrectly hypothesizing the keyword corresponds to a false
alarm. Thus, by ordering the HMM scores corresponding to the hypothesized
occurrences of a keyword we can generate a receiver operating characteristic
(ROC) to characterize our ability to efficiently detect that word.

In this section we consider the detection of the keyword “cuatro” in a Spanish
recognition task. Each utterance in which that word was hypothesized was
represented in terms of its linguistic feature content. We then used the state
alignment produced by the HMM to compare the observed linguistic features
to the configurations expected for the keyword for all frames aligning to states
within the word of interest.

Each phoneme of the keyword represents a binary linguistic feature config-
uration, while each observation is represented by a real-valued feature vector.
For each phoneme in the keyword we compute the average L; distance to its
theoretical configuration of all of the observation frames which aligned to that
phoneme. The individual phoneme scores are then averaged to generate an
overall score for the hypothesized occurrence of the keyword.

We compare the ROC curve generated by ranking the HMM scores for each
hypothesized occurrence of “cuatro” with that generated by ranking the lin-
guistic feature scores for the same events. The dashed line in figure 77, corre-
sponding to the HMM score, is little better than random; the ROC associated
with the linguistic feature score, shown in the solid line, indicates a significant
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Figure 3: ROC curves for the word “cuatro.” Dashed line indicates HMM
scoring, while solid line corresponds to linguistic feature scoring.

increase in detection performance.

5 Conclusions and Future Directions

In this paper we have described the general framework which we use to
parameterize the speech waveform in terms of linguistic features. We emphasize
that the specific models we chose could be increased in complexity as the amount
of training data increases if speed or storage constraints allow. In particular, the
use of Gaussian mixture models in the broad class and local processing stages
would enable sharper modeling of the decision spaces. However, the fact that
we achieve good results with simple unimodal Gaussian models indicates that
phonemically relevant aspects of the signal are indeed being modeled.

While our algorithm is a feed-forward one, we envision closing the feedback
loop. The estimated features can be compared with theoretical configurations.
The trajectory of the deviations from the ideal configurations may provide some
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information about the speaker. Compensation for the speaker-dependent as-
pects of the waveform by adjusting the input cepstra should reduce the vari-
ability in the input signal and make the modeling task easier, thereby increasing
its accuracy.

The linguistic feature representation provides an intermediate abstraction
appropriate for lexical access. We have described our approach to the task of
keyword detection from recognition, in which we perform lexical access on the
basis of features. We have shown the linguistic feature approach to provide
better detection for a given false alarm rate than what is achieved by ordering
the scores provided by the HMM.
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