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1. Introduction

The optimal control of systems governed by ordinary differential equations
has reached a satisfactory state of completion. A comprehensive account of this
theory may be found in the recent book of Lee and Markus [1]. Very general
nacessary conditions of optimality for abstract variational problems have
recently been obtained [2], [3], [4]. These necessary conditions contain as
special cases all known necessary conditions of optimality (including the
Pontryagin Maximum Principle) for systems governed by ordinary differential
equations as well as for certain classes of systems governed by functional
differential equations [5], [6]. As vet however, it is not clear whether
these necessary conditions for abstract variational problems can be specialized
to obtain results for systems governed by partial differential equations.

Even for systems governed by linear partial differential equations (for

exanple of the parabolic type) with a general cost function there is no result
analogous to the maximal principle., In this paper we shall attenpt to
suzmarize some of the results of optimal control that are known for systems
governed by linear parabolic and hyperbolic equations. We shall present results
on the existence of optimal controls, necessary conditions of optimality as
well as some computational techniques for obtaining the optimal control that

are currently available. The nost important work here is undoubtedly due to
Lions and his coworkers. Au account of this work nay be found in the recent
book of Lions [7] and in the forthcoming thesis of Bensoussan [8].

Contributions have also been made by Balakrishnan [9], [10], [11]; Fattorini [12,
[13], [14], [15], [16]; Friedman [17], (18], [19]; Phillipson-Mitter [20], [21]:
Phillipson [22]; Russell [23], [24], [25] in the U.S.A. Tor an account of work
in the U.S.S.R. see Egorov [26] and the recent survey article by Butkovsky,
Egorov and Lurie [27]. For formal derivations of some of the results presented
in this paper, see for example, Wang [28], [29]; Erzberger and Kim [30],

Kim and Erzberger [31]. ‘

To obtain results that are not purely formal, it is first necessary to
have a precise theory for the solution of boundary value problems for partial
differential equations., The situation here is infinitely more complicated than
in the ordinary differential case, where the Caratheodory existence theorem
(see for example, [32]) furnishes us with an absolutely continuous solution even
if the forcing term is measurable. Moreover in the ordinary differential
equation case, we are dealing with initial value problems which are intrinsicall-
simpler tham boundary value problems. In the partial differential equation case.
almost each case corresponding to the differential equation and the boundary
condition has to be treated separately, care has to be taken that the fornmulated
problem is well posed and finally that the solution is in the appropriate space
(needless to say that the state of the system is infinite dimensional). Further
problems that are important from a practical point of view, problems where
control is exercised through the boundary and observations are made on the
boundary require techniques which are sophisticated and delicate. Nevertheless
once certain difficult theorems are accepted, the main results can be understood;
and it is the author's belief that some of the results can be used for the
solution of practical problems. This paper nay be divided into none sections.
In section 2 we consider minimization problems for convex functionals defined
on a real Hilbert space, obtain an existence theorem and derive a maxinum
principle for such problems. In section 3, we consider applications of the
theory developed in section 2 to optimal control problems for systems governed
by ordinary differential equations. We also indicate the steps that need to
be followed to solve optimal control problems for partial differential equations,
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The study of control of partial differential equations begins in section 4.
The notation as well as the function spaces to be used in the sequel are defined
in section 4.1; examples of some representative physical systems whose control
probiens may be treatad using the results of this paper are presented.

Section 5 is concerned with the optimal control of a class of linear
parabolic equations (The differential operator satisfying a strong ellipticity
condition) with a quadratic cost functional. The section begins with a study
of optimal control problens for abstract evolution equations. The results
are then illustrated by considering distributed and boundary control problems
as well as estimation problems. Subsection 5.4 is devoted to obtaining a feed-
back controller for the linear quadratic problem. Subsection 5.9 presents
various results on the time-optimal control problem.

Section 6 deals with the control of linear second order hyperbolic partial
differential equations.

In section 7 we make some remarks on the existence question, while in
section 8 we present some results on the controllability and observability of
partial differential equations.

The final two sections are devoted to some comments on extensions of the
present theory and to the nunerical solution of optimal control problems for
partial differential equations.l
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2, Minimization of Convex Functionals

Let U be a real Hilbert space and let Ua be a clesed convex subset of U,
Let v +~ J(v) be a convex function from Uad ingo R such that the following hold:

(2.1) J(v) » + = as fvif >+ , ve Uad’

" (2.2) v + J(v) 1is strongly lower semi~contimsous.
We then have,
'

Theorem 2.1

There exists a u ¢ Ua such that

d
(2.3) J(u) = Inf. J(V).l
vel
ad

If further, the function v + J(v) is strictly convex, then the minimizing
element is unique. In many problems the set Ua will be bounded. Assumption
2.1 is then unnecessary. The proof of the thedyem essertially follows from the
fact that under assumption (2.2), v + J(v) is weakly lower semi-continuous and
from the well known fact that a closed convex set in alocally convex space is
also weakly closed. Having obtained an existence result, it is necessary to
characterize the minimizing element, In this direction we have,

Theorem 2,2

Assume that the function v -+ J(v) is strictly convex, differentiable

* (see Dieudonnéd [33],Chapter 8), and satisfies (2.1). Then the unique element

uel , satisfying J(u) = $gﬁad J(v) is characterized by, -

(2.4) J'"(Wi(v-u) >0 Vve Uad'l

Remark 2.3

The above results are true when V is a reflexive Bamach space.'

In this paper we shall be mainly interested in a special class of convex
functionals, positive definite guadratic functionals., Let us suppose that we

are given the following data:

a) a continuous bi-linear form on U, which is sympmetric,
u,v * w(u,v), 7(u,v) = w(v,u) ¥ u,ve u,

b) a continuous linear form v = L(v) on U,

c) and let Uad’ as before be a closed, convex subset of U.
We ére now interested in ninimizing J(v), where

(2.5) J() =7 (v,v) - 2L(v).

We need a further assumption:
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m is coercive on U, that is,

. 2 R
(2.6) 7 (v,v) > clivl ¥ v e U, where ¢ > o is a constant and J|. [
denntes the norm on U (in case of confusion the norm oun the spacz X will be

denoted by ff . [Ix).

It is now easily verified that the function v » J(v) defined by (2.5)
(together with assumption 2.6) is continuous, strictly coanvex and satisfies
(2.1). From Theorem 2.1 it follows that there exists a unique u & li_,
ninimizing J(v). In this case the derivative J'(u) can be explicit‘.;?L
calculated and we obtain,

Theorem 2.4, .

The unique u € Ua which minimizes J(v) is characterized by,

d
(2.7) m (u,v-u) > L(v-u) ¥ v ¢ Uad'
An inequality of the type (2.7) is termed a variational inequality. For a
study of such inequalities, see Lions-Stampacchia [34]{

Remark 2.5

Inequalities (2.4) and (2.7) are in effect maximum principles for the
respective abstract variational pﬁoblems.l

The special case where U = U, the whole space,is of interest. In this
case in (2.7) we may take v ="u + ¢, where ¢ is arbitrary giving us,

(2.8) m (u,é) = L($) ¥ ¢ € u. ]
In case m (u,v) is not necessarily symmetric and only satisfies, '
(2.8) m(v,v) >0 ¥velU,

_ then we no longer have uniqueness (the set of minimizing solutions X may be
an empty set; if U_, is bounded then X # ¢). MNevertheless we have,

Theoren 2.6.

The set X of solutions u € Ua satisfying

d
(2.9) m (u,v-u) > L(v-u) ¥ v ¢ U 4

is a'closed, convex subset of U.l

3. Applications to Optimal Coutrol Problems for Systems Governed by Ordinary
Differential Equations .

ceeit

Before counsidering problems of partial differential equations, let us
illustrate the theory of the previous section by considering some optimal control
‘problems for ordinary differential equations,

3.1 Notation and Problem Formulation
Let us consider the differential equation,
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(3.1) %% + A(t)y = B(t)u

with the data,
y(t) : state of the system, y(t) ¢ Rh,
N

A(t) : linear operator from R - RN (¥ x N matrix)
the clemeats a, (t) are bounded, maasurable fuactioas of
t e [O,T], T >8 given.
(3.2) Space of Controls : H a Hilbert space on R,
Constraint Set N | S | (8 ClOSﬁd, bounded, convex.
B(.) : 1linear operator from H + R
¥heH,t+ B(t)h bounded measurable function,
y(o) = y. = 0 given vector in R .

For a given control v ¢ Uad » equation (3.1) admits a unique solution y(t;v).

Let,
5. (D
Y4 be a given function in L°(0,T,R") ,
(3.3) i
X be a given vector in R,
a,8 be constants > 0.
Let the cost function be,
.4 IO = Ty -y (0 2 de + 8 | y(Tsv) - )2
. ol Y (s Ya (O w y (T3 ](Ru-

Problem : Find u € Uad such that J(u) = Inf. J(v).

e velU

In order to solve the problem, we shall tranggorm it to a problem of mininmizatic
of a coercive form on H.l

5.2 Transformation of the Problem

Let v » y(t;v) be‘a continuous linear map of H » LZ(O,T,RN) and let
"y(. ; u) be the function t - y(t;v) such that

(3.5) y(. ;3 v) = Cv , where 2 N
C is a continuous linear operator of H + L“(0,T,R ).
Similarly, let

(3.6) v(T;v) = Dv , where .
D is a continuous linear operator of H + R .

Then (3.4) may be equivalently written as,
: _ 2 W R 12
(3.4 bis) J(v) = o] Cv-yd ] L2(0,1,8%)* [ ov-x] 2w .
Expanding the right hand side of (3.4), we may write (3.4 bis) as
(3.7) ' J(v) =7 (v,v) - 2(f,v)H , where

n(v,v) =a [cvf + 8 [ov] gn 50,

2 N
t* c0,1,2")

o N
(1) L (o,T,Ry) = space (equivalence class) of n-vector—

valued functions f(t
such that $Uf(cnl dr < = nctions f(t)
> Rh

18




and f = a C*yd + 8 D*X e K (given).
Here C*: LZ(Oz,T,Rd) > H is the adjoint of C (identifying i = H',
L“¢0,T,R") = (LF (0,T,R")" , prime denoting the dual space).]

3.3 VNecessary aad Sufficient Conditioas

Using Theorem 2.6 and Theorem (2.4), the optimal control u is

characterized by
< T -
(3.8) a ‘o (r(e50),y(E5v)-y (t5u)) M de + 8 (r(T;u),y (T3v) -y (T;u) ) N
T

>a Io(yd(t),y(t;v)-y(t;u))RN dt + 8 (X, y(T;v)—y(T;u))RN ¥ veUad.

Let us now introduce the adjoint state p(t;u) (p depends on u via y)
by the equation,

dp ; A*(t)p = ay(t;u)-cyd
(3.9) dt
p(T;u) = By(T;u)—ﬁK:

p(t,u) is thus uniquely defined.

Let us multiply both sides of the differential equation (3.9) by
y(t;v)-y(t;u), and integrate from O to T. Then using integratioan by parts, we
obtain, . 3

. T
(3.10) - @ f _(y(t;u)-y, (£),y(e;v)=y(e5u)) N de + B8 (y(T;u)-%,y(T5v)-y(T;u)) N
T

= 1 (p(t50), B(E)v(e)-B(E)u(E)) N dt.

Hence (3.8) may be equivalently written as,
T
J . -
(3.11) - (p(t;u), B(t)v B(t)u)RN dt > 0 ¥ v e Uad'

(3.11) is the Integral Maximal Principle for the problem.
Defining,

B(.) : H~ L (0,T;RY)

PUSIC LR T A Lol S MR R TS M 2 e o L L N
Es_ 2 ol g ciba , Ve N SRR

2
B(.)* : L (U,T,RN) + H  (identifying dual spaces),

vt

(3.11) may finally be written as,

| vt

(3.12) (B*(.) pCosu), v-u)y, >'0 ¥ veu_,.

Summarizing,
Theorem 3.1

A necessary and sufficient condition for u to be an optimal control is:

L Y SO R I
. PR

(3.13) (B*(Iplesu),u)y = Info (BX(Ip(3v),v)y,
vel
where p is defined by, ad
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(3.14) dy + A(t)y = B(t)u
dt
y(e) =0

(3.15) =dp + A*(t)p = a (y(r;u)-y,)
de

P(T50) = 8 (y(T;0)-R. |
Example 3.2 ‘

Let the hypotheses and data of the previous theorem hold and let

G.16) vy, = {v | “vl“iﬁ} .

Then from Theorem (3.1),

(3.17) u= - M B*p(.;u) .
B*(.)p(.5u)
We may then eliminate u from equation (3.14), giving us

dy § A(t)y + M BB*xp =0 ; y() =0
*
dt (B3 p“ "

dp 4 A*(t)p = e (y-yy) ; p(T) = B(y(T)-X).
dt

1f {y,p} is a solution (not necessarily unique) of the above system,

u = - MB* é l
T5#pl

3.3 .Local Constraints

In many problems the control constraint set is specified locally
instead of globally as in (3.2). For such problems (3.13) may be transformed

into a local maximal principle. We first need a lemma which can be easily
proved.

Lemma 3.3

Let U be a Hilbert space, H = LZ(O,T;U) and KU be a closed, bounded
convex subset of U. Let,

(3.18) Uad = {vl veH, v(t)cKU almost everywhere} .
Theorem 3.4

Let the assumptioés of Theorem 3.1 be true and let U be given by

(3.18). Then a necessary and sufficient condition for u to be an optimal
control is

(3.19) (p(t;uw), B(t)u(t))RN = inf. (p(t;ﬁ), B(t)k)RN almost everywhere,
ke
where p(tju) is given by (3.14), (3.15).

Proof:

We shall show that (3,13) (or 3.11) and (3.19) are equivalent conditions.

20
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(3.19) clearly implies (3.13) (or 3.11).
To show the equivalenca on the other side, let us recapitulate a few facts.
Let Y be a separable Hilbert space and let g : [o T] - Y be such that

g ¢ L (0,T;Y). Let Oj be a neighborhood of & for t ¢ lo,7l. Then,

1 '0 g(o)do + g(t) almost everywhere as mes0O, ~ 0.
mes O J J

3

The points at which the above is satisfied are termed the Lebesgue points of g.

Let se Jo,T[ and let O, be a neighborhood of s. Define

]
. k in Pj’_k arbitrary anT,
3j u in ]o,T[%Oj

Hence uj € Uad and uj(t) € KU almost everywhere. (3.11) reduces to

1 'o (p(t;u), B(E) (k-u(t))N dt > O,
mest k|
Let us now choose s to be a Lebesgue point of (p(t;u), B(t)u(t))RN
and of B*(t)p(tj;u). Let us suppose that as j*<, mesO, > o,
Hence, J

(p(s;u), B(s)k)RN - (p(s;u), B(s)u(s)%rz_o , ¥s ;o chosen.

But the complement of the set of points that are Lebesgue points has
measure zero and hence (3.19) is satisfied almost everyvhere.l

Example 3.5
If KU = {k \ Il =l RN < M} , then (3.19) gives us

(3.20) u(t) = = M B*(t provided B*(t)p(t;u) # O.I
B*(t)p(t;u) RN

Remark 3.4 (OrdinarxﬁDiffefential Equations in a Hilbert Space)

Let the state space Y be a Hilbert space instead of RN, and let
A be a mapping of [o,T] into the Banach space L(Y;Y) of continuous linear
S mappings of Y into itself and let B(.) be a linear operator of H > Y, 1)
: Then if A and B(t)u be regulated in [0,T] all the previous considerations hold™™".]

T?' Remark 3.5 (Partial Differential Equatious) "

When we are considering control problems for partial differeatial
i equations, A will in general be an unbounded operator and the situation is
: somewhat more complicated. Nevertheless, by following the steps indicated

2 (1) See for exanmple Dieudonne [33], Chapter X, section 6. for afpre riafe existence
theevam fw J{%vln{f@l ¢Zud"0n'
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below we shall show that the techniques used in this section for ordinary
differential equations can be effectively adapted to deal with interesting
problens in the control of partial differential equations.
followed in sequence are:

The steps to be

a) Obtain existence and unicueness rheoren for partial differantial
equation describing the evolution of the state of the system.

b) Transform the original optimal control problem into an abstract
variational problem of minimizing a convex functional on a
closed, convex set, Y

c) Use the theory of Variational Inequalities to characterize the -
optimal control, ’

d) Introduce the adjoint equation and study the existence, uniqueness
and regularity properties of solution. .

e) For boundary control and boundary observation problems, use

appropriate restriction theorems due to Lions-Magenes | 35] to ensure

that the state and adjoint functions as well as their normal
derivatives are in the appropriate function space.

Transform the result of step ¢) to a concrete mayinun principle
using Green's Formula (which needs to be justified, sce
Lions-Magenes [35]).

g) Study the svstem of necessary concditions.

£)

We shall carry out this program for a large class of control problems for
linear parabolic and hyperbolic equations in the following sections. Ve

shall also present results on the linear quadratic problem and show how a
feedback controller may be synthesized for this prohlem.l

Remark 3.6

It should be remarked that the results presented in this paper may also

be applied to study optimal control problems for functional differential
equations with a quadratic cost function.l
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4. Control of Systens Governed by Partial Differential Equations

4.1 Notation

Let x = {x,,--—,x_} denote the space variable; x ranges over an
open set Q C R™ with boundary 't [ is assumed to be sufficiently regular.
t denotes time; in general t € ]o,T[ s T <=,
We set, )
~

\

Q=Qx ]o,T[ , L =Tx ]O,T[.

The controls will be denoted by u,v etc. and will in general be
an element of a real Hilbert space U; U_is a closed, convex subset of U and
represents the set of admissible controls.

The state of the system corresponding to a control v is denoted by
y(v); in the cases we consider in the paper, y(v) is a function of x € Q and
t € Jo,T[, i.e. y(v) = y(x,t;v).

p(v) denotes the adjoint state (co-state) and p(v) = p(x,t;v).

We shall have occasian to use the following function spaces:
Ck(ﬁ) = space of functions which are k-times continuously

differentiable on @ (the closure of 2), k > o integer:
We clearly have analogous notation for Q,T,E.

LZ(Q) = space (equivalence class) of functions which are square
integrable on Q.
Hﬁ(Q) Sobolev space of order m

non

space of functions ¢ such that

$ € Lz(n),,gg__e LZ(Q), - 0% ¢ Lz(ﬂ) va, |Ja| <m,

Ixy a = (ul,———,an},]c|=—h +a, ——ta .

W@ = (o] ¢ e (@, Dp=00nT, o <mik

Lz (o,T,E) = space (équivalence class) of functions f defined on [o,T]
with values in a Hilbert space E such that

:T 2
o!f(t)IEdt <+ w

L.(O,T,E) = space (equivalence class) of functions defined on [o,T]
with values in E which are essentially bounded.
D(R) = space of infinitely differentiable functions in Q with compact
support in ?l)endowed with the inductive limit topology of
L. Schwartz .
D'(?) = Dual space of D(R) = space of distributions on Q.
D' (J0,T[;X) = space of distributions on Jo,T[ with values in a Banach space X.

- (1) See for example Horvath [36].




Remark 4.1 ) s : : P

For many control problems related to partial differential equations, the~
use of Sobolev spaces and distributions are unavoidable, Let us recall that
D'(R) = space of distributions on Q = space of continuous linear forms on D(Q);
if £ € D(?), its derivative 3f is the unique element of D'(R) defined by, -

sz1
f , ¢ = - £,9 ¥ ¢ € D(Q)
axi’ > < ..3—%1> '

where {,) denotes the scalar product between D'(Q) and D(R).
In general, we shall write distributions as functions; if £ € D'(R), ¢ € D(Q),
we shall write

{£,9) = Tof(enax .

In particular, if a € 2 the Dirac mass + 1 at the point a is denoted by &(x-a)
and defined by

8(x-a),8> = JoGx-a)e(xn)ax = ¢(a).

In the sequel derivatives will often have to be interpreted in the distribution
sense,

4.2 Representative Phvsical Systems

Ve now consider examples of some physical systems whose control
problems can be treated with the theory to be developed in later sections.

(i) Parabolic Equation:

Temperature y(x,t) at a point x € @ = J0,1[ and t e J0,1[ of a
mediun which is exchanging heat in a predominently diffusive manner with its
environment, which at that point in space and at that time, is at a
temperature f(x,t):

2
1) DY L,y

ot 3x2

Let the initial data be y(x,0) = yo(x), O<x<1.
The boundary data may, for example, be:

y(o,t) = ul(o,t) o<t<l
. Dirichlet
y(1,t) = ul(l,t) o<t<l

(1) The "transport" tenugi occurring in the description of many heat exchange
problems can be avoided by "wing a linear transformation leading to the form
given in (4.1).



or _ 3y (o,r) = v(t) ; 3y (1,t) = 0, 0<t<l - Neumann
ax Ix

The boundary condition may also be mixad.

The Dirichlec bouadary condicion corresponds to the zasz wha2ce Ihera is no

insulation, the Neumann to the case where there is full insulation and the

mixed to the case where there is partial iasulation.

(ii) Hyperbolic Equation: Vibrations in an elastic medium.
Consider for example the case of longitudinal displacement y(x,t) at a
point x in an elastic rod, at a certain time t, experiencing a dynamic
anial load at the ends:

2 2
w2 -2 2z-o.
at EA 9x .

The load is applied in one of three ways:
(a) Direct Axial Loading
(b) Transverse Bending
(c) Loading through an elastic support

These three situations correspond to Dirichlet, Neumann and Mixed
boundary conditions.

S. Optimal Control of Linear Parabolic Equations

In this section we shall study some representative optimal control
problems for certain classes of linear parabolic equations where the control
may be distributed control or boundary control. To do this, it is convenient
to first study the optimal control of abstract evolution equations. We shall
follow in sequence the steps we have indicated in Remark 3.5.

5.1 Equations of Evolution . .

5.1,1 Problem Formulation and Existence Theorem

We are given Hilbert spaces V and H respectively. V' is the dual
space of V, We assume d

(5.1) V<H, the injection V into H is continuous
and V is dense in H.

H is identified with its dual space, and H may be identified with a
subspace of V' and we have

(5.2) VCHCV',
A family of bi-linear forms on V is given:

¢, ¥ > é(t;¢,w) for each t € J0,T[. -

For this family we assume,

(5.3) ¥ ¢, € V, the function ¢t =+ a(t;

é,¥) is measurable on
10,7[ and  a(t;e,¥) < cff¢l - |[¥]

and there exists a A such that



(5.4 ag6,9) +a el 2 > afell? o > 0, weev, t € Jo,1[,

where |.| denotes the norm on H and ll.,[ denotes the norm of V,
For each t, we may write,

(5.5) a(t;s,¥) = (A(e)9,9) , A(t)s e V',

the bracket denoting the scalar product between V and V'.l

It may be seen that

(5.6) A e L w20,1;v); L2(0,1;v')), that is

if f ¢ LZ(O,T;V), A(t)f is the function t + A(t)f(t) e V'.

If f ¢ LZ(O,T;V) its derivative df may be considered to be continuous
linear map from D(JO,T[) -~ V anddgefined by

¢ > df (¢) = - £ (d¢) where
dt

(5.7) £(¢) = _{f(t)¢(t)dt (writing distributions as functions;

the integral being & generalized integral with values in V) We may

then show that df may be considered to be an element of D'(]J0,T[;V).
dt

We now introduce the space,

(5.8) W(o,1) = (£ ] £ e L%0,1;v), af € L2¢0,T;v")}.
. at
Endowed with the norm,
r 2 T2 . 12
(5.9) Ilfllw(o'n = ( Ll!f(c)ﬂ dt + i”j—iﬂ v-dt) ”

W(0,T) is a Hilbert space. It may be shown that all functions
f € W(0,T) are with eventual modification on a set of measure zero
continuous from [0,T] + H.

Consider now the problem of evolution : find y & W(0,T) such that

(5.10)  A(t)y + dy = £, £ given in L2(0,T;V)
at
and

(5.11) y(0) = Yiv Ty given in H.
For this problem, we have the following existence and uniqueness theorem:

Theorem 5.1 <

Under the hypotheseS(S 3) and (5.4) the above evolution problem admits a
unique solution in W(0,T).

Furthermore the solution depends continuouslv on the data : the bi-linear
map f,yo + y is continuous map from

L2(0','r;v') x H » W(0,T).



Sketch of Proof

The existence proof is a constructive proof. It comsists in choosing a
base in V (assuming it is separable), obtaining a finite dimensional
approximation to (5.10) and then showing y (£) - y(r) as t > o in an
aporonriaka sensa, The key idea in the liniciag argument is to show that the
sequance (y (£)} is bounded and hence a weakly convergent subsaquenca =ay he

i extracted.
The uniqueness part uses standard arguments.l

‘ 5.1.2 The Control Problem
* Armed with an existence theorem, we can now formulate an optimal coatrol

problem:

Let U be the Hilbert space of controls and let

i (5.12) B e L (u; L2(0,T;v").
We assume that (5.3), (5.4) holds and let us denote by v(v) the solution of
(5.13) %1 + A(t)y = £ + Bv
t
(5.14) y(v) emig™ Yy B
2
(5.15) y(v) € L7(0,T;V).

Let the observation equation be,

) = Cy(v) , where
L (w(0,T); H).

v

(5.16) (
C e

Let the cost function be ,

(5.17) J(v) = IICy(v)-de i (Nv,v)U , where
H

i (5.18) N e LU0 , Quu) >u u 2 o0
: 3 U

b Remark 5.2
L Notice the analogy of this problem with the finite dimensional control -

problem considered in section 3: See formula (3.4 bis) with a cost of control
: term added. Our subsequent development will be along the lines of section 3,
4 the techniques being more sophisticated (that is, various steps have to be

mathematically justified).l

We are also giyen a set of admissible controls,

(5.19) Uad = clbsed, convex subset of U,

We seek,

(5.20) Inf, J(v) . l
vel
ad
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5.1.3 Necessary and Sufficient Conditions
Let us first write J(v) in the form,

J) = C(y(V)-yo) + Cy_-e, 2, (aw,v), .
" .

If we set, 3

(5.21)  w(u,v) = Cly(w-y ], CEy(\?)—yo]H)+ (Nu, v}y

(5.22) L(v) (24-Cy s C[y(V)-yol)H.

the form m(u,v) is a continuous bi-linear form on U and the form L(v)
is a continuous linear form on U and we have, :

2
(5.23)  J) = 7(v,v) = 2LV) + [z;CyC)] j .
Since ﬂzd—Cy(o)H : is clearly > 0, we have from (5.18)
Hence from Theorem 2.1 (and remarks following) we obtain,

Theorem 5.3 (Existence)

There exists a unique u € U_, such that J(u) = Inf. J(v).l

veUad

From Theorem 2.4 we obtain,

Theorem 5.4 (Necessary and Sufficient Condition)

The unique u € Ua is characterized by

d
(5.25) (Cy(u)-z,, c[y(v)-y(u)])H + (Nu,v-u); > 0 ¥ ve Vgl
If we define,
A = canonical isomorphism of H onto H',

(5.26)

Ay = canonical isomorphism of U onto U',

the above formula reduces to,

(5.27) (C*A[CY(U)—Zd], y(M)-y(w) + (Ru,v-u),; > 0 ¥ ve U_,,

where the first bracket denotes the duality between W(0,T) and W(0,T)'.
Introduce the adjoint state by,

(5.28) - d_p(v) + A*(t)p(v) = C*A[Cy(v)—zd] in Jo,T[

(5.29) = p(T;v) =0

(5.30  p(w) ¢ L0, T;v).

Then Theorem 5.1 (with time reversed) asserts the existence and
uniqueness of a solution p(v) in W(0,T).
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Now multiply both sides of (5.28) by y(v)-y(u) and integrate from
[0,T]. Using integration by parts (which is valid in W(0,T) see
Lions-Magenes [35]),we transform (5.27) (exactly as in the finite
dimensional case) into

.30 @t

B* + Yu, v~ { U
U B*p (u) u,v u)U >0 ¥v La

ar
Remark 5.5

Let us remark that we have in effect calculated the Frdchet derivative
1 J'(u) to be equal to B*p(u) + AUNu.l

2

Summarizing,

Theorem 5.6 (Necessary and Sufficient Conditions)

Un?ff the assumptions of (5.3), (5.4) and (5.18), u € Ua is an optimal

control if and only if d

-1

(5.32) (Au B*p(u) + Nu, v-u), >0 ¥ve Usg o
uel d

where p(u) .is defified by,

(5.33) dy (u)

7S + A(t)y(u) = £ + Bu ,

ylosu) =y,

G:38) 8ol 4 an(orptw) = c*n [Cy(w-s,] ,
p(T;u) =0,

and 2 2

(5.35) ,y(u) € L7(0,T;V) ; p(u) € L°(0,T;V) .l

5.1.4 The Standard Linear Quadratic Problem

In this case Ua = U and (5.32) reduces to,.

e

d

(5.36) B*p(u) + Nu =0 ,
and since N is invertible,
(5.37) u == NIt .

Also using (5.37) we may now eliminate u from equation (5.33), to give us
a two-point boundary value problem analogous to the well known reduction of
optimal control problems to two-point boundary value problems for finite—
dimensional control problems.l

(1) A control u which minimizes J(v).
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5.1.5 The Case Where Ua‘ is a Ball
o

Let U_; = {v | Ilvllu_<_M}

Then if we set,

£ = Aa 3%p(u) + Nu and if we assume £ # 0, then
(5.38) u=-M £ .l *
Ik

5.2 Example of a Mixed Dirichlet Problem with Distributed Control

LetV=H$(Q),U=L2(Q),B=

identity map, and let A(t) be
defined as follows:

n
(5.39) A(t)y = = & a—i— (ai,(x,c)gi—) . where
T 3
(5.40) Rk LY,

13
n
z

A(t) is thus a second order e}liptic differential operator satisfying (S.QOL;

The state of the system is given by,

(5.41)

%%-+ A(t)y = £ +u in Q
Y|z =0
y(x,0) = yo(x) x e Q.

The control is therefore distribuﬁed control.2
If we take C = injection map of L"(0,T;V) - L"(Q), then

H = LZ(Q) = H' , A = identity map ,
and equation (5.34) reduces to

-3%+A*(t)p=y- zq in Q
(5.42) p] =0
p (x,T) = O.
(5.32) r:puces to ,
[L(p(u) + Nu) (v-u)dxdt > 0 , ¥ w:Uad , UE Uad'l

5.3 Example of a Mixed Neumann Problem with Boundary Control

Let V = Hl(Q) , U= LZ(Z) and let A(t) be as in the previous exanmple.

Let the state of the syste: be given by,
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5.4

the linear-quadratic problem (section 5.1.4) :

(1)

(5.43) .é%ym + A(t)y(w) = £ in Q,

(5.44) (1)

3 -
3;—~y(u) =uonk
A

(5.45) y (x,03u) = yo(x) , X € Q.
Let C = injection map of LZ(O,T;V) - LZ(Q).
Then the cost function is

T,
2
(5.46) J(W) = .ff(y(v)-z Y dxdt + (Nv,v)_ 2 2
Bk d L@ , 7, € L.

The adjoint state is now given by ,
- p+A*(t)p =y -z, in Q
at d ?

q!
(541} -g—% =0on &
A%

p(x,T) =0 xe@ .
The optimality condition is,
T
(5.48) S pr + Nu)(v-u)dL > 0 ¥ v ¢ Uad .l
.

Decoupling of the Two-point Goundary Value Problem for the
Linear Quadratic Problen

We now wish to study the two-point boundary value problem for

-

1-1

A" B*p

(5.49) dy - _ "
at + A(t)y f BN U

.50) -d :
(5:30) =48 4 ax(e)p = CHAGy-2y)
(5.51) y(o) =y, » p(T) = 0.

Let us make the assumptions:
U= LZ(O,T;E) , E = separable Hilbert space ,
H = Lz(o,T;r) , F=
(5.52) B(t) € L(E;V'Y 3 B = B(e) e L?(0,T;E); L2(0,T5v")
£(c) € LZ(O,T;V');
CCt) e LOV3F) ;3 € = c(e) e L2(o,T3v) 5 L2(0,T3F)).

separable Hilbert space ;

3%— denotes the "normal derivative in accordance with A".

A
3u_ _ I aij 3u_ cos (n,xj) on [ , cos(n,xi) = i-t-ll direction cosine of n,
avA i,3 3xj

normal exterior to 2 at I'. For precise meaning of derivative see Lions-Magenes[35],
3t




Let us set,

, Dl(t) = B(t)N-l(t)AE1 B*(t)
(5.53)

Dz(t) = C*(t)AFC(c)
. Then Dl(t) e L(v;v") , Dz(t) e L(v;v")
= * = *
and Dl(t) D1 (t) , Dz(t) D2 (t) .
Hence we have to study the system of equations,

%% + A(t)y + Dl(t)p =f , te ]s,T[ ,
(5.54)

- g%"' A*(t)p ~ Dz(t)y =8 , te ]S’T[ ’

where,

(5.55) g(t) = - C*(t)Ade(t) »

with the boundary conditions,
(5.56) y(o) = Yo » P(T) = 0.

Since the system of equations (5.54) and the boundary condition (5.56)

arose from an optimal control problem which admits a unique solution, we
imnediately have,

Lenma 5.7

The Linear two-point boundary value problem (5.54) - (5.56) adnmits a
unique solution for all given ¥ .l ’

Further we may prove,
Lemma 5.8

The mapping A {y,p} = solution of (5.54) - (5.56)

is a continuous affine mapping of H + W(0,T) x W(O,T).'
Corollary 5.9

'
For y e H, let {y,p} be a solution of (5.54). The mapping ¥, * p(s) is
a continuous affine map of H into H.'

Combining the above, we have,
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Corollary 5.10

The

mapping

(5.57) s e p(s)

nay be uaiquely wrictea as,
(5.38) p(s) = ?(s)yo + r(s) , where

P(s) € L(H;H) and r(s) € H.‘

“\. The next lemma relates p(s) and y(s) by means of a continuous affine

map and shows how the map P(s) and the element r(s) are defined.

Lemma 5.11

Let

{y,p} be a solution of (5.54) — (5.56). We have

(5.59) p(t) = P(t)y(t) + r(t) ¥ te Jo, 1l
where P(t) and r(t) are defined in the following way :

1)

We solve,

ds
T A(t)8 + D, (t)y = 0 in Js,T[ ,

(5.60) |7 L+ ax(e)y - py(0)B =0 in 35,70,

g(s) = h, Y(T) =0 ;

then

(5.61) P(s)h = y(s) ; '

(i1) we solve,
4n L ACt)n + D, (t)E = £ in Js,T[
at n 1 S» »
(5.62) |~ g% + A*(£)E - Dy(t)n = g in 1s,1[ ,
n(s) =0, §(T) =0 ;
then
(5.63) r(s) = £(s) . l
Some properties of P(s) can now be established :
(1) P*(t) = P(t) ;

(5.64)

(111) there exists a constant C1 such that

B

P(s)h < C, |n| ¥het ¥se [0,T].

1|
L(iv) (P(s)h,h) 20 ¥ heH,

that 1s P(s) is a continuoug gelf=-adjoint positive operator,
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Proceeding formally, we shall now show that P(t) satisfies a
non-linear partial differential equation of the Riccati type and r(t)

satisfies a linear parabolic differential equation. This is done exactly
as in the finite-dimensional case to obtain,

(5,65) dpP . = i
— :l._. + PA + A*P + PD.P D,, in O,T[
(5-56) dr

-—— * =
) gt TA*T +PDir =Pf+g in Jo,T[
. '

(5.67) P(T) = 0, r(T) = 0.

To justify the above formal calculations, we may choose a basis in V
and use the Galerkin technique (that is, obtain a finite-dimensional
approxination) and then pass to the limit to show convergence in an
appropriate sense (one always uses weak convergence arguments). In this
way we arrive rigorously at the following result,

Theorenm 5.10

Under the appropriate indicated hypotheses, if {y,p} is a solution
(unique) of the two-point boundary value problem (5.54)-(5.56), then

(5.68) P = Py + r , where P and r have the following properties,
P(t) e L(H;B) , P*(t) = P(t);
(5.68) 1€ n € W(0,T) with 92+ A(e)n € L2(0,T;H) then

P(t)n € W(0,T);
P satisfies (5.65) in the sense that

s.69) [ _fa_

AT P(t)) n + PAn + A*Pn + PD.Pn = D.n

1 2
2
for all n given by (5.68) with An e L°(0,T;H),
and
P(T) =0,

(5.70) r(t) is the solution in W(0,T) of (5.66),
P and r are unique.l

In this way, we solve the feedback synthesis problem to obtain,

5,715 wl) = = N—l(t)A;lB*(t)[P(t)y(t) + ] . )

What remains to be done is to consicer particular examples so that we
may give the operator P(t) a concrete representation.
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5.5 Mixed Dirichlet Problem with Distributed Control

This is the problem we cgnsiderad in section 5.2. In terns of the
notztion of sacticn 5.4, E = K = L7() , B() = s, H(E) =X
«t) = injection of V - il, D, (t) = ideatity, D (t)
The key idea here Is to use the Schwartz Kernel Theoren b7],
obtain a representation for P(t) ,

(5.72) P(t)e = l;P(X.E,t)¢(£)dE ¥ ¢ e D(),

where P(x,£,t) = kernel of P(t) = distribution on Qxeg defined uniquely by

P(t). Then P(t) characterized in Theorem (5.10) satisfies

(5.73) g—i (x,6,8) + (A% + ADP(x,E,0) + J""‘-i") N’lt’(al, &t)dg =6 (x-9),

geX
(5.74) P(x,E,t)

P(g,x,t) ,
(5.75) P(x,E,t) =0 if xe T , £e @,

(5.76) P(x,£,T)

O.I

Remark 5.11
The Galerkin technique used to justify the formal calculations provides
a constructive nethod of solving the Riccati equation.l

5. An Estimation Problen

Consider the following state estimation problen.
Let the state of the system y be defined by,

_a-x =
7 + A(t) vy 0

(5.77) %y\; = £(t)
A
y() = a.

Here f = o and E = Lz(r). The observation is defined by,
(5.78) z(t) = y]z + n(t).

The baundary and initial conditions £(t) and o_as well as the error n(t)
age assEmed to he Gaussian with mean values £(t) , & and covariance operators
clI s 021 and 031 respectively (this statement has to be mathematically defined

properly; see for example Densougsan [8]). For our purposes we consider them
to be functions in appropriate L~ spaces. :

We desire to obtain an optimal estimate y_ of y(T), the state of the
system at time T, on the basis of the observation z(t) on the time interval
[0,T]. The estimate is optimal in the least squares sense.

For this purpose, we define the obvious least squares criterion J(&,£).

(o]
()




-~
a an

We minimize J(a,f) to obtain the optimal a,f denoted by a,E. Then we
may calculate Vi y(T;a,£) and this is the best estinmate. . '

\

The theory developed in the previous section can now be applied to this
problen giving us,

37 A(t)y, + cg Y*Yp, = T*E(t)

ot
3 Yy . _ *a(t
3T + 4% (Opp - 5 yp = - 5
(5.79) 9 o
- 2
}’T(O) =a - 03pT(o)
pp(T) =0

The above equations can now be decoupléd giving us the following equation
for the kernel of the covariance operator P(t) :

(

5T (R, + (A + AJP(x,E,1) +

&

P(X,El,t)P(El.E.t)dEl
(]

w N

- oié(x—i)

(5.80)
ﬁ P(X,E,t) = P(E,X,t) ’

P(x,E,t) =0 fxeTl , £eR ,

\_ P(x,£,0) = oié(x—{).

For analogous considerations for other state estimation problems (for
example, with point-wise measurements), see Phillipson-Mitter [2d],
Mitter-Phillipson [37].|

5.7 Remarks on Dacoupling and the Riccati Equation

a) It should be remarked that the techniques used in deriving the Riccati
equation and the equation for the kernel can be adapted to obtain results on
the feedback synthesis of systems governed by differential-delay equations.

To do this one considers the differential-delay equation as an abstract
evolution equation and then results of Baiocchi [3]can be used. A study
of this problem may be found in the forthcoming paper [39].

b) An important part of the linear quadratic theory is the study of the
behavior of the optimal control u(t) as well as the operator P(t) as the
upper limit T of the interval [0,T] tends to =, Under the assumption that
the operator A(t) satisfies

2

(5.81) (A(£)$,4) > alp] , ¥t > o, ¥eV , < >O.

If we now say that all operators concerned are tims-independent, the
asymptotic behavior of the two-point boundary value problem, and of the
equations for y(t) and P(t) can be studied and it may be shown that as T+= ,

up >u_, Yr £t A P + p, and PT s

in an appropriate topology [7].
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c) 1In the finite dimensional linear-quadratic problem one usas the
property of complete controllability to establish the existence of a
stabilizing control giving finite cost for the infinite time problem. For
an interesting study in this direction for infinite dimensional problems,
sea Russell [41], [42].

5.8 A Boundary Control Problem; lion-Homogeneous Mixed Dirichlet Probliem

In section 5.3 we considered a boundary control problem., Let us
now consider a different boundary control problem which leads to the study of
non-homogeneous Dirichlet Problems [35].

Let the state y(v) be givea bty ,

(5.82) %E.y(v) + A(t)y(v) = f in Q,

(5.83) y(v) g =V on I,
(5.84) y(x,0;v) = yo(x) S S X

The operator A(t) is given by (5.39), satisfies the strong
ellipticity condition (5.40) and the coefficients aij are

assumed to be C in Q.

Problems of this type with non-homogeneous boundary conditions
(control is exercised through the lateral bounéary) require special
treatment., But one can show that takiag U =1 (Z%, f?I)example, that the
above equations admits a unique solution y(v) € L7(Q) .

Let the cost function be,

) 2
(5.83 J(v) = _Lly(v)- %I dxdt + (NV’V)U $ z‘given in LZ(Q)

where N € L(U;U) and N is positive definite.
Let Uad = closed, convex subset of U.

In this case the adjoint problem is

(5.86) — 3B+ Ax(0)p = y(u) -5, 1nQ
(5.87) plz-o
(583} p(x,T;u) =0
The solution -p(u) may be shown to belong to the Sobolev space HZ’I(Q),
{ 2
2,1, _ 3p_ 3% 3 _ 12,0y~
where AH 7 Q) = {p l P ,axi ,axiaxj e € L ()3

In the manner we have indicated in the previous section, the optimal
control u is characterized by,

1/2,1/4

(1) Actually one can show that y(v) € H (Q) - fractional Sobolev space [[35].
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(5.89) f(y(u) -z )(y(v) = y(u))dxdt + (Nu,v-u) >0 ¥veU ..
2 d Ui ad
We now have to use the adjoint system and Green's Formula to transform

(5.89) into a more convenient form.
Using (5.86) , we see that the integral in (5.89) is equal to,

G99 (2 220, a(eyp () (w-y ()Y anae
Q

Using Green's Formula which has to be justified in this case, since y(u)
is a generalized solution, we can show that (5.90) is equal to

e J%ﬁ— W (y-y)dr
z A

where %% is the exterior normal derivative to I associated with A* .,
A%
; ap . .
The above integral makes sense since v can be shown to be in an appropriate
Sobolev space. A*

Since y(v) = v on I , we finally obtain,

(5.92) (Nu+3p (u) , v-u) >0 ¥veU o
U-—- ad
; BVA*

If now Uad = U , that is there are no constraints,

(5.93) Nu+3p (u =0,

and hence,

(5.98) um=m-pyl2 W

For problems with both control and observation on the boundary, see
Lions [ 7].|
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5.9 Timz Optimal Control

For time optimal control problems, some results analogous to those
for finite dimensional problems have been obtained.
Consider the systen,

5.95 d o -
(5.9 ) Ey(:;v) + A(t)y(t;‘/) = f + Bv

(5.96) y(o;v) = yo
Let Uad be a closed, convex subset of U and let Y1 be a given element in I

We assume that the following controllability assunption holds:

(5.97) {theze exists a veU_, such that y(T;v) = ¥y for some finite
T.
Let ¥ = inf [T : such that (5.98) holds].

We first have tlie followving existence theorem.

Theorem 5.11
Under the assumptions (5.3), (5.4) on the operator A(t), the assusption

(5.12) on the operator ! aund tie controllability assunption there exists a
uel and a T such that y(Tb;u) = ¥ge]

The above theoren may be applied to boundary control probleas--for exanple,
of the type shown below.

Example 2
Let U= L°(3) and let the state y(v) be given by ,

) v

A
y(x,0;v) = yo(x) M

We now wish to proceed further and clharacterize the optimal control for

a special conmstraint set.
Let,

(5.99) Uox™ {v ‘ lv(t)l < 1 almost everywherel.

The operator A be time independent and be the infinitesinal generator

of a strongly continuous semi-group G(t) in H.
We then have, '
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Theoren 5.12 (Bang-Bang Principle)

Let all the above assumptions on the system hold. Let u be an optimal
control satisfying y( o’ u) = Y1+ Then,

(5.100) u(t) =1 alnost everywhere on [O,To].
This result is due to Fattorini [i4].

For additional results when G(t) is a group see Lions [7 ].
See also the recent result of Conti [ ].

6. Optimal Control of Systems Governed by Hyperbolic Partial Differential
Equations

A theory of optimal control for systems governed by second order
hyperbolic equations in a manner analogous to that developed for parabolic
equations may be developed. The main difference here is that we have to
begin with a study of a different abstract evolution problem,

We use the same notation as in the previous section.

6.1 Evolution LCquation
6.1.1 Problem Formulation and Existence Theorem
The basic evolution problem to be studied is :

Find y satisfying
(6.1) ” 2
y € L°(0,T;V) , dy € L"(0,T;H) ,
’ dt
(6.2) d_21 . s D
dtz + A(t)y = £ in Jo,T[ , £ given in L°(0,T;H)

together with the initial data ,
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(6.3) y(o) = TR 5 given in V

(6.4) dy (o)

dc =Yy e Yy given in H.

The hypothesis on the family of operators A(t) € L(V;V') are :
setting
(6.5) (A(e)d,?) = alt;9,?) ¥5,Y eV,

we assune

(6.6) ¥6,¥ € V , the function t + a(t;$,¥) is continuously
differentiable in [0,T] ,

(6.7) a(t;o,¥) = a(e;7,9) ¥,0 eV ;

(6.8) there exists a A\ € R such that

2
a(e;9,9) + A |o| 2 >alle |© weev,>0 , t e [0,T] .l
We'then have,
Theorem 6.1

Under the above assumptions, the evolution problea (6.1)-(6.4) admits a
unique solution. The mapping

d
(6.9)  {f,y,y,} ~ ly, 50}
is a continuous linear mapping of LZ(O,T;H)xVxH - Lz(O,T;V)x LZ(O,T;H).i

6.1,2 The Control Problen

250 o 1)

Let Bie LU; L 0,1:H)) . & control problem exactly similar to that
formulated in section 5.1.2 (clearly there are other possibilities for defining
the observation equation) can be formulated for the hyperbolic case. We

then have the following theorems analogous to Theorems 5.3 and 5.6.

Theorem 6.2 (Existence of Optimal Control)
There exists a unique u € Uad such that J(u) = Inf. J(v).
VEUad

Theorem 6.3 (Necessary and Sufficient Conditions)
Under the above assumptions, u € Uad is an optimal control if and only if,

-1
(6.10) (A “B*p(u) + Nu,v—u)U >0 ¥ve Uad'

/T uE Uad s

(1) 1In section 5.1.2 we could take f € Lz(O,T;V) and B e L(U; Lz(O,Tgvﬁ)
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where p(u) is defined by ,

2
(6.11) 4 y(u) + A(t)y(u) = £ + Bu
. dtz

y(osu) = Yo 0 ¥ (o3u) = yl,(l)

a2 p(u) , %
VS 4 B0 = crney -z,
(6.12) dt
p(T;u) = 0, p'(T;u) =0,
and further,
y() , p(w) € 120, 1;v)
(6.13) 2
y'(u), p'(u) e L (O,T;H).I
Examples of control problems similar to those considered in Section 5.can

now be considered in this'setting.l

7. Remarks on Cxistence Theorems for Optimal Controls

The existence theorems for optimal control problems which we have
presented in this paper are relatively simple--once an appropriate existence
theorem for the linear partial differential equation was obtained, the problem
of existence of an optimal control was reduced to the problem of existence of
a minimum of a convex functional on a closed, convex set. The situation is,
however, far more complicated when we are dealing with partial differential
equations which are non-linear. For very general results in this direction,
see Lions [44]. For a different approach to the problem, see Cesari [45],[56].|

8., Controllability and Observability

Consider a system whose state y(v) is given by,

4.
dt

y(o) = 0.

y(v) + A(t)y(v) = B(t)v(t) t e JO,T[
(8.1)

Let us suppose that A(t) satisfies

(8.2) (A(t)9,¢) > a e ﬂg ¥¢eV, ¥te[0,T],x>0.

(1) ' denotes differentiation w.r. to t.



The control u is assumed to be an elemeat of LZ(O,T;E) (see
notation of section 5.7) and B(t) € L(E;H) with sup. “B(t)ﬂ < ©,
tefo,T L(E;H)
Let us introduce the Green's operator G(t,t) associated with A(t)
(s2e Lions [47]). We have that G(t,7) € L(H43H) and the function t G(t,T)g
is a coatinuous function of ET,T] into H, ¥ g = H, Further G(t,t) satisfies

%? G(e,t) + A(E)G(t,T) =

Definition 8.1
The system (8.1) is said to be controllable at time T if

6.3) AM = (1,0 | v e %o, T;E)}
is a dense subspace of H.
Renark 8.2
This is the natural extension of the definition of controllability in the

finite dimensional case. The definition says that for every z £ H , there
exists a control u which steers the system arbitrarily close to z.l

Theorem 8.3
The system (8.1) is controllable if and only if

T
(8.4) c(T) = ‘IG(T,C)B(C)B*(t)c*(T,t)dt >0 .

o
Proofi

a) Sufficiency : We have,
y(T,0;v) = JJE(T,C)B(t)v(t)dt 2
Consider a control ’
v(t) = B*(t)C*(T,t)§ , where £ € H.

Hence ,
y(T,o3v) = C(T)§ .

But the operator C(T) is a self-adjoint positive operator and hence its range
R[c(T)] is dense in H. This proves the sufficiency part,
b) Necessitv: Suppose that the system is controllable and (8.4) is not true,
Then there exists a-z € H, z # 0 such that

' T

( j G(T,t)B(t)B*(t)G*(T,t)dtz , z) = 0 , which implies
o
(8.5) B*(t)C*(T,t)z = 0 almost everywhere.

Let p € W(0,T) be a solution of
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(8.6) __g%.+ A*(t)p = 0 te )ODT[ ’

P(T) =2z,
Then, p(t) = G*(T,t)z,

Multiplying the first equation in (8.5) by y(t;v) and integrating by
parts, we obtain,

= T
(2, y(T,0v) = [(v(e),Br(0IGH(T,0)2) = 0
(-]
and hence from (8.5) (z, y(T,03v)) =0 ¥ ve LZ(O,T;E).

Therefore A(T) is not a dense subspace of H.,
Theorem 8.3 was formally derived by Wang [28].

For examples of partial differential equations which are controllable in
the sense of Definition 8.1, see Lions [7 , section 10] where the question of
controllability is reduced to a study of the uniqueness properties of solutions.l

Consider the systenm,

(8.7) %% +A(t)y = £, t e Jo,T[ , £ given in LZ(O,T;H)

y(o) = ¢,

with the same hypotheses as for (8.1).
Let the observation equation be,

(8.8) 3 = Cy(¢g) , where C € L(W(0,T);K) , K being the space of
observations.

Definition 8.4

The system is said to be observable at time T if
0(T) = {Cy(&) | & ¢ H}
is a dense subspace of K.
A theorem analogous to Theorem 8.3 can now be proved for observability.
For a study of controllability and observability for abstract control

systems, see Jurdjevic [48]. For studies on strict controllability for
partial differential equations, see Russell [23],[24].
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9. Miscellaneous Conments

All the problems we have considered in this paper (excepting time-
optimal problems) are fres-end point problews. Problens in which the end-
point is prescribed to lie in a fixed set are, of course, mora difficult.
For an extension of some of the results presented in this pap=2r to the fixed
ead-point problea with a cost function

i 2
fl(x(t)l] dt
°
see the recent paper by Friedman [19].

Another interesting development is a duality theory (in the
mathematical programming sense) for control of systems governed by partial
differential equation. It can be shown that some of the abstract results of
Rockefellar [49],[50] can be specialized to obtain results of the maxinun
principle type for partial differential equations [51],[52]. In this way a
duality theory between estimation and control can also be developed (for the
ordinary differential equation case, seae Pearson [SS]).‘

10. Numerical Solutioa of Optimal Control Probleams

To the author's knowledze two main schemes for the numerical solution
of optimal control problems have been proposed. A complete description of these
schemes is beyond the scope of this paper. In both schemes the problem is
reformulated as a mathematical programming problem in an’infinite dimensional
space. In one scheme the constraints (including the differential equation) is
adjoined to the cost function by neans of a penalty function and the resulting
cost function minimized using iterative techniques. Details of this may be
found in [7 ],[54]. In the sacond scheme, a Galerkin technique is used to solve
the state and adjoint equations and the gradient of the cost function is
calculated making use of the state and adjoint trajectories (similar to the
Kelley-Bryson technique for the ordinary differential equation case). Iterative
techniques such as conjugate gradient techniques can then be used to minimize
the performance functional. For details of this technique, see 11, [22].'
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