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Gas motion induced by unsteady boundary heating in a small-scale slab
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We study the response of a gas confined in a small-scale gap to a small time-dependent change in
the temperature of the gap boundaries. Using the collisionless Boltzmann equation, a general
scheme for the calculation of the probability density function and the respective hydrodynamic
fields in response to any heating history is developed. Asymptotic analytical results are obtained for
the cases of “ramp” (linearly varying with a cutoff value) and oscillatory boundary heating. The
ramp solution can be used to approximate the system response to arbitrarily slow and fast process
time scales (compared to the mean free time) and thus complement previous analyses focusing on
relatively slow or instantaneous heating. For oscillatory heating at frequencies significantly higher
than the collision frequency, we find that, at late times, the hydrodynamic fields decay
proportionally to exp[—(wd,,)**], where w is the oscillation frequency and &, is the distance from
the wall. As a result, for sufficiently high frequencies, the steady-state gas motion is confined to
narrow “bounded” layers in the vicinity of each wall. The results are compared with low-variance
particle simulations of the linearized Boltzmann equation using the recently developed low-variance
deviational simulation Monte Carlo method. Good agreement is found between the analysis and
simulations, suggesting the former to be an accurate and simple means for calculating the
hydrodynamic response of systems of arbitrary size within one mean free path from the heated

boundary. © 2008 American Institute of Physics. [DOI: 10.1063/1.3010759]

I. INTRODUCTION

The analysis of the time response of a fluid confined in a
slab and subject to a change in the thermal properties of its
boundaries is of both fundamental and practical importance
in classical fluid mechanics' as well as in rarefied gas
dynamics.2 The fluid motion induced in this problem is
driven by the mechanism of thermal expansion, which
couples the temperature variations induced in the fluid with
the appearance of density gradients. The problem of gradual
change in wall thermal properties was studied in the context
of continuum gas dynamics in a series of works by Radhwan
and Kassoy3 and Clarke et al.* To justify their use of con-
tinuum gas description, a time scale longer than some mod-
est multiple of the mean free time between molecular colli-
sions was assumed. Considering shorter time scales for the
variation in wall properties requires the consideration of mo-
lecular details of the gas, which are difficult to incorporate
within a continuum description.

Several studies have investigated the problem in the
limit of sudden temperature variations by examining the re-
sponse of a dilute gas to instantaneous changes in wall tem-
perature in the free-molecular and transition flow regimes.sf9
In all of these studies, a discontinuous jump in the tempera-
ture of one or both confining walls is imposed and the flow
field is followed through its new equilibrium state. The char-
acteristic time scale for arriving at the new equilibrium is
found to be of the order of the acoustic time scale (the ratio
of the gap width to the most probable molecular speed of gas
molecules). Analytical and numerical solutions to this prob-
lem based on a collisionless description9 have been found to
be in good agreement with direct Monte Carlo simulations of
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the Boltzmann equation10 in systems where the effect of col-
lisions is small.

In this work we aim to complement the above studies by
considering the response of a confined dilute gas to an un-
steady continuous change in the temperatures of its bound-
aries, characterized by an arbitrary (small or large) time
scale. With this solution we wish to extend both existing
continuum gas dynamics studies where a finite time scale is
assumed, as well as molecular-gas-dynamics studies where
only discontinuous temperature changes are analyzed.
Clearly, the case of a continuous temperature change is of
more physical relevance to various applications, including
micro- and nano-electro-mechanical devices.' ™ In addition,
considering the impact of a gradually decreasing time scale
may ultimately help in identifying the breakdown of the con-
tinuum description and clarify the transition to the free-
molecular-flow regime.

In Sec. II the linearized microscopic problem for a col-
lisionless gas is formulated in terms of a pair of coupled
integral equations and a general scheme for obtaining nu-
merical solutions of the resulting equations is described. The
cases of “ramp” (linear temperature increase with a cutoff
value) and oscillatory heating are studied in detail in Secs. ITT
and IV, respectively. The analysis includes the development
of analytical results for the early-time behavior of hydrody-
namic fields. Analytical results describing the steady-state
behavior in the case of high-frequency oscillatory heating are
also obtained. In Sec. V our results are presented and com-
pared with low-variance particle simulations of the linearized
Boltzmann equation. These simulations are obtained using
the recently developedM’15 low-variance deviational simula-
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tion Monte Carlo (LVDSMC) method, which achieves sig-
nificantly reduced statistical unc:f:rtalinty16’17 compared to
DSMC simulations'® in low-signal problems such as the one
studied here. The comparison between LVDSMC and our
analytical results verifies that the present analysis may serve
as an accurate and simple means for describing the hydrody-
namic response of systems of arbitrary size within one mean
free path from the heated boundary. We close with some
concluding remarks (Sec. VI).

Il. PROBLEM DESCRIPTION
A. Microscopic description

We consider a dilute-gas layer of molecular mass m and
uniform density p, confined between two infinitely long
diffusely reflecting walls placed in the (y*,z*) plane at
x*==*L/2 (" denotes a dimensional variable). The gas is
initially at rest and in thermodynamic equilibrium with the
confining walls at a temperature T,. At time *=0 the right
(x*==L/2) and left (x*=L/2) walls are heated independently
and uniformly with prescribed time dependencies, T,
=To[1+eg, ()] and T, =T,[1+eg_(r*)], respectively. It is
assumed that €<1 and |g.(t")|~O(1) so that the system
description may be linearized about its initial equilibrium.
To render the problem dimensionless we normalize position
by L, velocity by the most probable molecular speed
Uyn=V2RT,, and density and temperature by p, and T, re-
spectively. The resulting time scale is thus the acoustic scale
t,=L/Uy,. Here, R=kg/m is the specific gas constant, and kp
is the Boltzmann constant. For future reference, we define
the Knudsen number'®

L
L

Kn=—,
wherein [=m/ (\;‘Eﬂpodz) is the molecular mean free path and
d is the “equivalent” hard-sphere diameter. The molecular
s —
collision time is given by r.=\wl/(2Uy,).
The gas state is described by the probability density
function

flt,x,e) =Fyll + ed(t,x,¢)], (1)

wherein ¢=(c,,c,,c;) is the vector of molecular velocity,
Fy=7"2 exp[-c?] is the equilibrium Maxwellian distribu-
tion, and ¢ is the unknown perturbation. Neglecting the ef-
fects of molecular collisions, the linearized problem for ¢ is
governed by the collisionless Boltzmann equation,19

d¢p d¢

+c,— =0, 2
ot Tox @

together with the initial condition

¢(t=0,x,¢)=0 (3)
and the linearized diffuse boundary conditions

Pd(t,x= F1/2,¢,=0)=p(1) + gi,(t)(c2 - %) 4)

The functions p.(¢) are yet to be determined [see Egs. (8)
and (9) er seq.]. Given the collisionless approximation, we
expect the above model to provide a good description of the
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system response for times smaller than the collision time,
t*=<t. (t=Kn), or, equivalently, within a distance of one
mean free path from the wall.

Taking the Laplace transform of Eq. (2) and using
Egs. (3) and (4) yield the solution

d(s,x,c, = 0,cy.c,) = {[u(s) + §+(s)<c2 - %)]

Xexp{— C—(xi %)], (5)

where s is the Laplace variable and ~ denotes the Laplace
transform of a function. By inversion of Eq. (5) we obtain

d)(t?x?cx%O7cy7cz)=pi(ti)+gi(ti)(cz_%)a (6)

where ¢.=7—(x=* 1/2)/c, are the retarded times correspond-
ing to the signals generated at time ¢ at the walls x=+1/2,
respectively.

The fields p.(7) are determined by imposing imperme-
ability conditions at the walls,

Jw cx¢<x= ¥ %)ch: 0. (7)

5y

Substituting Eq. (6) into Eq. (7) yields a pair of coupled
integral equations,

“dp, 1
P fo ﬁexp[" (i- r)z}df
e 1 1 L
‘2f0 (i- Tf[(z— 0 2}“"[" (1 r)z]‘”

- %[g_m 5,00 - }2)] )

[% 1
P _L dr exp[_ (r- 7)2]‘”

B " g (7 1 1 1
‘zfo (- 7)3[@- e z}”‘p[_ (- T)Z]‘”

- E{gm) 5.0 - })] )

[

which needs to be solved in conjunction with the initial con-
ditions p,(0)=-g.,(0)/2 and p_(0)=—g_(0)/2.

The key to obtaining a number of analytical results is
to rewrite Egs. (8) and (9) in terms of o(r)=p,+p_ and
&(t)=p,—p_, which results in a pair of uncoupled equations,

[} e -

o(t) - OdTexp R T
D -G B SR O N B O
=2 o(r—rﬁ{(r—r)fz}”p[ <r—r>2]‘”

1 1
- E{gg(t) + ga(O)eXp<— t—zﬂ (10)

and
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"dé 1
ot + fo E_exp{— —(t— T)z]dT
_ fen |11 o
“ZL (z—rﬁ{(r—ﬂfz}e"p[‘<r—r>2}‘”

1 1
—E[ga(t)—gg(O)eXP<— t—zﬂ (11)

where g, (f)=g,+g_ and gst)=g,—g_. These are sup-
plemented by the initial conditions ¢(0)=-g,(0)/2 and
8(0)=-gs0)/2.

For the simplified case of g,=1 and g_=R, (constant),
corresponding to g,=1+R, and gs=1-R,, the authors have
developed in previous work’ an analytical solution for the
distribution function representing the case of step boundary-
temperature change.

B. Numerical scheme for solution of Egs. (8) and (9)

The above pair of equations is also a convenient starting
point for a simple numerical method for treating arbitrary
g (). To solve for o(r) and &(r) we make use of the follow-
ing simple Euler-type method by casting Egs. (10) and (11)
in the form

n-1 [ dF lix1
G(tn+l)_F(tn)+k12i:0 (E) f exp{—
471

(o - r)z}‘”
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"dF 1
F()-k | — -—— |dr=G(®), 12
(1) lLdTeXp{ (I_T)2:| 7=G(1) (12)

with F(r) either o(r) or &), together with F(0)=k, [con-
stants k; and k, determined from Eq. (10) or (11)].

Our goal is to determine F(¢) by discretizing time using
a series of time steps t,,,=t,+At coupled with the approxi-
mation

F(t,.,) = F(t,) + (%‘) At + O(AP).

To obtain an expression for (dF/ dt),n we approximate the
integral term in Eq. (12) by

, j’"dF [ 1 ]d
= —e - —
=)y ar P -2 )T
[onl- 75
exp| ———— |d7+ -

0 p (l‘n_T)2

tn 1
f exp{‘(rn—r)z}d“ (13)

In-1

(%)

which, after collecting terms, yields

-y

(%), -
dt :

n

While there are numerical procedures far more sophisticated
for integrating Egs. (10) and (11), we deliberately apply here
a very simple scheme to demonstrate its effectiveness in pro-
viding accurate solutions of the problem (see Sec. V).

C. Expressions for the hydrodynamic fields

Once ¢ is known, the O(e) perturbations of the hydro-
dynamic fields may be calculated by appropriate quadratures
over the molecular velocity space.19 Introducing

L = f g (t2)c} exp[- cilde,,

X4

(15)
VL= f p=(t-)cy exp[- ci]dcx,

with ¢, =(x*1/2)/1, the O(e) density, x-component veloc-
ity, temperature, and x-component heat-flux perturbations
are, respectively, expressed as

In+l 1
At—k J exp[— —]dr
: 1 (tn+l - 7)2

(14)
I
1 0 0 2 2 1 0 0
p==| M-Vl Df- 02— (00T (16)
N
1 1 1 3 3 1o 1
==V -y - -~ -} |, (17)
\ ’ : 27
2 ) > 1 0 0 4 4 2 2
K e T PSR P Ser
5.0 0
+Z(cb+_q)—) s (18)
and
1 3 3 1 1 5 s, Las 3
qx:z\_/q_r ‘P+_\P—+\II+_‘P—+(D+_(D—+E(CD“'_(D_)
1 5
+ E(cbi— q)l)] -t (19)
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lll. RAMP HEATING

Consider the case where the temperature of each wall
varies linearly with a cutoff value, i.e.,

|k 0= =1k
1) =
B+ 1. > 1k

(20)
kRit, 0=t=1/k
g-(t)=
R., t>1/k,

where R.~ O(1) and k are constants. This heating profile has
been chosen because it can be used to bridge slow and fast
heating processes as well as approximate either process in
the appropriate limit. Although the collision time is very
short in macroscopic units, similar fast processes have re-
cently appeared in connection to a number of industrial
applications. 1213

To obtain the system behavior at early times
0=tr=1/k<<1, we apply the scheme outlined in Sec. II B for
one time step. The leading order behavior of p, and p_ is
then found to be

(1) = = ki + Ofexpl- 1)),
(21)
R, _
p_(t) = - ?kt + O(exp[-r2]).

Substituting Egs. (20) and (21) into Egs. (15)—(19) yields the
early-time approximations for 0=r=1/k,

L0 N L L P S (N | M
p~2\’;{(ﬂ2)w ee-ro)

\r/’I_T

- 71‘[’)’(6&) + Rey(_ Cx_)]} s (22)

u, = S{(x+%)?’(cx+)+Re(X—%>7(— Cx_):|’ (23)

T= M%T{ (x + %)exp[— ci] - R6<x - %)exp[— ci_]
3 \'7:
+ Tt[ 7(cx+) + Rey(_ C)c_)] - P, (24)

k|1 ( 1) 5
= —=) | | x+ =], exp[—c; ]
4 2\/7_7-{4|: 2 + p +

1 2
-R/ x=J)ee exp[-c; ]

- V/’7_T|: (X + %) 7(0x+) + Re<x - %) 7(_ Cx_):|

+ t{exp[— ci] - R, exp[- ci]}} , (25)

where Y(z)=Q2/\m)[ “exp[—p*]dp is the complementary er-
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ror function and I'(a,z)=[7p*" exp[—pldp is the upper in-
complete gamma function.

For sufficiently rapid heating where 1/k<<1, the early
stage of constant boundary temperature, 1/k<<tr<<1, may
also be included in the early-time approximation. For
1/k<t<1 the leading order expressions for p, and p_ are

.0 == 3 + Ofexpl-r)),
(0
RE —
p(1) ==+ Olexpl-1 .

Since the expressions in Eq. (15) for g.. and p.. depend on ¢,
through the retarded times f., each of the quadratures in
Eq. (15) naturally separates into two integrals. Substituting
Eq. (20) into @ in Eq. (15), we obtain

(+1/2)/(t=1/k)
D=k f t.c" exp[- cldc,
C

Xy

+ f " exp[- cZlde, (27)
(r+1/2)/(=1/k)
and

(e=1/2)/(t=17)
d" =Rk f 1_c" exp[- cldc,
C'\',

+ Ref i exp[— cf]dcx. (28)
(x=1/2)/(t=1/k)

Explicit formulas for Eqs. (27) and (28) are calculated in
Appendix A. Substituting Eq. (21) and Eq. (26) into W’ in
Eq. (15), we find that W, =-®". /2. Once &', and V. are
known, Egs. (16)—(19) yield the required early-time approxi-
mations for the macroscopic fields.

The above analysis may serve to complement results ex-
isting in literature for the system response to relatively slow
boundary heating3’4 and instantaneous temperature jump.9
For completeness and for correcting typographical errors ap-
pearing in a previous work,” the early-time approximations
corresponding to the latter case are included in Appendix B.

At late times 7> 1 (and also > 1/k), application of the
final-value theorem yields the system final equilibrium state
consisting of vanishing density and velocity perturbations,
together with T~ (1+R,)/2 and ¢,=~ (1 —Re)/(2\’/7_T).

IV. OSCILLATORY HEATING

For simplicity, we consider the case where the tempera-
ture of both walls oscillates with common amplitude and
phase,

8+(1) = g_(1) = sin(wt). (29)

First we study the early-time response of the system at mod-
erate frequencies, w=<1, and then calculate the steady-state
solution®® for w>1.
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A. The case w=0(1)

Applying the scheme in Sec. II B as described in the
beginning of Sec. III, we find for the leading order behavior
at r<1

p.(1) = p_(1) = — 5sin(wr) + Oexp[- r2]). (30)

For w=O(1) this is equivalent to a special case of the ramp
heating problem discussed in Sec. III with k=w and R_=1.
The early-time approximations are therefore given by the
corresponding expressions (22)—(25).

B. The case w>1

Motivated by some of our numerical results (see Sec. V),
we seek an analytical description of the steady-state behavior
of the system at high frequencies. For g,(¢)=g_(r)=sin(wi),
Eq. (11) yields &(r)=0. Substituting Eq. (29) into Eq. (10),
we find that o(r) satisfies

0 fd—" [ ;}d

olt) — . dTeXp _(t—T)2 T
~ "exp(ioT) 1 1
‘“‘“UO (-1 {(z-r)z’z]

Xexp{— (l—lT)2:|dT} —sin(wt), (31)

where Im denotes the imaginary part of a complex number.
Integration by parts shows that the integral term appearing
on the right hand side of Eq. (31) is O(w™!). Assuming a
solution of the form o(f)=A sin(wf), we find a similar
estimation for the integral term appearing on the left hand
side of Eq. (31). Consequently, for w>1 we obtain
o(t) =—sin(wt) and thus

p:(1) = p_(1) = = 3sin(wr) + O(™). (32)

Substituting Egs. (29) and (32) into Eq. (15), the integrals to
be evaluated for the calculation of the macroscopic fields are

Cx

, ) = u , L XE1/2
d” =Tm{ expliot] chexpl—ci—iw de, ¢,
Cx,

(33)
1
VL~ - 0L,
L=- ol

where for steady state the lower limits of integration vanish
(Je,,|=[x=1/2|/1<1). These steady-state quadratures may
be approximated in cases where w(1/2+x)>1. Applying
the method of steepest descent®! yields
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P ~ Im{ \/?3_”/212/2 expliot —z,]

X[1+az;" + azzfrz + 0(113)]}’

(34)
" ~ Im{ \/g(— 11377272 explior —z_]
X[1+a,z-' + a2+ 0(123)]} ,
where  z.=3[w(1/2+x)/2]*3 exp[im/3], a;=(3n*+3n

—-1)/12, and a,=(9n*+6n>-51n>-24n+25)/288. The two
correction terms in Eq. (34) become important in the vicinity
of the walls where the product w(1/2=*x) may not satisfy
®(1/2*=x)>1, because for any given w> 1, there always
exists a region sufficiently close to the walls where
w(1/2 £x)<1 and Eq. (34) are not valid (see Fig. 6). Within
these regions, of particular interest are the values of @', at
the walls, which can be easily calculated from Eq. (33) using
the properties of J,(z)=/7 p" exp[-p*ldp given in
Appendix A.

Substituting Eq. (33) into Egs. (16)—(19), the high-
frequency approximations for the macroscopic fields are

p~ (@2 = B2) = (B0 - BY)], (35)
N

= =[(@— &)~ (@]~ D))], (36)
N

2 3 3
T~ —r{(cbi—cbi) — (P - D) + (D) - DY) |,
3N 2 2

(37)

1 5
~—=(0] - D) - ~u,. 38
Qx 2\/7_1_( + —) 4ux ( )

The following simple expressions follow at the walls:
1 1
p(x: + 5) ~ - Zsin(wt),

r{x= 1) = Leintan (39)

x=* 5 sin(awr),

x=* | = T —=sin(wr),
a 2 W

together with a vanishing velocity.

V. RESULTS AND DISCUSSION

We validate our results by comparing them with low-
variance Monte Carlo solutions of the linearized Boltzmann
equation for a hard-sphere gas obtained using the recently
developed'*"> LVDSMC method. LVDSMC is a particle
method akin to DSMC, which uses variance reduction
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FIG. 1. Comparison between DSMC (crosses) and LVDSMC (solid line) solutions for the [(a) and (c)] velocity and [(b) and (d)] temperature perturbations
for oscillatory heating with =407 and Kn=1 at —=0.5=x=0 and times [(a) and (b)] #=0.055 and [(c) and (d)] r=0.13.

ideas'® to significantly reduce the statistical uncertainty in
sampled hydrodynamic quantities in cases where the devia-
tion from equilibrium is small, as in the present problem. The
reduced statistical uncertainty facilitates a closer comparison
between theory and simulation. More importantly, in some
cases it enables the study of low-signal flows that would
have been impossible using DSMC. This is the case here,
where the simulation of the k~O(1) ramp heating and w
~O(1) oscillatory heating at a low statistical uncertainty
is impossible using DSMC with our current computational
resources.

As shown in Ref. 15, when using similar discretization,
the LVDSMC method produces solutions in excellent agree-
ment with their DSMC counterparts. This may have been
anticipated since the LVDSMC method is rigorously derived
from the Boltzmann equation and uses the same basic nu-
merical ingredients as DSMC. In fact, LVDSMC differs from
DSMC only in ways necessary for simulating the deviation
from equilibrium. To verify this assertion and justify our sub-
sequent use of LVDSMC, we performed comparisons be-
tween LVDSMC and DSMC solutions using the same dis-
cretization. These comparisons were performed for problems
where DSMC solutions were feasible (albeit expensive), e.g.,
oscillatory heating with w>1. Very good agreement was
found in all cases examined. One representative example is
shown in Fig. 1 in which the velocity and temperature fields
are compared for the oscillatory case with w=407 and
Kn=1. Due to the smaller signal-to-noise ratio in the DSMC
results, the latter calculation was performed with €=0.04,

whereas the LVDSMC calculation was performed with
€=0.02. Despite the visible statistical uncertainty in the
DSMC solution, the agreement between the two solutions is
very good.

In accordance with our problem description, diffuse
boundary conditions are used for the simulations. The gas is
initially at equilibrium with the wall temperature 7,. At
t*=0 each wall temperature varies according to the pre-
scribed g..(7) and the time evolution of the system is calcu-
lated. The simulation time step was chosen to be 1/(10n.),
where n.; is the number of spatial cells. For the majority of
calculations n.;=100, except for the w>1 case where
n.n=200 was used due to the rapid spatial variation in the
solution. All LVDSMC calculations were performed with
€=0.02. Our previous work’ suggests that nonlinear effects
become important at e=0.1.

A. Ramp heating

Figure 2 describes the evolution of the hydro-
dynamic perturbation fields (16)—(19) for the ramp case with
k=R.=1 at the indicated values of ¢. The crosses correspond
to LVDSMC results at Kn— o, and the thin lines mark the
late-time collisionless limit (see Sec. III). For this choice of
R., p,=p_ [see Egs. (8) and (9)] and thus density and tem-
perature perturbations are symmetric while the velocity and
heat flux are antisymmetric about x=0.

At early times (1<<1) both density and velocity distur-
bances propagate in a wavelike manner from the walls with
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Y b
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X

FIG. 2. The (a) density, (b) velocity, (c) temperature, and (d) heat-flux perturbation distributions for k=R.=1 and the indicated values of time (solid lines).
The crosses correspond to LVDSMC results at Kn— oo and the thin solid lines mark the long-time collisionless limit (Sec. III). The dashed lines in (b) denote
the early-time approximation (40) for the loci and amplitudes of the wave extrema.

approximately constant speed and increasing amplitude. At
these times, expressions (22)—(25) provide results that are
indistinguishable from the numerical solution outlined in
Sec. II. The left- and right-traveling velocity-disturbance ex-
trema are predicted by Eq. (23) to be

1 \/’7_Tl> \r’;kt ( \/7_7)

uxleft(x=_ 5 + T = ?7

4
(40)

respectively, and are denoted by the dashed lines in Fig. 2(b).
These are qualitatively different from the faster ggxtrema lo-
cations = ¥ 0.5 = t) constant-amplitude [~1/(2Vme)] waves
predicted9 in the instantaneous heating response [see Eq.
(B2) with R_=1].

At t=0.3 the two waves adjoin for the first time while
their magnitudes keep increasing. At =1 the temperatures at
both walls reach their cutoff value, and at later times the gas
approaches its new equilibrium state through a series of de-
caying waves propagating across the slab. At the latest time
presented (r=2), the density, velocity, and heat-flux perturba-
tions are relatively small (not shown for clarity) while the
temperature is still evolving toward its final value.

In view of the vastly different methods of calculation,
the close agreement between the present analysis and
LVDSMC results is gratifying. In contrast with the relatively
costly numerical procedure and the inevitable appearance of
statistical noise (visible even in the present low-noise
LVDSMC calculations, e.g., the scatter of results in the ve-
locity field), the present solution has the evident advantage
of requiring very small computational effort.

To study the validity of the numerical scheme and early-
time approximation to lower Knudsen number flows, Fig. 3
presents a comparison of the time evolution of the velocity
and temperature perturbations at a fixed location, x=-0.45,
with LVDSMC calculations at various Knudsen numbers for
k=R.=1. The solid lines denote the numerical solution (Sec.
IIT), the dashed curves mark the early-time approximations
(23) and (24), and the crosses, circles, and triangles, respec-
tively, correspond to LVDSMC results at Kn=10, 1, and 0.1.
The early-time approximation coincides with the numerical
results until 7=0.4 for the velocity and t=0.7 for the tem-
perature. The agreement with the Kn=10 results is very good
at all times presented. With decreasing Kn (and thus longer *
corresponding to the same value of the nondimensional time
t) we expect the agreement to become confined to lower
values of ¢ owing to the increasing effect of collisions.
We thus regard the close agreement in the Kn=0.1 case for
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FIG. 3. Time evolution of the (a) velocity and (b) temperature perturbations at x=—0.45 for k=R.=1. The crosses, circles, and triangles, respectively,
correspond to LVDSMC results at Kn=10, 1, and 0.1. The dashed lines mark the early-time approximations obtained from Egs. (23) and (24) (r=1) and

Appendix A (1>1).

the temperature up to r=1 as remarkable, and perhaps, for-
tuitous. Nevertheless, the existence of an initial time interval
t=Kn where the collisionless analysis is valid is clearly
demonstrated.

To further validate the early-time approximation, Fig. 4
presents a similar comparison for k=20 and R.=1, where the
wavelike time variation in the velocity field is visible. The
flow velocity magnitude, however, is rapidly damped and
equilibrium is achieved after a few acoustic times. For this
k> 1 case, the r<<1 approximation consists of Egs. (22)—(25)
for t=0.05 and the expressions in Appendix A for >0.05
(see also Sec. III). The agreement with both numerical and
LVDSMC results for Kn=10 and Kn=1 is very good for
t=0.4. As in Fig. 3, even for Kn=0.1 there exists an initial
time interval 7=Kn where the collisionless calculation is

(@)

0.08|
0.06§
U 0.04r
X

0.02}

-0.02}

valid. This suggests the present analysis as a viable means
for providing a quantitative description of the initial transient
in the counterpart continuum-limit problem.

B. Oscillatory heating

We focus on the high-frequency (w> 1) case analyzed in
Sec. IV B. The steady-state expressions (34) obtained for ®”.
indicate that the amplitude A of the hydrodynamic fields de-
cays with the distance from the wall, J,, according to
A~ exp[-(w8,)*?]. As a result, for sufficiently high oscilla-
tion frequencies, hydrodynamic activity is confined to thin
bounded layers in the immediate vicinity of the walls. This
behavior is similar to a previously studied phenomenon in
high-frequency oscillatory shear driven flows.”*** The time

FIG. 4. Time evolution of the (a) velocity and (b) temperature perturbations at x=-0.45 for k=20 and R.=1. The crosses, circles, and triangles, respectively,
correspond to LVDSMC results at Kn=10, 1, and 0.1. The dashed lines mark the early-time approximations obtained from Egs. (23) and (24) (r=0.05) and

Appendix A (1>0.05).
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FIG. 5. Time evolution of the velocity distribution at x=—-0.45 for w=407.
The solid and dashed lines, respectively, correspond to the numerical
(Sec. II) and steady-state (Sec. IV B) solutions and the crosses mark the
LVDSMC results at Kn=1.

t, expected for the system to establish a steady state at a
given distance &,, from the boundary is 7,> §,. Note again
that approximation (34) is valid for wd,>1, while at the
walls Eq. (39) should be applied.

To demonstrate the transition to steady state at a given
location, Fig. 5 shows the velocity field at x=-0.45
(6,,=0.05) for the case w=407. The solid and dashed lines,
respectively, correspond to the numerical (Sec. II) and
steady-state (Sec. IV B) solutions, and the crosses mark
LVDSMC results at Kn=1. The agreement between
LVDSMC and numerical calculations is very good at all
times. At r=0.18, slightly before four periods of the bound-
ary conditions are completed, both results match with the
dashed curve and a steady state is established. This is in
accordance with the above estimate for the settling time,
t,> 0,

Further comparison between the steady-state and
LVDSMC solutions is made in Fig. 6. The solid lines corre-
spond to the analytical approximations for the velocity and

0.15

(@)

011

04

-0.05}

-0.45 -04 -0.35 -0.3
X

-0.25
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temperature perturbations, and the crosses denote LVDSMC
results for Kn=1, w=407, and r=0.475. The x-axis range is
limited to the approximate width of the left-wall layer,
—0.5=x=-0.25. Symmetric results are obtained near the
right wall. Good agreement is observed throughout the layer
except for the very proximity of the wall where the product
6, is no longer large. The circles mark the values (39) of
the hydrodynamic perturbations at the wall.

From Eq. (34) we see that the bounded layer width de-
creases with increasing w. This suggests that for sufficiently
large w the system evolution will be entirely determined by a
collisionless description regardless of its size. Motivated by
the comparison of Fig. 6, Fig. 7 investigates the ability of the
analytical steady-state solution to describe such systems;
specifically, Fig. 7(a) compares analytical results with
LVDSMC simulations at various Kn for w=407, whereas
Fig. 7(b) treats the case of w=1007. The results demonstrate
that with increasing w the collisionless analysis better cap-
tures the behavior of larger systems: while the agreement in
the w=407 case is less satisfactory already at Kn=0.1, the
steady-state w= 1007 results are in good agreement even for
Kn=0.04. It is therefore concluded that with further increas-
ing w the effect of collisions becomes negligible and the
present analysis provides a satisfactory description of the
system behavior at all times.

VI. CONCLUDING REMARKS

In this work we have studied the response of a gas con-
fined in a small-scale gap to a time-dependent arbitrary small
change in the temperature of its boundaries, under the as-
sumption of diffuse boundary conditions. This choice of
boundary conditions was motivated by previous work (see
Ref. 18), which suggests that for engineering surfaces diffuse
boundary conditions are a reasonable approximation. In

-0.45 -04  -0.35 -0.3
X

-0.25

FIG. 6. The steady-state (a) velocity and (b) temperature perturbation distributions (solid lines) for w=407 at 1=0.025+0.05n (n>1). The crosses correspond
to LVDSMC results at Kn=1 and r=0.475 and the circles mark the values in Eq. (39) at the wall.
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X
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FIG. 7. The steady-state velocity distribution (solid lines) for (a) w=407 (r=0.475) and (b) w=1007 (¢=0.49), respectively. The crosses, triangles, and
squares correspond to LVDSMC results for Kn=1, 0.1, and 0.04, respectively. The circles mark the theoretical values at the wall.

practice, microscopic gas-surface interactions are more com-
plex and may be better described by incorporating several
phenomenological accommodation coefficients."” Perhaps
the simplest generalization of the present work would consist
of replacing the diffuse boundary conditions with the
Maxwell model, according to which a fraction 0=a=1 of
the molecules are reflected diffusely while the remaining
molecules undergo specular reflection. This would require
replacing Eq. (4) in Sec. II with the condition

d(t,x= ¥ 1/2,¢,=0)

= Q[P+(t) +g+(¢)<C2— %)}

+(1-a)dp(t,x= *1/2,¢,50). (41)

Without going further into the details of calculation, this
modification is expected to reduce the boundary influence on
the gas state.

By studying the gas response to arbitrary small changes
in the temperature of its boundaries, we have complemented
existing studies limited to slow heating or discontinuous
temperature changes. Although the present analysis was
carried out for a collisionless gas, the results obtained prove
to be of practical relevance in several cases. First, they pro-
vide the early-time behavior of systems of arbitrary size and
may therefore be useful for prescribing the initial system
response in counterpart continuum-limit analyses. Second, in
cases where the effect of the boundaries does not exceed
more than one mean free path into the gas (e.g., the high-
frequency oscillatory case discussed in Sec. IV B and Figs.
5-7), the effect of collisions is negligible, and the present
analysis provides an accurate and simple description at all
times.

APPENDIX A: EVALUATION OF EQS. (27)
AND (28)

Substituting 7. =¢—(x* 1/2)/c, into Egs. (27) and (28),
we write

Lx+ 1
P = ktf " exp[- cldc, — k(x + 5)

X4

X f T exp[- ¢2lde, + J " exp[- cZlde,

(A1)
and
n EX’ n 2 1
®"=Rkt| ) expl-cldc,—Rk|x— >
X f " exp[- cde,
+R, f " exp[- cldc,, (A2)
where ¢, =(x=*1/2)/(t—1/k). Denoting
J,(2) = J p" exp[-p*ldp,
Z
we find that
N _ 1
CI)+ = kt[-]11(cx+) - J11(Cx+)] - k X+ 5 [Jn—l(cx+)
- n—l(Ex+)] +Jn(5x+) (A3)

and
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q)ﬁ = (_ 1)n+1RE kt[‘]n(_ Cx_) - Jn(_ Ex_)] + k('x - %)

X [Jn—l(_ Cx_) - Jn—l(_ Ex_)] + Jn(_ Ex_) . (A4)
The quadratures in Egs. (A3) and (A4) for n=0,1,...,5 are
evaluated by noting that [see Egs. (22)—(25) et seq.]

—

1 N 1
J(2)= Er(o,ﬁ), Jo(@) =), Ji=expl- 2]

and applying the recurrence relation

n—1

Z
2

-1
1,(2) = “—exp[- 2]+ ”TJH, n=2.

APPENDIX B: EARLY-TIME APPROXIMATIONS
FOR THE INSTANTANEOUS JUMP PROBLEM

The early-time approximations for the hydrodynamic
fields in the instantaneous temperature jump (unit jump at
x=—1/2 and R, at x=1/2) problem are [cf. Egs. (2.25)-
(2.28) in Ref. 9]

1
p=——\ e, expl- ]~ Ree, expl-c? ]

2N
—
N
- 7[’)’(6}_) + Réy(_ Cx_)] > (B 1)
1
u,~——{ci exp[- ¢} J- Rt exp[-c; I, (B2)
W ¥

1
T~—=\c exp[-c>]-Rc) exp[-c?]
RA 4 U + - -

/
/

3
+ = IHee) + RA= I (83)

1 1
g~ —F {exp[— ci]( Eci + Ci + 1) - R, exp[- Ci_]

\

1 5
X(E i_+ci_+1>]—zux. (B4)
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