
MODELING BEATS, ACCENTS, BEAMS, AND TIME SIGNATURES
HIERARCHICALLY WITH MUSIC21 METER OBJECTS

Christopher Ariza Michael Scott Cuthbert

Massachusetts Institute of Technology
Music and Theater Arts

ABSTRACT

The music21 TimeSignature object represents meters
hierarchically, through independent display, beam, beat,
and accent attributes capable of unlimited partitioning and
nesting. This model, designed for applications in
computer-aided musicology, accommodates any variety of
compound, complex, or additive meters, can report beat
position and accent levels, and can algorithmically perform
multi-level beaming or various types of metrical analysis.
As part of the music21 Python toolkit, the meter module
can read input from Humdrum and MusicXML and output
to MusicXML and Lilypond.

1. INTRODUCTION

Meters and time signatures play diverse and sometimes
contradictory roles in notated Western music. A time
signature may illustrate not only the duration and beat
divisions of a measure, but also dynamic accent, the visual
presentation of beams, and even performance style.
Accents and beaming can be independent of each other and
contradict the time signature. The time signature, in
cadenzas or in many modern scores, may reflect a multi-
measure group or a duration greater or less than that
implied by the notes in the bar. A complete software model
of meter must account for this diversity.

Despite over fifty years of modeling Western notated
music on the computer, from the earliest work conducted
by Lejaren Hiller and Robert Baker [5] to contemporary
commercial software systems such as Finale and Sibelius,
models of meter are often simply counts of duration units,
or beats, per measure. While many systems offer facilities
to configure independent display meters and perform
manual adjustments far from expected arrangements, such
models are often insufficient, not only for automated
rendering of notation, but also for computational
approaches to examining the metrical relationships of
notes in a bar.

The music21 TimeSignature object meets these
challenges by offering independent, hierarchical
representations of all critical aspects of a meter, including
display, beaming, beat, and accent. Each of these four
properties are governed by MeterSequence objects, nested
structures of MeterTerminals and other MeterSequences

that define duration-preserving fractional structures. This
model accommodates any variety of compound, complex,
or additive meters, can report beat position and accent
levels, and can algorithmically perform multi-level
beaming and various types of metrical analysis. This
TimeSignature object can describe and transform the
presentation of events contained within its bar. No similar
design, accommodating all of these features, has been
documented. This model, part of the larger music21
toolkit for computer-aided musicology, is implemented in
Python. As part of the music21 toolkit, the meter module
can read input from Humdrum/Kern [6], MusicXML [4] or
custom-defined formats, write output to MusicXML and
Lilypond [9], and take advantage of the numerous high-
level objects provided for studying pitch and other musical
elements.

2. THE PROBLEM OF REPRESENTING METER

Beams often illustrate the hierarchical structure of a bar.
While usage is not standardized, beams frequently group
beats, but may also show sub-beat groups. Designing
objects that can perform multi-level automatic beaming is
thus a first step toward an operational model of a
TimeSignature. While this is a small subset of the full
functionality of TimeSignature, beaming demonstrates the
necessity of nested fractional structures that can return
meaningful information about the notes in a bar.

In most cases, the numerator and denominator of a time
signature establish the number of beats in a measure and
their duration, respectively. Common approaches to
automatic beaming employ the time signature-specified
beat duration to create beaming groups. While this is
effective with some rhythms, in other cases such beaming
can obscure tuplets or lower-level rhythmic organization.
The case presented below shows that a single hierarchical
level insufficiently describes complex beaming. Structures
with many hierarchical levels are needed to model time
signatures as they are actually used.

Figure 1 provides a measure from the 1910 Durand &
Cie. score of Claude Debussy’s Preludes Book 1, XI, “La
Danse De Puck.” The division of the bar into two quarter
notes is presented in the outermost eighth beam.
Additionally, the repeated eighth-note duration groupings
are made clear by the break in the sixteenth beam between

the 32nd note and the dotted 16th note. This beaming
establishes two levels of hierarchical organization: division
by two at the highest level, and at the next level division
by two again. Each quarter-note division might be seen
internally as a bar of 2/8.

Figure 1. Excerpt from Claude Debussy’s Preludes Book
1, XI

Contemporary notation and music representation
systems rarely permit specifying such a hierarchical
structure systematically either with beams or with other
metrical attributes. While most notation systems permit
modifying individual beams freely after their creation,
none permit establishing a reusable hierarchical structure
of unlimited depth that can be applied to notes contained in
a bar.

Conventional beaming algorithms, often limited to one
hierarchical level, can not automatically create the beams
shown in Figure 1. The output from Finale 2010,
illustrated in Figure 2, beams the notes into two groups.
The beaming in both Sibelius 6 and MuseScore 0.9 is
identical. Lilypond offers great flexibility in manual
beaming as well as the ability to specify, within manually-
specified beam groups, divisions by durations smaller than
the time-signature specified beat. However, as shown in
Figure 3, the default beaming divides the phrase into a
single level of four beam groups. Lastly, while the
FOMUS system [11] performs multi-level beaming,
configuration is not integrated into the time signature
model.

Figure 2. Beaming realized in Finale 2010

Figure 3. Beaming realized in Lilypond 2.12

Beyond simply specifying a generic 2/4 meter, a
music21 TimeSignature object can specify a
MeterSequence for beaming that defines a bar of 2/4 as
{1/4+1/4}; each 1/4 constituent, in turn, can be defined as
{1/8+1/8}. This structure can be notated as

{{1/8+1/8}+{1/8+1/8}}. Applying this TimeSignature to
beam the rhythm sequence above, the output, provided
from music21 to MusicXML, is shown in Figure 4. By
defining nested hierarchical groups, this model produces
beaming that correctly matches the beaming in Figure 1.

Figure 4. TimeSignature beam partitioning by
{{1/8+1/8}+{1/8+1/8}}

Just as hierarchical structures can be applied to multi-
level beam groups, similar structures can be used to control
the display, beat, and accent properties of time signatures.

3. OBJECTS FOR ORGANIZING HIERARCHICAL
PARTITIONS

Hierarchical models offer useful abstractions of musical
structures [1, 2, 7, 8 10, 12]. Hierarchical structures can
partition and divide a single duration into one or more
parts, where each part is a fraction of the total sum. These
parts, in turn, subdivide into one or more constituent parts,
a process of partitioning and nesting that can be continued
to any depth. Such a structure is defined by the grouping
well-formedness rules (GWFR) of Lerdahl and Jackendoff
[8 pp. 37-39], specifically, GWFR rules G3, G4, and G5: a
group can contain sub-groups, sub-groups cannot be
contained by more than one group, and one or more sub-
groups must completely fill a group. The fundamental
components of TimeSignature, MeterTerminals and
MeterSequences, provide flexible representations of such
structures.

3.1. The MeterTerminal

The MeterTerminal models rhythmic durations. It
represents time as a fraction whose numerators may be any
positive integer greater than zero and whose denominators
may be any n where n = 2x, for x between 1 and 7 (the
minimum of 1/128th being a practical, not a structural,
lower limit). The fraction specified is applied to a whole
note (independent of tempo). The fraction 1/4 thus equals
one quarter note, or 1.0 quarter lengths (QLs). The fraction
1/16 is equal to one 16th note, or 0.25 QLs. The
MeterTerminal duration is stored as a music21 Duration
object. Each MeterTerminal additionally stores a weight, a
numerical value that can be interpreted as an accent value
or in a variety of other contexts.

Figure 5 demonstrates basic functionality of the
MeterTerminal via a Python interactive session. The
subdivide() method partitions a MeterTerminal into one
or more MeterTerminals that are contained in a
MeterSequence, defined below. The arguments given to

subdivide()may be a single integer specifying the
number of equal partitions, a list of desired numerators
(where a best-fit denominator is found if possible), or a list
of MeterTerminal fractions specified as strings. If the sum
of the requested partitions is not equal to the
MeterTerminal, subdivide() raises an error. Since
subdivide() returns a MeterSequence, re-assigning the
output to a MeterTerminal is a common usage.

>>> from music21 import meter
>>> mt = meter.MeterTerminal('3/4')
>>> mt.numerator, mt.denominator
(3, 4)
>>> mt.duration
<music21.duration.Duration 3.0>
>>> mt.duration.quarterLength
3.0
>>> mt.subdivide(3)
<MeterSequence {1/4+1/4+1/4}>
>>> mt.subdivide([3,3])
<MeterSequence {3/8+3/8}>
>>> mt.subdivide(['1/4','4/8'])
<MeterSequence {1/4+4/8}>

Figure 5. Usages of a MeterTerminal Object

3.2. The MeterSequence

The MeterSequence is a subclass of MeterTerminal whose
numerator and denominator values are determined solely
by the sum of an ordered list containing one or more
MeterTerminals and/or other MeterSequences.
MeterSequences have durations, though these durations,
like their numerators and denominators, are immutable
after the object has been created. The MeterSequence, like
a MeterTerminal, thus has a fixed duration specified as a
fraction, but unlike a MeterTerminal it can be partitioned
to any hierarchical depth.

Through operator overloading, the top-level partitions
of a MeterSequence can be accessed like Python lists. Like
a list, the MeterSequence has a length, accessed by the
Python built-in function len(); this value equals the
number of top-level partitions. Also similar to a list, top-
level partitions can be iterated and accessed directly with
indexes starting from zero.

The weight of a MeterSequence is always the sum of
the weights of its constituent MeterTerminals or
MeterSequences. When directly setting the weight of a
MeterSequence, fractional weights are assigned to stored
partitions proportional to the fraction of the total duration
each partition occupies.

MeterSequences, unlike MeterTerminals, can be re-
partitioned in-place by calling the partition() method.
Using arguments in the same forms as used with
subdivide(), the partition() method replaces
existing stored MeterTerminals and MeterSequences with
new partitions. The total duration of new partitions must
remain the same as before. Repartitioning thus does not
change the MeterSequence’s numerator or denominator.

As a subclass of MeterTerminal, MeterSequence also has a
subdivide() method to return a newly partitioned
MeterSequence.

Additional properties and methods provide access to
nested data within the MeterSequence. The flat property
returns a new MeterSequence built from the lowest-
defined MeterTerminals. Similarly, the flatWeight
property returns a list of lowest-defined MeterTerminal
weights. The getLevel(), getLevelSpan(), and
getLevelWeight() methods provide slices through
hierarchical levels, returning partitions, partition time
spans, or weight values, respectively, for a given depth
value starting at zero. The usage of these methods is less
complex than it might seem, as Figure 6 demonstrates.

Finally, a MeterSequence has three methods for
accessing the index value, temporal boundaries, and
contained depth of a partition based on a supplied QL. The
positionToIndex() method returns the index of the
topmost partition. The positionToSpan() method
returns the start and end values of the partition within
which the provided QL falls. Lastly, the
positionToDepth() method returns the number of
partitions that start at or below the supplied QL.

Figure 6 shows a MeterSequence partitioning and
subdividing a 3/4 meter.

>>> from music21 import meter
>>> ms = meter.MeterSequence('3/4')
>>> ms.partition([3,3])
>>> ms
<MeterSequence {3/8+3/8}>
>>> len(ms)
2
>>> ms[0]
<MeterTerminal 3/8>
>>> ms[0] = ms[0].subdivide([3,3])
>>> ms
<MeterSequence {{3/16+3/16}+3/8}>
>>> ms[1] = ms[1].subdivide([1,1,1])
>>> ms
<MeterSequence {{3/16+3/16}+{1/8+1/8+1/8}}>
>>> ms[1][0]
<MeterTerminal 1/8>
>>> ms.depth, ms[0].depth
(2, 1)
>>> ms.flat
<MeterSequence {3/16+3/16+1/8+1/8+1/8}>
>>> ms.flatWeight
[0.25, 0.25, 0.16666666666666666,
0.16666666666666666, 0.16666666666666666]
>>> ms.getLevel(0)
<MeterSequence {3/8+3/8}>
>>> ms.getLevel(1)
<MeterSequence {3/16+3/16+1/8+1/8+1/8}>
>>> ms.positionToSpan(.5)
(0, 1.5)
>>> ms.getLevel(1).positionToSpan(.5)
(0, 0.75)

Figure 6. Usages of the MeterSequence Object

4. THE TIMESIGNATURE OBJECT

As Lerdahl and Jackendoff note, “metrical structure as
such does not possess any inherent grouping” [7 p. 123].
Supporting this claim, the model presented here permits
diverse groupings within a meter, isolated among
independent display, beaming, beat, and accent attributes.
We limit the structures here to those contained within a
single bar; this limitation does not rule out the application
of extended models to larger durations.

The TimeSignature object contains four
MeterSequences, stored as attributes: display, beat,
accent, and beam. Each MeterSequence shares the same
initial duration relationship but can be configured
independently, providing a wide diversity of arrangements.
The applications of each MeterSequence, as well as high-
level TimeSignature methods, are examined below. As
with the MeterSequence, the TimeSigature has a fixed
numerator and denominator, as well as a fixed duration,
accessed from totalLength (returned as a number
expressed in QLs) and barDuration (returned as a
Duration object). As a high-level interface, TimeSignature
provides sensible defaults for all common (and many
uncommon) meters, as well as output in partial or complete
notated representations through the lily (for Lilypond)
and mx (for MusicXML) properties.

Figure 7 demonstrates one way of creating a 5/8
TimeSignature. A string representation of a meter is
required as an initial argument for creating the object.
Additive string representations, such as 3+2/8 or 2/16+3/8,
are permitted. If provided, these implied partitions are
applied to the display MeterSequence. An optional
argument can override defaults and set initial partitioning,
applied to beam, accent, and beat MeterSequences. The
load() method can be called to reinitialize the
TimeSignature and all contained MeterSequences.

>>> from music21 import meter
>>> ts = meter.TimeSignature('5/8', \
... ['2/8', '3/8'])
>>> ts.numerator, ts.denominator
(5, 8)
>>> ts.barDuration
<music21.duration.Duration 2.5>
>>> ts.display
<MeterSequence {5/8}>
>>> ts.beam
<MeterSequence {2/8+3/8}>
>>> ts.accent
<MeterSequence {2/8+3/8}>
>>> ts.beat
<MeterSequence {2/8+3/8}>

Figure 7. Usages of the TimeSignature Object

4.1. The display Attribute

Many notation systems permit assignment of a different
meter for display than for beat or beam grouping. This

approach is accommodated in the TimeSignature object
with the display attribute, a MeterSequence dedicated to
the displayed time signature value. This attribute interprets
the highest-level partitions as the displayed meter, where
partitions are presented as individual meters connected by
addition. Lower-level MeterSequence partitions and
weights are not used for this attribute.

In Figure 8 two different TimeSignature objects are
created with an initial meter of 5/8. The display
MeterSequences are independently configured. The first
(ts1) creates three partitions, displayed as summed
meters. The second (ts2) sets the summedNumerator
attribute of the display MeterSequence to True: this
setting presents numerators summed over a common
denominator. These TimeSignatures are applied to two
music21 Measures, each filled with Note objects with
durations of 0.5 QLs. These Measures are appended to a
music21 Stream, an offset positioned, list-like container
capable of generating complete notation in MusicXML and
Lilypond via its show() method. The MusicXML output
is presented in Figure 9.

ts1 = meter.TimeSignature('5/8')
ts1.display.partition(['3/16','1/8','5/16'])

ts2 = meter.TimeSignature('5/8')
ts2.display.partition(['2/8', '3/8'])
ts2.summedNumerator = True

s = stream.Stream()
for ts in [ts1, ts2]:
 m = stream.Measure()
 m.timeSignature = ts
 n = note.Note('b')
 n.quarterLength = 0.5
 m.repeatAppend(n, 5)
 s.append(m)
s.show('musicxml')

Figure 8. Configuring display attributes

Figure 9. The display attribute configured as
{3/16+1/8+5/16} and {2/8+3/8}

Rather than using the MeterSequence created when
initializing the TimeSignature object, the setDisplay()
TimeSignature method can be used to create a new,
independent MeterSequence with no relationship to the
duration of the other MeterSequence attributes.

The display MeterSequence can be expanded to allow
for custom display attributes, such as single number
(numerator) presentations, flagged-note denominators, and
the medieval and Renaissance meters of C-dot or cut-
circle. Although not all such signatures can be fully
represented in MusicXML and Lilypond, these
representations are useful for computer-aided musicology

and will, for example, allow future interchange with the
Computerized Mensural Music Editing project [3] and
other specialized representations.

4.2. The beam Attribute

The beam attribute provides an independently configurable
MeterSequence for TimeSignature beaming. The
MeterSequence is interpreted as specifying beam groups,
where the top-most partition is the outermost eighth beam
break. Subsequent partitions at lower levels specify groups
shown with partial beam breaks. MeterSequence weights
are not used for this attribute. As demonstrated in Section
2, partial beam breaks illustrate rhythmic groupings and
facilitate the reading of rhythms, particularly tuplets mixed
with similar durations. Storing reusable beam partitions
permits multiple measures sharing a TimeSignature to be
automatically beamed to the same partitions.

The TimeSignature getBeams() method, called and
configured by the Stream makeBeams() method, defines
the automatic beaming algorithm. This method uses the
TimeSignature’s beam MeterSequence to apply beams to
music21 Note objects in a bar. A beamed Note contains a
collective object called Beams consisting of one or more
Beam objects, each describing the state of a beam segment.
On output generation, these objects render beams in
MusicXML or Lilypond.

Figure 10 provides Python code to configure four
different meters at various beaming levels. The first (ts1)
has one partition subdivided into four beam groups. The
second (ts2) has three equally sized partitions. The third
(ts3) has three partitions each subdivided into two groups.
The fourth (ts4) demonstrates the use of three hierarchical
beaming levels. Figure 11 shows the differences in the
output of these four representations applied to a bar of
32nd notes in 3/4.

ts1 = meter.TimeSignature('3/4')
ts1.beam.partition(1)
ts1.beam[0] = ts1.beam[0].subdivide(['3/8',
 '5/32', '4/32', '3/32'])

ts2 = meter.TimeSignature('3/4')
ts2.beam.partition(3)

ts3 = meter.TimeSignature('3/4')
ts3.beam.partition(3)
for i in range(len(ts3.beam)):
 ts3.beam[i] = ts3.beam[i].subdivide(2)

ts4 = meter.TimeSignature('3/4')
ts4.beam.partition(['3/8', '3/8'])
for i in range(len(ts4.beam)):
 ts4.beam[i] = ts4.beam[i].subdivide(
 ['6/32', '6/32'])
 for j in range(len(ts4.beam[i])):
 ts4.beam[i][j] = \
 ts4.beam[i][j].subdivide(2)

s = stream.Stream()
for ts in [ts1, ts2, ts3, ts4]:
 m = stream.Measure()
 m.timeSignature = ts
 n = note.Note('b')
 n.quarterLength = 0.125
 m.repeatAppend(n, 24)
 s.append(m.makeBeams())
s.show('musicxml')

Figure 10. Configurations of the beam attribute

Figure 11. The beam attribute configured as ts1
{3/8+5/32+4/32+3/32}, ts2 {1/4+1/4+1/4}, ts3
{{1/8+1/8}+{1/8+1/8}+{1/8+1/8}}, and ts4
{{{3/32+3/32}+{3/32+3/32}}+{{3/32+3/32}+
{3/32+3/32}}}

Figure 12 provides Python code to configure two
TimeSigature beam attributes to obtain the same beaming
used in two measures of the solo violin part from the 1936
Universal Edition score (UE 12195) of Alban Berg’s
Violinkonzert. The MusicXML output is presented in
Figure 13. The Universal Edition score divides the lower-
level beam groups differently in each bar, differences that
are modeled by music21’s TimeSignature.

ts1 = meter.TimeSignature('6/8')
ts1.beam.partition(2)

ts2 = meter.TimeSignature('6/8')
ts2.beam.partition(2)
for i in range(len(ts2.beam)):
 ts2.beam[i] = ts2.beam[i].subdivide(3)

Figure 12. TimeSignature configuration for the violin part
from Alban Berg’s Vioinkonzert, measures 135-136

Figure 13. The beam attribute configured as ts1
{3/8+3/8} and ts2 {{1/8+1/8+1/8}+{1/8+1/8+1/8}} for
the violin part from Alban Berg’s Vioinkonzert, measures
135-136

4.3. The beat Attribute

The beat attribute provides an independent
MeterSequence to partition the bar into beat divisions.
Although Lerdahl and Jackendoff assert that “beats must
be equally spaced” and that “fundamental to the idea of
meter is the notion of periodic alternation of strong and
weak beats” [8 p. 19], the use of a beat MeterSequence
here is more general and is independent of metrical accent.
While beat is usually linked to metrical accent,
independent MeterSequences permit greater
representational flexibility.

Applications of the beat attribute include filtering
notes or and labeling them by their beats. Lower-level
partitions have applications for analysis, as shown below.
MeterSequence weights, not explored here, are potentially
useful for related analytical tasks. The getBeat() method
of TimeSignature provides the beat count (starting from 1)
for a note (or any other musical event) given a QL into a
bar. For instance, for a 3/8 bar with three equal beats,
getBeat(0.5) returns 2. The getBeatProgress()
TimeSignature method returns the beat count as well as the
QL difference from the start of that beat, so in the previous
example, getBeatProgress(0.75) returns (2, 0.25).
Figure 14 uses these methods on a chorale by J. S. Bach,
BWV 366, (from a corpus of works distributed with
music21) to find and label all the raised seventh scale
degrees in this d-minor piece. Found notes are labeled with
voice part, measure number, and beat. The resulting
MusicXML output, shown in Figure 15, illustrates that in
this case, Bach uses raised seventh scale degrees only on
beats one and three, the two strongest beats.

import music21
from music21 import corpus, meter, stream

score = corpus.parseWork('bach/bwv366.xml')
ts = score.flat.getElementsByClass(
 meter.TimeSignature)[0]
ts.beat.partition(3)

found = stream.Stream()
offsetQL = 0
for part in score:
 found.insert(offsetQL,
 part.flat.getElementsByClass(
 music21.clef.Clef)[0])
 for i in range(len(part.measures)):
 m = part.measures[i]
 for n in m.notes:
 if n.name == 'C#':
 n.addLyric('%s, m. %s' %
 (part.id[0],
 m.measureNumber))
 n.addLyric('beat %s' %
 ts.getBeat(n.offset))
 found.insert(offsetQL, n)
 offsetQL += 4

found.show('musicxml')

Figure 14. Using getBeat() to label found notes

Figure 15. Collected results showing part, measure, and
beat

Beats can be also represented as composed from lower-
level hierarchical units. Lerdahl and Jackendoff’s metrical
analysis [7 p. 120] employs multiple levels of hierarchical
beat structures to partition a bar into “dot levels.” An
example of their analysis is presented in Figure 16.

Figure 16. Metrical analysis excerpt from Lerdahl and
Jackendoff [7 p. 121]

In the more general context of a MeterSequence,
metrical analysis dot levels can be obtained by examining
the depth, or the number of hierarchical levels active at a
QL value. A QL, quantized to the start of the lowest-level
partition within which the QL falls, is used to find the
number of partitions at all levels that share this start QL.
The TimeSignature method getBeatDepth() provides
these values. The Python code in Figure 17 annotates notes
from the bass part of a chorale by J. S. Bach, BWV 281,
with the number of dots specified by a 4/4 time signature
subdivided in halves down to the eighth note level. The
MusicXML output is presented in Figure 18.

import music21
from music21 import corpus, meter

score = corpus.parseWork('bach/bwv281.xml')
partBass = score.getElementById('Bass')
ts = partBass.flat.getElementsByClass(
 meter.TimeSignature)[0]

ts.beat.partition(1)
for h in range(len(ts.beat)):
 ts.beat[h] = ts.beat[h].subdivide(2)
 for i in range(len(ts.beat[h])):
 ts.beat[h][i] = \
 ts.beat[h][i].subdivide(2)
 for j in range(len(ts.beat[h][i])):
 ts.beat[h][i][j] = \
 ts.beat[h][i][j].subdivide(2)

for m in partBass.measures:
 for n in m.notes:
 for i in range(
 ts.getBeatDepth(n.offset)):
 n.addLyric('*')

partBass.measures[0:7].show('musicxml')

Figure 17. Metrical analysis applied to notes based on
beat attribute depth

Figure 18. Bass part annotated with metrical analysis

4.4. The accent Attribute

The accent attribute provides an independent
MeterSequence to partition the bar into accent groups,
where each top-level partition is given a weight
proportional to its metrical stress. Weights can be set
directly or through the setAccentWeight()
TimeSignature method. Hierarchical weights, while not
demonstrated here, may offer valuable representational
opportunities.

The getAccentWeight() TimeSignature method
provides, for a supplied QL into a bar, the weight active at
a specified hierarchical level. This method is demonstrated
in Figure 19, where the bass part of the chorale used in
Figure 14 is annotated with articulation marks to reflect
accent levels. Rather than the displayed meter of 3/4, here
the beat and accent attributes are (incorrectly) partitioned
into 6/8, or groupings of 3/8 + 3/8. The
getBeatProgress() method of TimeSignature is used
to select only the notes that begin at the start of beat
divisions. The MusicXML output is presented in Figure
20.

from music21 import corpus, meter, articulations

score = corpus.parseWork('bach/bwv366.xml')
partBass = score.getElementById(“Bass”)

ts = partBass.flat.getElementsByClass(
 meter.TimeSignature)[0]
ts.beat.partition(['3/8', '3/8'])
ts.accent.partition(['3/8', '3/8'])
ts.setAccentWeight([1, .5])

for m in partBass.measures:
 lastBeat = None
 for n in m.notes:
 beat, progress = ts.getBeatProgress(
 n.offset)
 if beat != lastBeat and progress == 0:
 if n.tie != None \

 and n.tie.type == 'stop':
 continue
 if ts.getAccentWeight(n.offset) == 1:
 mark = \
 articulations.StrongAccent()
 elif ts.getAccentWeight(n.offset) \
 == .5:
 mark = articulations.Accent()
 n.articulations.append(mark)
 lastBeat = beat
 m = m.sorted

partBass.measures[0:8].show('musicxml')

Figure 19. Using getBeatProgress() and
getAccentWeight() to add articulation marks

Figure 20. Bass part with marks added to articulate
{3/8+3/8}

5. FUTURE WORK

The TimeSignature model provides a powerful tool for
analyzing and configuring notes in a bar. In the context of
the music21 toolkit, the TimeSignature object can be used
to determine the beat and implied accent of an event in a
bar and then extract and process this data. This information
is significant in large-scale computational musicology
tasks. Similarly, the TimeSignature can be used for
automatic beaming algorithms and the creation,
performance, and notation of meter-implied accents.
Features of this model can be implemented in higher-level
systems and interfaces, and would provide significant
improvements to commercial notation packages and digital
audio workstations.

Future development of this model will support meta-
and hyper-meters, thereby providing multi-measure
groupings and automatic beaming across bar-lines. Support
for independent beaming and accent for multiple-voices
within a bar will also be developed.

The TimeSignature model will be used to solve
problems in musicology by studying norms of behavior of
a large musical corpus. Such research, planned as part of
the music21 project, will include documenting
relationships between accent and harmonic structure in

Renaissance and common-practice music, and the role of
notational variants in identifying scribes and composers.

6. ACKNOWLEDGMENTS

Development of TimeSignature and the music21 toolkit is
conducted as part of a multi-year research project funded
by the Seaver Institute.

7. REFERENCES

[1] Balaban, M. 1992. “Music Structures: Interleaving
the Temporal and Hierarchical Aspects in Music.” In
Understanding Music with AI: Perspectives on Music
Cognition. M. Balaban, K. Ebcioglu and O. E. Laske,
eds. Cambridge: AAAI Press / MIT Press. 31-48.

[2] Buxton, W. and W. Reeves, R. Baecker, L. Mezei.
1978. “The Use of Hierarchy and Instance in a Data
Structure for Computer Music.” Computer Music
Journal 2(4): 10-20.

[3] Dumitrescu, T. 2001. “Corpus Mensurabilis Musice
‘Electronicum’: Toward a Flexible Electronic
Representation of Music in Mensural Notation.”
Computing in Musicology 12: 3-18.

[4] Good, M. 2001. “An Internet-Friendly Format for
Sheet Music.” In Proceedings of XML 2001.

[5] Hiller, L. A. and R. A. Baker. 1965. “Automated
Music Printing.” Journal of Music Theory 9(1): 129-
152.

[6] Huron, D. 1997. “Humdrum and Kern: Selective
Feature Encoding.” In Beyond MIDI: the Handbook
of Musical Codes. E. Selfridge-Field, ed. Cambrdige:
MIT Press. 375-401.

[7] Lerdahl, F. and R. Jackendoff. 1977. “Toward a
Formal Theory of Tonal Music.” Journal of Music
Theory 21(1): 111-172.

[8] Lerdahl, F. and R. Jackendoff. 1983. A Generative
Theory of Tonal Music. Cambridge: MIT Press.

[9] Nienhuys, H. and J. Nieuwenhuizen. 2003.
“LilyPond, a system for automated music engraving.”
Proceedings of the XIV Colloquium on Musical
Informatics (XIV CIM 2003).

[10] Polansky, L. and P. Burk, D. Rosenboom. 1990.
“HMSL (Hierarchical Music Specification
Language): A Theoretical Overview.” Perspectives of
New Music 28(1-2): 136-178.

[11] Psenicka, D. 2007. “FOMUS, a Music Notation
Software Package for Computer Music Composers.”
In Proceedings of the International Computer Music
Conference. San Francisco: International Computer
Music Association. 75-78.

[12] Smaill, A. and G. Wiggins, M. Harris. 1993.
“Hierarchical Music Representation for Analysis and
Composition.” Computers and the Humanities 27(1):
7-17.

