
Online Control Policy Optimization for Minimizing
Map Uncertainty during Exploration

Robert Sim
Department of Computer Science

University of Toronto
Toronto, ON Canada

Email: simra@cs.toronto.edu

Gregory Dudek
Department of Computer Science

McGill University
Montreal, PQ Canada

Email: dudek@cim.mcgill.ca

Nicholas Roy
Department of Aeronautics and Astronautics

Massachusetts Institute of Technology
Cambridge, MA USA

Email: nickroy@mit.edu

Abstract— Tremendous progress has been made recently in
simultaneous localization and mapping of unknown environ-
ments. Using sensor and odometry data from an exploring
mobile robot, it has become much easier to build high-quality
globally consistent maps of many large, real-world environments.
However, relatively little attention has been paid to date to the
controllers used to build these maps. Exploration strategies are
often used to cover the largest amount of unknown space as
quickly as possible, but few strategies exist for building the
most reliable map possible. Nevertheless, the particular control
strategy can have a substantial impact on the quality of the
resulting map.

In this paper, we devise a control algorithm for exploring
unknown space that explicitly tries to build as large a map as
possible while maintaining as accurate a map as possible. We
make use of a parameterized class of spiral trajectory policies,
choosing a new parameter setting at every time step to maximise
the expected reward of the policy. We do this in the context of
building a visual map of an unknown environment, and show
that our strategy leads to a higher accuracy map faster than
other candidate controllers, including any single choice in our
policy class.

I. INTRODUCTION

Simultaneous mapping and localization (SLAM) is one of
the core problems of mobile robotics. A navigating robot
requires an accurate and globally consistent model of the world
in order to make decisions about how to get from point to point
within the environment. As a result, substantial effort has been
spent in having robots learn environment models, or maps,
automatically. It is now possible to build high-quality maps
of a wide variety of environments with a number of different
sensors. Typically, the mapping process involves manually (or
heuristically) controlling a robot around the environment while
it acquires sensor data throughout the space, or possibly having
the robot explore the space automatically. The recorded sensor
data is assembled into the map either during the exploration
process, or more commonly, after the fact.

Recording the sensor data for a good map, however, is not
necessarily a straight-forward process. The control strategy
used to acquire the data can have a substantial impact on
the quality of the resulting map; different kinds of motions
can lead to greater or smaller errors in the mapping process.
Ideally, we would like to automate the exploration process, not
just to drive the robot to explore unknown areas of the space,
but to do so in a manner that will lead to high accuracy maps.

In this paper, we focus on the problem of finding such a
motion controller, one that can explore quickly while gathering
data in a manner that will lead to the most accurate map.
This is a different problem to standard motion planning, in
that we do not have an a priori model of the environment
that we can use to find an optimal trajectory. The entire
point of the trajectory is to build such a model, but without
the model we cannot precompute a plan that will build the
most accurate map. We will instead find an approximate
solution, using a greedy strategy for generating plans that
will give a reliable map in expectation over short sections
of trajectories. While this algorithm allows us to estimate the
optimal trajectory for maximum-coverage SLAM, the result is
more important for the new paradigm it exemplifies. We show
how to parametrically optimize SLAM to produce a general
purpose solution with an efficiency that could not readily be
achieved manually.

We will focus our attention on a parameterised policy
class, building on our recent work in which a set of hand-
crafted exploratory policies were examined for their accuracy,
coverage and efficiency [1]. This policy class allows us to
vary the strategy from very explorative to very conservative
(e.g., returning to known space regularly to re-localize). The
primary results from the previous work indicated that the most
accurate exploratory policy was also the most inefficient.

We will use a vision-based representation of the environ-
ment for navigation [2]. A visual map is constructed by track-
ing salient image features over a set of training images and
then computing generative models of the features as functions
of the robot’s pose. Even when the map is to be produced
as a side-effect of the trajectory executed to accomplish some
other task, it may be possible to alter the trajectory to improve
the quality of the resulting map.

II. SLAM AND VISUAL NAVIGATION

Our visual map representation employs a landmark learning
framework developed previously. We review it here in brief
and refer the reader to this work [2] for further details. The
object of visual mapping is to learn a generative model of the
image-domain features of an environment. We can use this
model to predict the maximum-likelihood observations from
arbitrary camera poses, and then use a standard Bayes’ filter

Fig. 1. A set of observations of an extracted scene feature. The grid represents
an overhead view of the pose space of the camera, and feature observations
are placed at the pose corresponding to where they were observed.

to accurately track the position of the robot during navigation.
We make use of the Kalman filter (KF) such as described
in [3], [4]. We first describe the process of building a visual
map assuming an idealised, perfect ground-truth position data,
and then describe how the algorithm uses a Kalman filter in
conjunction with imperfect (but real) odometry to build the
visual map in practice. In practice, the localization framework
requires using an extended Kalman filter (EKF) by linearizing
the prediction and measurement models. This is a standard
practice in state estimation, and the reader is referred to [3],
[4] for the details.

The framework operates as follows: assume for the moment
that the robot has collected an set of observations or images of
a scene, where each image is associated with a known, perfect
ground-truth position. This set of images from known poses
constitutes the visual map. A corner detector is applied to the
set of images to select an initial set of candidate features [5].
The selected candidate features are then tracked across the
ensemble of images by maximizing the correlation of the local
intensity image of the feature. Figure 1 depicts the result of
tracking one feature across an image ensemble, wherein the
local feature intensity image is depicted at the pose from which
it was observed.

Although we record each feature at specific, known poses
in the environment, we can generate (or predict) new “obser-
vations” of the feature from arbitrary poses by interpolating
between the recorded observations. The observation of a fea-
ture is represented as the position of the feature in the image,
z = [x y]T , and an interpolator is constructed using simple
bilinear interpolation between neighbouring observations. In
practice, an arbitrary interpolation scheme can be employed
and in this work we employ a triangulation-based approach
for reasons of efficiency. In order to evaluate the features
and guard against outliers, the resulting models are validated
using leave-one-out cross-validation. Once the visual map and

interpolators are constructed, we localize the robot during
navigation using a Kalman filter.

The Kalman Filter and Visual Navigation

The standard Kalman filter provides a probabilistic state
estimate as a Gaussian distribution, consisting of a mean state
estimate x̂ and an error estimate, or covariance C. The KF
operates in two stages: a prediction step, based on the forward
motion of the robot, and a measurement step, based on the
observation or image. The conventional KF (and EKF) for
localization typically assumes a geometric representation of
the environment. In contrast, the visual map representation is
using feature observations in the image domain. The advantage
to this representation is that the only parameters maintained
in our implementation are those of the robot pose, unlike
EKF implementations which encode both robot pose and
landmark position parameters. The disadvantage is that we
can no longer use the observations of each feature to model
the features probabilistically. We compensate for this by using
cross-validation to estimate feature covariances.

The robot’s current state estimate is given by x(k − 1).
At time step k, the robot executes an action u(k) and takes
a subsequent observation z. The filter is updated from the
command u according to the standard EKF prediction model:

x
	(k) = Ax

	(k − 1) + Bu(k) (1)

C	(k) = AC(k − 1)AT + Q, (2)

where x
	(k) is the prediction state estimate, C	(k) is the

prediction covariance or error, A and B describe how the state
changes as a function of the previous state and the control
respectively, and Q is the error resulting from the motion.

An image is acquired and those features zi in the image
that match features in the model are extracted. At the current
pose estimate, a predicted observation ẑi for is generated each
feature. The state and error estimates are updated as

x(k) = x
	(k) + Si(k + 1)vi(k) (3)

C(k) = (I − Si(k))C	(k). (4)

where vi(k) is the innovation, the extent to which the actual
image features differ from the expected image features, and
Si(k) is the Jacobian of the predicted observation.

The innovation vi(k) is computed as

vi(k) = zi(k) − ẑi(k). (5)

The innovation covariance requires estimation of the Jacobian
of the predicted observation given the map and the prediction
estimate. We approximate this Jacobian as the gradient of
the nearest face of the model triangulation and define it as
∇hi. The innovation covariance then follows the standard
observation model:

Si(k) = ∇hiP(k|k − 1)∇h
T
i + Ri(k) (6)

where P is the pose covariance following the action u, and R

is the cross-validation covariance associated with the learned
feature model. It is important to note that R serves several

purposes—it is simultaneously an overall indicator of the
quality of the interpolation model, as well as the reliability
of the matching phase that led to the observations that define
the model; finally it also accommodates the stochastic nature
of the sensor.

Fig. 2. Landmark learning framework: Salient features are detected in the
input images and tracked across the ensemble. The resulting feature sets are
subsequently parameterized as functions Fi(·) of the robot pose.

Building a Visual Map

The previous two sections described how to use a visual map
to localize a robot, and how to do so using a Kalman filter. In
order to actually build the visual map, we cannot assume (as
we did previously) that the images are labelled with perfect
odometry, so we use the Kalman filter to estimate the pose of
each new observation based upon the previous observations.
At each time step, given the new observations, the Kalman
filter is updated according to the above formulation. Combined
with the prediction model, a pose estimate and associated
covariance are obtained. Once an updated pose estimate is
available, the successfully matched features are inserted into
the visual map, using the estimated pose as their observation
pose. The features are initially selected using a model of visual
saliency, and subsequently tracked over the pose space. The
resulting models are then cross-validated in order to select
only those features that demonstrate stability. It should also
be noted that we use a gating procedure to detect outliers and
remove outliers in the matching process. More details can be
found in [2].

Figure 2 depicts the mapping algorithm: a set of images
is collected at poses q1 . . . q5, and features f1 and f2 are
tracked in each image. The EKF gives a robust estimate qi

for each image. We then use interpolation to find a generative
model q = Fi(f) that allows us to compute the pose q for an
observation of feature fi.

III. OPTIMAL CONTROL FOR SLAM

For many environments, the extended Kalman filter ap-
proach has been shown to work well at building globally
consistent maps that allow robots to track their position re-
liably. However, there is one issue with the algorithm that can
cause difficulties in building large maps. As the robot senses

new parts of the environment, it integrates the new visual
features into the visual map. At some point, the exploration
trajectory brings the robot back into previously explored space.
If the robot has been able to maintain its pose estimate with
high certainty, then robot should be able to detect its re-entry
into explored space relatively easily. If, however, the robot’s
uncertainty has grown too large, or the robot has re-entered
the map at a perceptually ambiguous location, then the robot
may either make errors in maintaining its pose estimate, or
even worse, fail to detect that it has re-entered the map.

(a) Before Exploration (b) Lower Uncertainty

(c) High Uncertainty

Fig. 3. Robot trajectory (spiral) and uncertainty ellipse (gray ellipse). Figure
(a) illustrates a robot exploring within known territory. Figure (b) depicts a
small excursion into unknown territory such that it retains a small uncertainty
ellipse. Figure (c) shows a larger excursion that results in a much larger
uncertainty ellipse. For such larger excursions, the uncertainty may become
unrecoverably large and result in an inconsistent map.

Figure 3 illustrates the two possible scenarios. In figure 3(a),
we see a robot trajectory (the white line) and the partial
visual map it has constructed. In figure 3(b), we see the
robot has covered a small portion of the unexplored space
and then re-entered the map. Because the robot has only
travelled a short distance through the unmodelled area, its
positional uncertainty has only grown a small amount. In
comparison, we see in figure 3(c) that the robot has travelled
through most of the unexplored area. Lacking a map of this
area the robot’s uncertainty has grown substantially. When the
robot re-enters the map, its uncertainty is sufficiently large
to make accurate position estimation, even in the mapped
regions, difficult. The robot may not be able to find correct
correspondences between the sensed visual features and the
features in the model. Even worse, the robot may not be able

to find enough correspondences, which would cause it to re-
map this area leading to a globally inconsistent map. If we
choose trajectories that can explore the space rapidly but allow
us to return to the mapped regions sufficiently often to avoid
tracking errors or mapping errors, then we can avoid such
problems.

The approach we take is to use a one-step lookahead,
choosing trajectories that maximize the space explored while
minimizing the likelihood we will become lost on re-entering
the map. In this case, our single step is over a path from the
existing map through unexplored space to the first measure-
ment inside the map. At every time step, we will choose a
trajectory that will minimize our uncertainty as we re-enter
the map, at the same time maximizing the coverage of the
unexplored area. We use a parameterized class of paths, or
policies, and repeatedly choose a parameter that maximizes
our objective function.

Policy Class

We will use a parametric curve [6] expressed as a function
of time that gives the the distance r of the robot from the
origin as a function of time:

r(t, n) =
kt

2 + sinnt
, (7)

where k is a dilating constant that is fixed for our experiments
at k = .2 and n parameterizes the curve to control the
frequency with which the robot moves toward the origin. We
can re-write this in terms of the position x(t), y(t) of the robot
as

[

x(n, t)
y(n, t)

]

=

[

kt
2+sin nt

cos
(

π
180

t
)

kt
2+sin nt

sin
(

π
180

t
)

]

. (8)

Some examples of the curve for a variety of values of n are
shown in figure 4. Note that in the extreme cases, the curve
never moves toward the origin (n = 0), or will do so with very
high frequency (n → ∞). Also of interest are integral values
of n, where the curve never self-intersects, and has n distinct
lobes. Finally, the rate of new space covered as a function of
θ decreases roughly monotonically as n increases, since for
larger n the robot spends an increasing amount of time in
previously explored territory.

For a particular trajectory r(·, n), we define an objective
function q(n) for computing the optimal trajectory. We define
q from t0 to tf as the amount of unexplored space covered
from t0 to tf , reduced by the uncertainty of state estimate
at time tf . Let us use U(r(ti, n)) as an indicator function,
whether or not the pose of the robot at time ti is in explored
space:

U(r(ti, n)) =

{

0 r(ti, n) is in explored space

d(r(ti)) r(ti, n) is not in explored space
(9)

where d(r(ti)) is the Euclidean distance from the robot pose
given by r(ti) to the nearest explored pose.

There are many choices for quantifying the uncertainty of
the EKF filter at time tf : we will use one of the most common

functions, the determinant of the covariance matrix, |Cov(tf)|.
These two functions give us our objective function

q(n; t0) =

tf
∑

ti=t0

U(r(n, ti))
2 − λ|Cov(tf)|. (10)

This function contains the one free parameter λ that allows us
to calibrate how aggressive the exploration of unknown space
should be compared with building a high-accuracy map.

The One-step Controller

Given the policy class pn(t) and objective function r(pn(t))
described above, we want to find n to maximize r(pn(·)).
Given a particular state of the EKF at time t0, we cannot
compute the covariance at time tf in closed form, so we
use numerical simulation, projecting the Kalman filter forward
until the trajectory enters unexplored space and then returns
into the map. We discretise n and evaluate q(ni) for each
choice of n. The complete control algorithm is summarised in
table I.

• At each time step t0,
• For value of ni ∈ [0, nmax]:

1) Simulate forward r(ti, ni) from t0 until U(r(ti, ni)) = 1 or
ti = tmax

2) Simulate forward r(·, ni) from t0 until U(r(ti, ni)) = 0 or
ti = tmax

3) Set tf = ti

4) Set q(ni) =
∑tf

ti=t0
U(r(n, ti)) − λ det(Cov(tf))

• Set n = argmaxni
q(ni)

TABLE I

THE SLAM CONTROLLER

IV. EXPERIMENTAL RESULTS

We ran our experiments in a simulated office-like environ-
ment in order to obtain accurate ground truth. The environment
was composed of a single 12m × 6m rectangular room, with
images from a real laboratory environment texture-mapped
on to the walls. Visually, the environment was somewhat
simplified compared to what the robot might encounter in a
real-world setting. However, our experience indicates that the
visual mapping framework is particularly prone to selecting
environmental features that correspond to planar patches. In
this sense, the simulated environment presented the visual
mapping framework with the best possible scenario and we
could concentrate on the behaviour of the framework due to
odometric and modelling error.

The simulated robot had a ring of sixteen evenly spaced
sonar sensors which are employed solely for detecting colli-
sions. The robot’s odometry model was set to add normally
distributed zero-mean, 1% variance error to translations and
normally distributed zero-mean, 1% variance error to rotations.
Each observation was collected by placing a simulated camera
at the ground truth pose of the robot, and taking two images,
one along the global x axis and one along the y axis. It
was assumed that in a real-world setting the camera has the

(a) Concentric Policy

−300 −200 −100 0 100 200 300
−300

−200

−100

0

100

200

300
plot 5.6.eps

(b) n=5.6 (c) Star Policy

Fig. 4. Sample trajectories for a variety of controllers. (a) and (c) heuristic policies that represent the extrema of n: the Concentric and Star policies.
(b) A policy in the intermediate range of n = 5.6.

ability to align itself using a procedure which is external to the
robot drive mechanism, possibly using a compass and pan-tilt
unit or an independent turret, such as that which is available
on a Nomad 200 robot. A single observation was defined as
the composite image obtained by tiling the two images side
by side. Figure 5 illustrates a typical image returned by the
camera in one direction in the simulated environment.

Fig. 5. Simulated camera view.

The experiments were conducted as follows: the robot was
placed at the centre of the room, and the trajectory rn(t) was
executed over five degree increments in t. At each pose, an
observation was obtained and the Kalman filter was updated.
The visual map was updated whenever the filter indicated that
the robot was more than 6.7cm from the nearest observation in
the visual map, and exploration terminated when 100 images
had been added to the map. The constant k in equation (7)
was set to 0.2m. The ground-truth pose, the filter pose and the
control inputs were recorded for each pose along the trajectory.

For the purposes of comparison, two additional exploratory
policies were run, that represent the extrema of the different
n settings. The Concentric policy involves tracing a series
of concentric circles, reversing the direction of exploration
with each sweep, as shown in figure 4(c). This curve also
corresponds to n = 0. The Star policy returns to the origin
to re-localize after each new image was added to the map, as

shown in figure 4(b). This curve corresponds to a large setting
of n.

Figure 7(a) depicts the trajectory traced by the robot for
our exploration algorithm. The red curve, marked with ’o’
symbols, corresponds to the ground truth position of the robot
at each point along the trajectory, whereas the blue curve,
marked with ’+’ symbols, traces the pose estimate computed
by the Kalman filter. For the purposes of our analysis, we
note that small rotation errors at the outset of the trajectory
can lead to a map that correct, apart from a small rotation
about the origin, and correct this rotation versus the ground
truth. While in practise this information would not be available
to a real robot, the rotation error would not affect the utility
of the constructed map.

Figure 6 plots the deviation from ground truth for the
Kalman filter (’+’) and the robot’s odometer (’o’). We define
the mapping error to be the mean Kalman filter error over
all time, and these results are reported for each policy in
figure 7(b). In order to measure efficiency, Figure 7(c) plots the
length of the trajectory for the three methods. Clearly, the one-
step policy represents a significant improvement in efficiency
over the Star policy, and is only about 50% more costly than
the Concentric policy.

V. RELATED WORK

There exist planning methodologies that can exactly com-
pute optimal plans or policies in expectation over more than
a one-step horizon, e.g., by maintaining a distribution over
possible states of the world and computing the strategy that
is optimal in expectation with respect to that distribution. One
such approach is the Partially Observable Markov Decision
Process, or POMDP [7], [8]. However, the major disadvantage
of the POMDP for our control problem is computational
intractability. Most POMDP solution algorithms are known to
be unable to scale to problems with more than a few hundred
discrete states [9], [10], and we would like to compute the
optimal trajectory over all possible maps, a continuous state
space that is not amenable to standard POMDP formulations.

0 50 100 150 200 250
0

5

10

15

20

25

30

35

40

45
icra04 concentric: Odometry Error and Estimate Error vs time

Time (steps)

E
rr

or
 (

cm
)

Odometry Error
Filter Error

(a) Concentric policy

0 100 200 300 400 500 600 700 800 900
0

20

40

60

80

100

120

140
icra04 star: Odometry Error and Estimate Error vs time

Time (steps)

E
rr

or
 (

cm
)

Odometry Error
Filter Error

(b) Star policy

0 50 100 150 200 250
0

20

40

60

80

100

120

140
icra04 opt n v2: Odometry Error and Estimate Error vs time

Time (steps)

E
rr

or
 (

cm
)

Odometry Error
Filter Error

(c) One-step policy

Fig. 6. Odometric error (’o’) and Kalman filter error (’+’) at each time step for each policy. Notice that the one-step policy has average Kalman filter error
competitive with the Star policy over time, but has higher variance because of the greater exploration rate.

−100 −50 0 50 100

−80

−60

−40

−20

0

20

40

60

80

100

icra04 opt n v2: Filter Trajectory versus Ground Truth Trajectory

X position (cm)

Y
 p

os
iti

on
 (

cm
)

Ground Truth Trajectory
Filter Trajectory

(a) One-step policy: Mean error 4.6cm

Concentric Star Online 0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09
Mean map error by policy

M
ea

n
m

ap
 e

rr
or

 (
m

)

(b) Mean Path Error

Concentric Star Online 0

10

20

30

40

50

60

70

80
Path length by policy

P
at

h
le

ng
th

 (
m

)
(c) Mean Path Length

Fig. 7. Exploration results. (a) The ground truth trajectory of the robot (red ’o’ curve) is plotted against the inferred map (blue ’+’ curve). (b) Mean path
error by policy. (c) Path length by policy.

Our work is an instance of the problem of simultaneous
localization and mapping (SLAM). This problem has received
considerable attention in the robotics community [3], [4], [11],
[12], [13], primarily in the context of computing range-based
maps with spatially localized features. The state of the art
can be broadly subdivided into one of two approaches (and
various hybrids). One family of methods relies upon unimodal
estimates, such as the Kalman filter description presented here.
The map is represented as a set of landmarks derived from a
range sensor, and a Kalman filter or particle filter is employed
to minimize the total uncertainty of the robot pose and the
individual landmark positions [14], [15]. A second family
of approaches uses more complicated representations such
as particle filters or mixture models [11]. There are hybrid
approaches [16], [17] that reduce the computational expense,
as each update for previous approaches is quadratic in the
number of landmarks.

Of particular relevance to this paper is the problem of plan-
ning a trajectory for minimizing uncertainty while maximizing
the utility of the observed data. MacKay considered the prob-
lem of optimally selecting sample points in a Bayesian context

for the purposes of inferring an interpolating function [18].
Whaite and Ferrie employed this approach as motivation
for their ‘curious machine’, a range-finder object recognition
system that selected new viewing angles in order to optimize
information gain [19], and Arbel and Ferrie further applied
this approach to appearance-based object models, selecting
the viewing angle that maximized the ability to discriminate
between objects [20].

VI. DISCUSSION AND FUTURE WORK

We have presented an algorithm for controlling a mobile
robot during exploration, that allows us to build globally
consistent maps quickly and automatically. We made use of a
class of control strategies described by parametric curves. The
algorithm updates the parameter setting greedily at each time
step, choosing the parameterization that maximizes the objec-
tive function in expectation. We examined the performance
of this algorithm on the task of building a visual map, and
we showed the pose error of the online control strategy was
in general competitive with the single setting that led to the
most accurate map, while at the same time building the map

at a rate competitive with the most aggressive setting.
The online strategy currently contains at some open prob-

lems. Firstly, the reward function contains an explicit trade-
off between exploration and map accuracy, represented by the
free parameter λ. Ideally, the optimal control representation
would not contain any free parameters. We may be able to
eliminate this free parameter by choosing a different reward
function, but this is a question for further research. Secondly,
the particular parameterisation may not be the best policy
class. This policy class is somewhat restrictive, in that the
single parameter essentially represents a frequency of returning
to the origin. We may be able to achieve better results using a
more general policy class, such as one of the stochastic policy
classes in the reinforcement learning literature. Finally, the
strategy is greedy, in that it attempts to choose the trajectory
based on a single projection into the future. However, as more
of the map is acquired, it may become possible to infer unseen
map structure and make more intelligent decisions, leading
to even better performance in more structured and regular
environments.

REFERENCES

[1] R. Sim and G. Dudek, “Effective exploration strategies for the con-
struction of visual maps,” in Proceedings of the IEEE/RSJ Conference
on Intelligent Robots and Systems (IROS), Las Vegas, NV, October 2003.

[2] ——, “Learning generative models of scene features,” in Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), Hawaii, 2001.

[3] R. Smith, M. Self, and P. Cheeseman, Autonomous Robot Vehicles.
Springer-Verlag, 1990, ch. Estimating uncertain spatial relationships in
robotics, pp. 167–193.

[4] J. Leonard and H. F. Durrant-Whyte, “Simultaneous map building and
localization for an autonomous mobile robot.” in Proceedings of the
IEEE International Workshop on Intelligent Robots and Systems, Osaka,
Japan, November 1991, pp. 1442–1447.

[5] J. Shi and C. Tomasi, “Good features to track.” in Proceedings of
the IEEE International Conference on Computer Vision and Pattern
Recognition (CVPR), 1994.

[6] R. Sim and G. Dudek, “Effective exploration strategies for the con-
struction of visual maps,” in Proceedings of the International Joint
Conference on Artificial Intelligence (IJCAI) workshop on Reasoning
with Uncertainty in Robotics (RUR), Acapulco, Mexico, 2003, pp. 69–
76.

[7] E. Sondik, “The optimal control of partially observable Markov decision
processes,” Ph.D. dissertation, Stanford University, Stanford, California,
1971.

[8] A. R. Cassandra, L. P. Kaelbling, and M. L. Littman, “Acting optimally
in partially observable stochastic domains.” in Proceedings of the 12th
National Conference on Artificial Intelligence (AAAI), Seattle, WA,
1994.

[9] N. Roy and G. Gordon, “Exponential family PCA for belief compression
in POMDPs,” in Advances in Neural Information Processing Systems 15
(NIPS), S. Becker, S. Thrun, and K. Obermayer, Eds. Vancouver, BC:
MIT Press, 2003, pp. 1043–1049.

[10] J. Pineau, G. Gordon, and S. Thrun, “Point-based value iteration:
An anytime algorithm for POMDPs,” in Proceedings of the 18th
International Joint Conference on Artificial Intelligence (IJCAI 2003),
Acapulco, Mexico, August 2003.

[11] S. Thrun, D. Fox, and W. Burgard, “A probabilistic approach to con-
current mapping and localization for mobile robots,” Machine Learning,
vol. 31, pp. 29–53, 1998.

[12] B. Yamauchi, A. Schultz, and W. Adams, “Mobile robot exploration
and map building with continuous localization.” in Proceedings of the
IEEE International Conference on Robotics and Automation, Leuven,
Belgium, May 1998, pp. 3715–2720.

[13] P. P. Hans Blaasvaer and H. I. Christensen, “Amor: An autonomous
mobile robot navigation system,” in Proceedings of the IEEE Interna-
tional Conference on Systems, Man, and Cybernetics, vol. 3, 1994, pp.
2266–2271.

[14] J. J. Leonard and H. J. S. Feder., “A computationally efficient method for
large-scale concurrent mapping and localization.” in Robotics Research:
The Ninth International Symposium, J. Hollerbach and D. Koditschek,
Eds. London: Springer-Verlag, 2000.

[15] J. G. E. Nebot and H. Durrant-Whyte, “Simultaneous localization
and map building using natural features in outdoor environments.” in
Sixth International Conference on Intelligent Autonomous Systems, Italy,
2000.

[16] M. Montemerlo, S. Thrun, D. Koller, and B. Wegbreit., “FastSLAM:
A factored solution to the simultaneous localization and mapping
problem,” in Proceedings of the AAAI National Conference on Artificial
Intelligence. Edmonton, Canada: AAAI, 2002.

[17] M. A. Paskin, “Thin junction tree filters for simultaneous localization
and mapping,” in Proceedings of the Eighteenth International
Joint Conference on A rtificial Intelligence (IJCAI-03), G. Gottlob and
T. Walsh, Eds. San Francisco, CA: Morgan Kaufmann Publishers, 2003,
pp. 1157–1164. [Online]. Available: citeseer.nj.nec.com/600271.html

[18] D. MacKay, “Information-based objective functions for active data
selection.” Neural Computation, vol. 4, no. 4, pp. 590–604, 1992.

[19] P. Whaite and F. P. Ferrie, “Autonomous exploration: Driven by un-
certainty.” in Proceedings of the Conference on Computer Vision and
Pattern Recognition, Los Alamitos, CA, June 1994, pp. 339–346.

[20] T. Arbel and F. P. Ferrie, “Viewpoint selection by navigation through
entropy maps.” in Seventh IEEE International Conference on Computer
Vision, Kerkyra, Greece, 1999.

