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Abstract. Resource flexibility, arguably among the most celebrated operational concepts,
is known to provide firms facing demand uncertainty with such benefits as risk pooling,
revenue-maximization optionality, and operational hedging. In this paper, we uncover a
heretofore unknown benefit: we establish that resource flexibility facilitates learning the
demand when the latter is censored, which could, in turn, enable firms to make better-
informed future operational decisions, thereby increasing profitability. Further, we
quantify these learning benefits of flexibility and find that they could be of the same
order of magnitude as the extensively studied risk-pooling benefits of flexibility. This
suggests that flexibility’s learning benefits could be a first-order consideration and
that extant theories, which view flexibility only as the ability to act ex post, could be
underestimating its true value when learning the demand is desirable, for example,
when it enables managers to make better ex ante capacity, assortment, or pricing
decisions in future periods.
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1. Introduction
Should a firm invest in resource flexibility or not?
Analyzing the calculus associated with this dilemma
has spanned almost four decades of research going
back to the work of Eppen (1979) on stock centrali-
zation. On the one hand, flexibility tends to increase
operating costs because of increased complexity and
lack of specialization, among other reasons. On the
other hand, flexibility also carries well-known and
extensively studied benefits such as the reduction
of mismatch between supply and demand through
risk pooling (Jordan and Graves 1995), the option to
allocate resources to the most profitable use (Van
Mieghem 1998), and the ability to serve as an opera-
tional hedge (Van Mieghem 2007). It is because of all
these benefits that flexibility is often defined as the
ability to react to demand uncertainty realization
(Golden and Powell 2000).

Herein we theorize that resource flexibility carries
an important benefit that has been overlooked in the
academic literature so far. Namely, we argue that
resource flexibility can help firms to learn about the
underlying demand when the latter is not fully ob-
servable because of censoring. Learning could, in

turn, enable firms to make better-informed opera-
tional decisions, such as capacity choices, in subse-
quent periods, thereby increasing their profitability.
Put differently, besides the ability to react ex post
uncertainty realization, this paper propounds that
flexibility may allow firms to also make better ex ante
decisions in future periods. This further suggests that
firms contemplating investing in flexibility could be
underestimating its true value when accounting merely
for its “reactive” abilities.
To study the learning benefits of flexibility, we

consider a two-periodmodel inwhich afirm faces two
uncertain demand streams in each of the two periods.
Demand is fulfilled using one of two types of re-
sources: either nonflexible, so that each demand re-
quires a dedicated resource, or flexible, so that each
demand can be fulfilled using a single flexible re-
source. Resource capacities used in each period have
to be chosen at the beginning of that period. To guide
capacity choices, the firm has a prior distribution
on demand. The firm can also “learn” and update its
prior via realized demand samples that are subject to
censoring if demand exceeds available capacity. We
first consider a benchmark case in which demands
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across periods are independent, so that learning is
inconsequential. Then we consider a case in which
demands are correlated across time so that there is
potential value to learning that could increase profits.
Within this model, we seek to address the following
questions: Do flexible resources lead to a higher profit
increase when learning that the realized demand is
valuable, that is, do flexible resources carry a learning
benefit over nonflexible ones? If so, then how large are
the learning benefits of flexibility? Finally, what are
the drivers of the learning benefits of flexibility, and
what do they depend on?

We derive two principal results that can be sum-
marized as follows. First, we establish that, indeed,
flexibility usually carries learning benefits. In par-
ticular, we show that when learning becomes valu-
able, profitability of the flexible system increases
more than that of the nonflexible system as long as
profit margins are not too high. Second, we quantify
the learning benefits of flexibility and find them to be
comparable to flexibility’s risk-pooling benefits in
terms of profitability; see Table 1 for indicative results.
Given the well-recognized significance of the latter, we
conclude that flexibility’s learning benefits could be a
first-order consideration for a firm.

Furthermore, our analysis sheds some light on
what drives the learning benefits of flexibility. To this
end, we first show that when demand is serially
correlated, the flexible system usually affords lower
variance for the second-period demand posterior. To
understand what drives the improvement in the
second-period forecasting accuracy, we then examine
how flexibility affects censoring of the first-period
demand. In a parsimonious one-period version of
our model, we show that the flexible system tends to
result in less censoring than the nonflexible system,
providing an intuitive explanation of what ultimately
drives flexibility’s learning benefits in the two-period
model. But, going one step further, what makes the
flexible system effective at mitigating censoring? As
might be expected, when demand is serially corre-
lated and averting censoring is valuable, the latter can
be achieved by expanding first-period capacities in

both flexible and nonflexible systems. Interestingly,
we show that the relative capacity increase is usually
higher for the nonflexible system compared with the
flexible one. These results hint that the learning
benefits of flexibility are achieved through effective
censoring mitigation owing to a more efficient use of
resources rather than to excess capacity.
A common thread among our results is that the

learning benefits of flexibility emerge only in settings
inwhich profitmargins aremoderate or low. It should
be noted that settings inwhich profit margins are high
do not represent fertile ground to draw meaningful
conclusions about learning benefits. This is because
high margins justify ample capacity for both flexible
and nonflexible systems, regardless of whether learn-
ing carries any value. Therefore, in this regime, demand
censoring becomes negligible and the learning benefits
become minuscule for both systems.
Profit margin aside, we identify two more key

factors affecting the learning benefits of flexibility:
demand variability and serial correlation. As the coef-
ficient of variation of first-period demand decreases,
that is, as there is less uncertainty regarding the first-
period demand, the learning benefits of flexibility de-
crease as well, and preference for the flexible system
wanes overall. Similarly, as demand correlation across
periods weakens, that is, as there is less information to
be extracted from realized first-period demand, the
learning benefits of flexibility decrease, and the flexible
system becomes less attractive overall.
Our theory is relevant in settings in which demand

information is censored and, in particular, back or-
ders are not allowed. The latter is often, but not al-
ways, the case in retail, as well as in certain service
industries. The most salient example of demand cen-
soring is the case of brick-and-mortar retail, whereby
a customer who does not see his or her preferred
product on the shelf walks away or buys a substitute.
Retail firms that are able to reduce lost sales by
deploying flexibility strategies, such as delayed dif-
ferentiation, can use the supplementary demand in-
formation to make better inventory, pricing, or as-
sortment decisions thereafter. This can be particularly
useful for fast-fashion retailers such as ZARA and
H&M, which are alleged to learn fashion trends faster
than their competitors by leveraging the frequent
reordering and redesigning capabilities that their
flexible operating systems offer. Within service indus-
tries, Liu et al. (2002, p. 122) describe the demand-
censoring effect in the hotel and airline industries:
“Even when reservation systems are designed to re-
cord data on lost opportunities, the data recorded are
insufficient for inferring unconstrained demand.” Ac-
cordingly, airlines, hotels, or car rental companies, for
example, that use flexible service capacity/upgrades
(Netessine et al. 2002) couldprofit from learningbenefits.

Table 1. Ratio of Flexibility’s Learning Benefits over Its
Risk-Pooling Benefits for Different Profit Margins

Profit margin Learning/pooling

5% 2.4×
10% 1.5×
20% 0.9×
40% 0.2×
Notes. The reported values correspond to a scenario in which the unit
cost of flexible capacity is equal to that of dedicated capacity; as
flexibility becomes more expensive, learning benefits become even
more significant relative to pooling benefits. See Section 4.1 for a
detailed discussion.
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On the contrary, our theory would be less relevant in
settings in which back orders are allowed, as is of-
ten the case in business-to-business settings, for ex-
ample, a car manufacturer that accepts back orders
from dealerships.

As firms strive to redesign their supply chains from
cost-efficient to responsive, resource flexibility is rec-
ognized as a key enabler of responding to fast-changing
market conditions. In summary, our findings imply
that resource flexibility can also be an important en-
abler of learning the changes in market conditions
more efficiently, which could provide a valuable com-
petitive advantage. That is, when learning matters, the
value offlexibility could behigher than suggested by the
existing literature, and so would be the cost threshold
for which a firm should adopt a flexible system.

The remainder of the paper is organized as follows.
After briefly reviewing the related literature on flexi-
bility and learning,we present themodels considered in
this work in Section 2. Sections 3 and 4 are focused on
establishing and quantifying the learning benefits of
flexibility. Section 5 deals with shedding some light
on drivers and factors offlexibility’s learning benefits.
Section 6 concludes with a brief summary and di-
rections for future research.

1.1. Related Literature
Our paper contributes primarily to the flexibility
literature. Various cost drivers of flexibility have al-
ready been documented (Van Mieghem and Allon
2008); however, there is also recent research on the
topic that identifies new drivers, such as increased
financing costs (Iancu et al. 2016), and empirically
documents and quantifies their effects on produc-
tivity (Choudhary et al. 2018). Focusing on benefits,
the literature has thus far identified at least three
distinct benefits of resource flexibility. The first is the
reduction of the mismatch between supply and de-
mand through risk pooling, and it can be captured
through many different strategies, including stock
centralization (Eppen 1979, Schwarz 1989), investing
in flexible production capacity (Fine and Freund 1990,
JordanandGraves 1995, VanMieghem,1998, Netessine
et al. 2002, Chod and Rudi 2005, Goyal and Netessine
2011), or postponement of product differentiation
(Lee and Tang 1997, Swaminathan and Tayur 1998).
Second, resource flexibility often provides the real
option to allocate the flexible resource to the most
profitable use, for example, the high-margin product
(VanMieghem 1998) or, in a global setting, themarket
with a favorable exchange rate (Huchzermeier and
Cohen 1996, Ding et al. 2007). Finally, resource flexi-
bility can sometimes be used as an operational hedge
to mitigate profit variability (Ding et al. 2007, Van
Mieghem 2007, Chod et al. 2010). We are not aware of
any papers that study the effect of resource flexibility

on learning. Our contribution to the flexibility liter-
ature is to identify this effect and to suggest that this
literature undervalues the true benefits of resource
flexibility when learning is taken into consideration.
Our work is also novel within the literature on

learning with censored demand data. There are two
distinct, and complementary, strands in this litera-
ture: (1) the parametric approach, applied to both
perishable (Harpaz et al. 1982, Lariviere and Porteus
1999, Ding et al. 2002, Lu et al. 2008, Jain et al. 2015,
Mersereau 2015, Besbes et al. 2017) and nonperishable
products (Chen and Plambeck 2008, Chen 2010, Bisi
et al. 2011, Bensoussan and Guo 2015), and (2) the non-
parametric approach, either establishing the asymptotic
convergence to the optimal decision (Burnetas and Smith,
2000, van Ryzin andMcGill 2000, Godfrey and Powell
2001, Powell et al. 2004, Kunnumkal and Topaloglu
2008, Huh et al. 2011, Maglaras and Eren 2015) or
minimizing the regret (Huh and Rusmevichientong 2009,
Besbes and Muharremoglu 2013, Shi et al. 2016,
Lugosi et al. 2019). A common feature of the afore-
mentioned works is that the production/procurement
capabilities of the firm are exogenous, so no connection
is drawn between a firm’s ability to learn through
censored data and its flexibility, or lack thereof.

2. Model
To address our research questions, we focus on a two-
product capacity-decision problem similar to the
ones studied in the literature on flexibility (Fine and
Freund 1990), extended over two time periods, both of
which involve capacity decisions. Demand is serially
correlated across these periods, and this introduces
learning considerations because demand observa-
tions in the first period carry potential benefits in the
second. The end result is a dynamic problemwith two
interdependent capacity-decision problems.
Apart from the preceding dynamic model, though,

we need a benchmark against which to compare our
findings. For this purpose, we consider the same
model but in the absence of learning considerations;
in particular, assuming that demands are uncorre-
lated across the two periods. In this case, the capacity
decisionsmade by the firm at the beginning of the first
period have no bearing on what transpires in the
second period. In this sense, they become identical to
capacity decisions made within an equivalent static
problem in which the firm’s objective is to maximize
its expected profits over a single period.
The analysis of the equivalent static model will also

guide our efforts to focus on and distill the learning
benefits of flexibility. In particular, in the static one-
period model, the advantage of flexible over non-
flexible resources is solely attributed to their pooling
benefits. If the per-unit cost of flexible capacity is
low enough, then pooling benefits would outweigh
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capacity investment costs, and flexibility would be
preferable, but if the per-unit cost of flexible capacity
is too high, then the latterwould no longer be the case.
There is then a breakeven unit cost of flexible capacity
for which the pooling benefits are canceled by capacity
costs, and the firm becomes indifferent between the
flexible and the nonflexible systems. We use this
breakeven cost to distill the learning benefits of flexi-
bility because, for this particular cost, any difference in
expected profit, in the context of the dynamic model,
would be solely attributed to learning.

2.1. Static Model
We consider a profit-maximizing firm that markets
two products or services, possibly two versions of the
same product customized for two different markets.
We henceforth refer to them simply as products and
index them by i ∈ {1, 2}. Demand for product i is a
continuous random variable, denoted by Di, and Fi is
its cumulative distribution function. These distribu-
tions can be thought of as part of a prior that en-
capsulates the firm’s information/beliefs regarding
future demand. The sale of product i generates unit
revenue pi, and p1≥ p2 without loss of generality.

Sales are constrained by the capacity of a critical
resource, such as finished product inventory, work in
progress, machinery, or workforce, that has to be
determined before demand is known. We consider
two production systems.

2.1.1. Nonflexible System. In the nonflexible system,
each product requires a product-specific resource,
whose capacity, denoted as Qi for product i, is built
at a constant unit cost c. The profit margin of product i
is then pi − c. Assuming an equal unit capacity cost for
both products simplifies the exposition without any
loss of generality because one can simply redefine one
unit of either capacity. The sales of product i are

SN,i � min Di,Qi{ }, (1)
and the firm chooses capacities of the two resourcesQ
so as to maximize expected profit

πN � p′E SN[ ] − c′Q, (2)
where boldface is used to denote vectors, whose ele-
ments are the respective quantities for the twoproducts.
Note that the expectation is taken with respect to the
joint prior distribution of the demands for the two
products—in essence, with respect to the beliefs of the
firm regarding future demand—in line with the stan-
dard approach of stochastic optimization in the case of
imperfect state information (Bertsekas 2005). Let

Q̄N � argmax
Q

πN (3)

be the vector of optimal nonflexible capacity levels,
which are standardnewsvendor solutions; see Lemma1
in Online Appendix A.

2.1.2. Flexible System. In the flexible system, the firm
can satisfy both demands using a single flexible re-
source, which could be inventory of undifferentiated
work in progress, flexible machinery, or cross-trained
workforce. The capacity of the flexible resource, de-
noted as QF, is built at a constant unit cost cF.
We assume that demand is realized so as to enable

revenue-maximizing fulfillment, as is standard in the
flexibility literature (Fine and Freund 1990, Jordan
and Graves 1995, Van Mieghem 1998). In our context,
this means that demand for the more profitable prod-
uct 1 is realized first. This could be the result of the
firm’s price-skimming strategy: firms often introduce
their products to high-valued markets first, delaying
introduction to low-valued markets (Moorthy and
Png 1992). Cell phones, for example, which require
antenna customization depending on location, are
often first introduced to the United States and certain
European markets at high prices before being made
available more widely at lower prices. Any similar
price-skimming strategies that also involve some
product customization, such as watering down prod-
uct features together with lowering price, would fit
well within our model.
Under this assumption, it is optimal to make the

entire flexible capacity available to satisfying product
1’s demand.1 The sales of the two products are thus

SF,1 � min D1,QF{ } and SF,2 � min D2,QF − SF,1
{ }

, (4)
and the expected profit is equal to

πF cF( ) � p′E SF[ ] − cFQF. (5)
Wenote that for theflexible system,weusuallyhighlight
the dependence of various quantities on the unit cost of
flexibility cF explicitly, as, for example, in Equation (5).
This is because cF emerges as an important parameter
in our analysis.
We denote the profit-maximizing flexible capacity

level by

Q̄F cF( ) � argmax
QF

πF cF( ), (6)

which satisfies a newsvendor-type optimality con-
dition; see Lemma 2 in Online Appendix A.

2.1.3. Risk-Pooling Benefits of Flexibility. In this static
model, any benefits that the flexible system may have
over the nonflexible one have to be attributed to risk
pooling because no learning takes place. We define
the risk-pooling benefits of flexibility as the profitability
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difference between the flexible and nonflexible systems
within this static model. That is,

P cF( ) ≡ max
QF

πF cF( ) −max
Q

πN . (7)

As a side note, we use the term risk-pooling benefits
in a somewhat wider sense than the literature on
flexibility, including also benefits from revenue-
maximization optionality.

2.1.4. Breakeven Unit Cost of Flexibility. If the unit cost
of flexible capacity cF is relatively low compared with
that of nonflexible c (e.g., if cF � c), then the profit-
ability of the flexible system is higher, and the risk-
pooling benefits of flexibility are positive. If cF be-
comes too high, however (e.g., if cF � 2c), then the
profitability of the nonflexible system is higher, and
the risk-pooling benefits of flexibility are negative. It
can also be readily checked that the pooling benefits
P are monotonically decreasing in cF. Given all this,
there exists, then, a breakeven unit cost of flexibility c̃F for
which the pooling benefits vanish. Formally, c̃F is
defined as

c̃F : max
QF

πF c̃F( ) � max
Q

πN . (8)

That is, for cF � c̃F, the firm is indifferent between
the two systems. For cF < c̃F (respectively, cF > c̃F),
the flexible system (respectively, nonflexible) be-
comes preferable.

2.2. Dynamic Model
We build the dynamic model that constitutes the
focus of our analysis on the static model introduced
in Section 2.1. For brevity, we present only the dif-
ferences between the two models.

We consider a two-period model, and we use su-
perscript t ∈ {1, 2} to denote the time period. For ex-
ample, Dt

i stands for the demand for product i in
period t.

At the beginning of period t, the firm decides how
much capacity to build in order to satisfy demand
Dt � (Dt

1,D
t
2)′, which is later realized and fulfilled in

the same way as in Section 2.1. Unused first-period
capacity becomes obsolete and cannot be used in the
second period. As before, we consider two operating
systems,which differ only in the type of capacity used
to satisfy the first-period demand: nonflexible versus
flexible. In particular, in both systems, the firm uses
nonflexible capacities to satisfy the second-period
demand—a modeling choice that, as we explain later

in more detail, allows us to disentangle the learning
benefits of flexibility from its pooling benefits.
We assume that demand is serially correlated; that

is, the demand in the second period is equal to the
first-period demand plus some noise. That is,

D2
i � D1

i + εi, i ∈ 1, 2{ }. (9)
Serially correlated demand models enjoy excellent
support in the academic literature, having been emp-
loyed by foundational works, from economics to
operations, and are supported by ample empirical
evidence (see Fisher and Raman 2010, Kahn 1987, Lee
et al. 2004).
With serially correlated demands, the accuracy of

the second-period demand forecast depends on the
first-period capacity decision, as well as the realiza-
tion of the first-period demand. To see this, suppose
that the firm has Q capacity units available to satisfy
the first-period demand for the first product, D1

1,
which turns out to be d. If Q > d, then the firm ob-
serves thatD1

1 � d and updates its forecast for second-
period demand for the first product to be d + ε1. If
Q ≤ d, then thefirm stocks out and updates its forecast
for second-period demand for the first product to be
(D1

1 | D1
1 ≥ Q) + ε1. Consequently, there are potential

learning benefits associatedwith buildingfirst-period
capacity, be it nonflexible or flexible.What wewish to
quantify are the added learning benefits that flexible
resources carry vis-à-vis dedicated resources and, in
particular, to compare them with the classical risk-
pooling benefits of flexibility.
All decisions are made so as to maximize expected

profits. The decision problem at hand is a dynamic
program with imperfect state information. Let P be
the measure of the probability space. The state of the
dynamic program corresponds to the most-up-to-
date belief about the demand distributions. At t � 1,
the belief is simply given by P. At t � 2, however, the
belief is updated in a Bayesian fashion after observing
the first-period sales S1; that is, the belief is given by
the associated conditional probabilitymeasure P( · |S1).
LetVt

X( · ) be the value function, or optimal expected
profits-to-go, at the beginning of period t, where X �
N for the nonflexible system and X � F for the flex-
ible one.
For the nonflexible system, the Bellman equation at

time t, for some up-to-date belief G, can be written as

Vt
N G( ) � max

Qt∈R2+
EG p′St

N − c′Qt + Vt+1
N G · |St

N

( )( )[ ]
,

t � 1, 2, (10)
with boundary condition V3

N( · ) � 0.
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For the flexible system, recall that flexible resources
are used only at t � 1, and therefore, we have

V2
F G( ) � max

Q2∈R2+
EG p′S2

N − c′Q2[ ] (11)

and

V1
F G( ) � max

Q1
F∈R+

EG p′S1
F − cFQ1

F + V2
F G · |S1

F

( )( )[ ]
. (12)

For notational convenience, we simply write the
firm’s optimal expected profits for this two-period
model as VN and VF(cF) for the two cases; that is,

VN ≡ V1
N P( ), VF cF( ) ≡ V1

F P( ).
Let Q̄1

N and Q̄1
F also denote the first-period optimal

capacity choices for the nonflexible and flexible sys-
tems, respectively.

Before we proceedwith some useful definitions, we
note that our model could reasonably approximate
capacity-decision problems facing firms in the con-
sumer electronics or fashion apparel industries. Spe-
cifically, these firms tend to release their products
periodically, for example, on an annual basis. To
launch their products in each such period, firms
usually have to make stocking decisions before de-
mand is realized. Moreover, products in each period
tend to be somewhat similar to products in the pre-
vious period; for example, newer versions of cell
phones are often similar to previous ones, albeit with
some extra features. Consequently, there is some
serial correlation of demands across periods, and
therefore, observing demand in one period could
better inform capacity decisions in future periods.

2.2.1. Learning Benefits of Flexibility. In the first pe-
riod, the use of flexible capacity offers solely risk-
pooling benefits because no learning has taken place
yet. In the second period, however, dedicated ca-
pacities are used in both cases. So we can only have
learning benefits, which may arise because of a more
accurate demand forecast, resulting from using flexi-
ble resources in the first period. Therefore, the incre-
mental profit fromusing flexible capacity,VF(cF) − VN ,
is attributed to both risk-pooling and learning ben-
efits. Consequently, we can measure the learning
benefits of flexibility, denoted by L (cF), as

L cF( ) ≡ VF cF( ) − VN −P cF( ), (13)
where P(cF) is given by Equation (7).

As a technical remark, note that the actual risk-
pooling benefits in the first period of this model
would typically deviate from P(cF), given that both
systems adjust their capacity decisions in anticipation
of learning. Notwithstanding this deviation, the fair
way to measure the learning benefits is still as indi-
cated earlier simply because any decrease in the actual

risk-pooling benefits in the first period represents a
cost associated with learning and therefore should be
accounted for in the net learning benefits of flexibility.

2.2.2. Independent Demands Across Periods. As dis-
cussed previously, we consider for benchmark pur-
poses the case in which second-period demands are
independent of first-period demands. In particular,
we assume thatD2

i is the sum of a demand term and a
noise term, similar to (9), but the demand term is now
independent and identically distributed to first-period
demand. In this case, the problem then decouples into
two single-period problems. For system X ∈ {N,F},
we denote by V⊥

X the associated optimal expected
profits and by Q̄⊥

N and Q̄⊥
F the associated optimal first-

period capacity choice.

3. Establishing the Learning Benefits
of Flexibility

We proceed to the analysis of the dynamic model of
Section 2.2 and provide a mix of analytical results and
numerical experiments that establish the learning
benefits of flexibility. For this part of the analysis, we
consider a symmetric case, in which products have
equal margins, that is, (p − c)/p and {D1

1,D
1
2} are in-

dependent random variables distributed identically
to the uniform distribution in [x, x +U], i � 1, 2. We
assume that the second-period noise terms are in-
dependent across products and also uniformly dis-
tributed: εi ∼ U[−ξx, ξx], for some ξ ∈ [0, 1]. It should
be noted that even for ξ � 0, the value functions in-
volve, in general, nonconvex optimization. Despite
this technical challenge, we are still able to derive
insightful analytical results.
We complement our analysis with numerical ex-

periments, which we anchor at a base-case parameter
setting throughout the paper.2 To test the robustness
of the derived insights, we complement the latterwith
further experiments in which we unilaterally change
different features of the model. In particular, we
perform three robustness checks. First, we change the
stochastic variability of the first-period demand. This
is captured by the coefficient of variation (CoV) of the
prior distribution, which is controlled by parameter x
in our model. Second, we change the intensity of the
second-period demand noise, which affects the infor-
mation value that can be extracted from the first-period
sales. Using information theory verbiage, this is captured
by the signal-to-noise ratio (SNR), which is controlled
by parameter ξ in our model. Third, we change the
demand distribution, considering normal and gamma.
More concretely, we compare the profits of the

flexible system VF(cF) with those of the nonflexible
system VN . Any profitability advantage that the flexi-
ble system might have could be attributed to both

Chod, Markakis, and Trichakis: On the Learning Benefits of Resource Flexibility
6 Management Science, Articles in Advance, pp. 1–16, © 2021 INFORMS



pooling and learning benefits. Algebraically, this can
be seen directly from (13), which yields VF(cF) − VN �
P(cF) +L (cF).

To disentangle the effects of pooling and learning,
we carry out the comparison for the breakeven cost of
flexibility cF � c̃F because, under this cost, the pooling
benefits are nullified according to (7) and (8),P(c̃F) � 0,
and learning benefits become the main ground of
comparison; that is,

VF c̃F( ) − VN � L c̃F( ). (14)
In other words, the comparison of VF(c̃F) to VN in-
forms precisely which resource type becomes pref-
erable exclusively because of learning considerations.
Another way to see this is by noting that when there is
no demand correlation across time, the firm is in-
different between the two systems for cF � c̃F; that is,
V⊥

F (c̃F) � V⊥
N . By comparing VF(c̃F) to VN , we study

how learning affects preference for resource type.
Therefore, VF(c̃F) being larger than VN would estab-
lish the learning benefits of flexibility.

Proposition 1. Suppose that ξ � 0 and x � 0. Then there
exists a profit-margin threshold below (respectively, above)
which VF(c̃F) ≥ VN (respectively, VF(c̃F) ≤ VN).

This result shows that if the demand is perfectly
correlated in time and the margin is not high, then the
flexible system is more profitable than the nonflexible
one. This implies that the relative increase in expected
profit attributed to learning is higher in the flexible
system than in the nonflexible one. For ξ � 0 and
x � 0, we find the profit margin threshold ((p − c)/p)
to be approximately 59%. Thus, unless margins are
higher than 59%, flexibility becomes more preferable
in the presence of learning considerations. Whereas
the exact value of this threshold is sensitive to the
different parameters and modeling assumptions that
we havemade, themain insight is robust: the learning
benefits of flexibility are established formoderate and
low margins.

We provide further insight into the robustness of
Proposition 1 through numerical experiments. In par-
ticular, in Figure 1, we study the ratio of the optimal
expectedprofits of theflexible systemover the nonflexible
one, VF(c̃F)/VN , as a function of the profit margin.

• In the top panel of Figure 1, we consider varying
values of the first-period demand CoV (as controlled
by parameter x). A ratio larger (respectively, smaller)
than one reveals preference for flexible (respectively,
nonflexible) capacity. We note that all curves indeed
exhibit a threshold-type structure as prescribed by
Proposition 1. Moreover, for lower CoV (higher x),
the margin threshold below which flexibility carries
learning benefits is decreasing; that is, preference for
flexibility due to learning wanes. The latter is because

Figure 1. The Ratio of the Optimal Expected Profits of the
Flexible System over the Nonflexible One, VF(c̃F)/VN , as a
Function of the Profit Margin for the Base-Case Parameter
Setting

Notes. In the top panel, we consider varying CoV as controlled by
x → 0, 25, 50, 75 (0 uppermost, 75 lowermost); in the center panel, we
consider varying SNR as controlled by ξ → 0, .5, 1 (0 dashed, 1 solid);
in the bottom panel, we consider different demand distributions,
uniform (dashed line), normal (dotted line), and gamma (solid line).
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lower first-period demand CoV implies that there is
less uncertainty to be resolved/learned in relative terms,
and this reduces the learning benefits.

• In the center panel of Figure 1, we consider varying
SNR values in the second period (as controlled by ξ).
As before, all curves exhibit a threshold-type structure.
Also, for lower SNR (higher ξ), the margin threshold
decreases because lower SNR again reduces the value
of learning.

• In the bottom panel of Figure 1, we consider
additional demand distributions, namely normal and
gamma, the parameters of which are chosen so that
they have the same mean and standard deviation as
the uniform distribution in our base case.

Allfindings are consistentwith themainmessage of
this section: what makes the flexible system attractive
in this dynamic model are its learning capabilities;
once they are limited, the attractiveness of the flexible
system wanes accordingly.

Proposition 1 and the numerical analyses in Figure 1
also reveal the important dependence of the learning
benefits of flexibility on profit margin. We observe
that for low to moderate margins, the profits of the
flexible system become noticeably larger than those of
the nonflexible one. For high margins, however, the
profits of the two systems become almost indistin-
guishable. The intuition behind this is that high profit
margins prompt ample capacity investments in the
first period regardless of whether learning carries any
value, to the extent that demand censoring becomes
negligible and the learning benefits become minus-
cule. That is, for this regime, we have L (c̃F) ≈ 0, and
therefore, VF(c̃F) ≈ VN . Thus, high margins do not
represent fertile ground to draw meaningful conclu-
sions about learning benefits. The important takeaway
is that for low to medium profit margins, learning con-
siderations make flexible resources more preferable,
whereas for high profit margins, learning consider-
ations become almost inconsequential.

4. Quantifying the Learning Benefits
of Flexibility

In the next part of the analysis, we quantify the
learning benefits of flexibility. We do so in two ways:
first, we compare them against the risk-pooling benefits
offlexibility, and second,we analyze uncaptured profits,
that is, how much is left on the table if the firm were to
ignore the underlying demand correlation and over-
look the learning benefits. We use the same setup as in
Section 3.

4.1. Learning Benefits vs. Pooling Benefits
We compare the learning benefits of flexibility against
its widely studied risk-pooling benefits. If the former

are of the same order of magnitude as the latter, albeit
in our parsimonious model, then this will imply that
the learning benefits of flexibility could be a first-
order consideration for a firm, given the profound
impact that risk-pooling concepts have had both in
academia and in practice.
To conduct our comparison of learning versus

pooling benefits, we focus on unit costs of flexible
capacity cF that are smaller than the breakeven cost c̃F
so that the pooling benefits are nonnegative; that is,
P(cF) ≥ 0. Recall that for cF > c̃F, the pooling benefits
are negative, whereas for cF � c̃F, the pooling benefits
vanish; that is, P(c̃F) � 0.
We begin by setting the bar quite high: we ask

whether the learning benefits could be in fact larger than
flexibility’s pooling benefits. Against this backdrop,
we find the following.

Proposition 2. Suppose that ξ � 0 and x � 0. Then there
exists a profit margin threshold below which L (cF) ≥
P(cF), for all cF ≤ c̃F.

Under the assumptions of Proposition 2,wefind the
threshold to be approximately 12%. In other words, if
the profit margin is lower than approximately 12%,
then flexibility’s learning benefits are indeed larger
than its pooling benefits. Note that this threshold is
tight: in the proof of the proposition, we construct
an example in which the margin is slightly higher
and L (cF) < P(cF).
It is worth highlighting that given how celebrated

the pooling benefits of flexibility have been in the field
of operations management, requiring the learning
benefits to be as large, or larger, is a rather tall order.
By proving the very existence of a nontrivial pa-
rameter range over which this dominance holds,
Proposition 2 provides compelling evidence for the
significance of flexibility’s learning benefits over a
broad range of relevant settings. Indeed, this gener-
alization is corroborated by a series of numerical
experiments that we conduct in order to capture
additional settings and which we discuss next.
In Figure 2, we plot the learning and risk-pooling

benefits of flexibility for cF � c and for the base-case
parameter setting as functions of the profit margin.
Both benefits are normalized by the corresponding
optimal expected profits of the nonflexible system
over one period, which we denote by π̄N ≡ maxQ πN .
We observe that formoderatemargins, around 30%or
lower, the learning benefits of flexibility are of the
same order of magnitude as the risk-pooling benefits
and actually become higher as the profit margin de-
creases. In the case of high margins, between 40%
and 60%, the risk-pooling benefits of flexibility domi-
nate. As we remarked earlier, for high margins, the
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nonflexible system justifies enough capacity and thus
“learns quite well” already. Therefore, the added
learning benefit of flexibility is marginal. Finally,
for margins even higher than 60%, both learning and
risk-pooling benefits fade because capacity becomes
so ample as to render flexibility unnecessary altogether.

In Figure 3, we focus on the base-case parameter
setting, andplot the ratio of the learning over the pooling
benefits for cF � c as a function of the profit margin:

• In the top panel of Figure 3, we vary the first-
period demand CoV, as controlled by x. We observe
that as x increases and the CoV decreases, the ratio
tends to increase. This suggests that because there is
less first-period uncertainty, in relative terms, the
pooling benefits tend to decline much faster than the
learning benefits of flexibility. The curves also illus-
trate that there is a profit-margin threshold below
which learning benefits dominate pooling benefits,
and this threshold is increasing with x, that is, with
decreased first-period uncertainty.

• In the center panel of Figure 3, we vary the second-
period SNR, as controlled by ξ. We observe that as ξ
increases and the SNR decreases, the ratio L (c)/P(c)
tends to decrease. This is because the pooling benefits
are unaffected by the second-period SNR, whereas the
learning benefits fade with decreasing SNR because
learning becomes harder. The curves also illustrate that
the profit-margin threshold below which learning ben-
efits dominate pooling benefits is decreasingwith ξ, that
is, with decreased second-period SNR.

• In the bottom panel of Figure 3, we consider
additional demand distributions, namely normal and

gamma, the parameters of which are chosen so that
they have the same mean and standard deviation as
the uniform distribution in our base case.
Furthermore, in Figure 4, we consider a similar

setup but now assume that the unit cost of flexible ca-
pacity comes at a premium α ≥ 0 so that cF � (1 + α)c,
and we vary parameter α. We observe that the ratio
L (cF)/P(cF) tends to increase with α. Consequently,
the threshold above which the learning benefits domi-
nate the risk-pooling benefits appears to be increasing as
flexible capacity becomes more expensive, that is, as α
increases: when α � 0, learning benefits are signifi-
cant for margins less than 30%; when α � 5%, learning
benefits are significant for margins less than 50%,
approximately.
All these results reinforce our intuition about the

dependence of flexibility’s learning benefits on profit
margins. Specifically, in line with our earlier findings,
the learning benefits of flexibility are significant and
of the same order of magnitude as, or dominate, the
pooling benefits for moderate and low margins.

4.2. Uncaptured Profits
To complement our results, we provide additional
quantification of the learning benefits of flexibility
that focuses on uncaptured profit: we consider the
case in which the firm is ignorant about demand
correlation, acting myopically by optimizing one-
period profits in both periods without updating its
prior, and we measure how much money is “left on
the table.”
When accounting for learning, the firm generates

profitsVX when choosing systemX ∈ {N,F}. LetV(cF) ≡
max {VN ,VF(cF)} then be the maximum profit it can
generate when choosing the most profitable system.
Suppose now that the firm was ignorant about the
underlying demand correlation but rather assumed
independent demands, as discussed in Section 2. Let
V0

X be the optimal profits it would generate under
this assumption when choosing system X ∈ {N,F}.
Accordingly, V0(cF) ≡ max{V0

N ,V
0
F(cF)} would be the

optimal profit between the two systems. The ratio
V(cF)/V0(cF) is a metric of how much the firm im-
proves in terms of expected profit by accounting for
demand correlation/learning. Equivalently, it relates
directly to the money that the firmwould leave on the
table if it did not take learning into account. Again, we
focus on the case of the breakeven unit cost of flexi-
bility cF � c̃F so that the firm is indifferent between the
flexible and nonflexible systems in the absence of
learning opportunities.
In Figure 5, we present the results of our numerical

analysis. In the top panel, we plot V(c̃F)/V0(c̃F) as a

Figure 2. The Normalized Learning Benefits of Flexibility,
L (c)/π̄N (Solid Line), and the Normalized Risk-Pooling
Benefits of Flexibility, P(c)/π̄N (Dashed Line), for the Base-
Case Parameter Setting

Chod, Markakis, and Trichakis: On the Learning Benefits of Resource Flexibility
Management Science, Articles in Advance, pp. 1–16, © 2021 INFORMS 9



function of the profit margin for varying CoV; in the
center panel, we consider varying SNR; in the bottom
panel, we consider additional demand distributions,
calibrated to have the same mean and standard de-
viation as the uniform distribution in the base case.
Overall, these experiments reveal that uncaptured
profits tend to decrease with profit margins, which is
consistent with our finding that learning benefits are
important for moderate to low margins.

5. Understanding the Learning Benefits
of Flexibility

So far we have shown that in the regime of moderate
and low profit margins, flexibility possesses learn-
ing capabilities that are considerable relative to any
learning capabilities that dedicated resources may
have, as well as the risk-pooling benefits of flexibil-
ity. In this section, our goal is to understand the
learning benefits of flexibility better and derive ad-
ditional insights.
Specifically, we start by establishing, perhaps un-

surprisingly, that flexibility achieves a less-variable
second-period demand forecast, as measured by the
variance of the posterior distribution, which, in turn,
explains in part its (monetary) learning benefits. Then
we investigate whether the flexible system’s ability to
generate a less-variable forecast is due to excess ca-
pacity expansion relative to the nonflexible system.
To this, we provide a negative answer: the relative
increase in capacity that demand learning justifies is
lower in the flexible system than in the nonflexible
one. This leads to the logical conclusion that the

Figure 3. The Ratio of the Learning to the Pooling Benefits
of Flexibility,L (c) /P(c), as a Function of Profit Margin for
the Base-Case Parameter Setting

Notes. In the top panel, we consider varying CoV as controlled by
x → 0, 25, 50, 75 (0 lowermost, 75 uppermost); in the center panel, we
consider varying SNR as controlled by ξ → 0, .5, 1 (0 dashed, 1 solid);
in the bottom panel, we consider different demand distributions,
uniform (dashed line), normal (dotted line), and gamma (solid line).

Figure 4. The Ratio of the Learning to the Pooling Benefits
of Flexibility, L (cF) /P(cF), as a Function of Profit Margin
for the Base-Case Parameter Setting

Notes. Here cF � (1 + α)c for varying cost premium α → 1, 1.01, . . . ,
1.05 (1 leftmost, 1.05 rightmost).
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flexible system forecasts better—and, thus, inherits
the associatedmonetary learning benefits—because it
makes more intelligent use of its available capacity.
On that end, we prove that flexibility mitigates cen-
soringmore effectively than dedicated capacity under
a variety of practical settings, demand distributions,
and model parameters. This provides an intuitive
explanation regarding the origins of the learning
benefits of flexibility.

5.1. Variance of the Posterior
We begin by exploring which system affords a better
second-period demand forecast. Because, in our set-
ting, demand forecasts are distributions and not mere
point estimates, we consider a posterior distribution
with a smaller variance to be a better forecast.
Let VARF(cF) denote the expected (with respect to

the prior distribution) sum of variances of the pos-
terior for the two second-period demands for the
flexible system, VARN denotes the same quantity for
the nonflexible system, and VAR0 denotes the cor-
responding sum of variances of the prior distribution.
We consider the relative variance reduction between
the prior and posterior distributions:

rX ≡ VAR0 − VARX

VAR0 , X ∈ N,F{ }.

A larger value for rX indicates a larger variance re-
duction and, as we argue, suggests a better de-
mand forecast. As in Section 3, we conduct our
comparison of the two systems under the breakeven
cost of flexibility c̃F so as to isolate any effects
from pooling.

Proposition 3. Suppose that x � 0 and ξ � 0. There exists
a profit-margin threshold below (respectively, above) which
rF(c̃F) ≥ rN (respectively, rF(c̃F) ≤ rN).

Under the assumptions in Proposition 3,wefind the
threshold below which the flexible system achieves a
larger variance reduction to be approximately 27%.
Figure 6 illustrates the variance reduction for the two
systems under the base-case parameters as a func-
tion of the profit margin. As expected, increasing
profit margins lead to higher installed capacities and,
therefore, higher variance reductions for both sys-
tems. For profit margins less than 30% or so, we
observe that flexible resources yield a much higher
reduction than nonflexible resources. For larger mar-
gins, both systems manage to reduce demand variance
substantially, owing to ample capacities, and almost by
the same amount. This pattern is very much consistent
with the one that emerged from our profitability com-
parison in Section 3: for moderate to low margins,
flexibility has a considerable edge, whereas for high

Figure 5. The Ratio V(c̃F)/V0(c̃F) as a Function of Profit
Margin for the Base-Case Parameter Setting

Notes. In the top panel, we consider varying CoV as controlled by
x → 0, 25, 50, 75 (0 uppermost, 75 lowermost); in the center panel,
we consider varying SNR as controlled by ξ → 0, .5, 1 (0 dashed
line, 1 solid line); in the bottom panel, we consider different de-
mand distributions, uniform (dashed line), normal (dotted line),
and gamma (solid line).
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margins, the performance of the two systems becomes
almost indistinguishable.

5.2. Capacity Expansion
It is well documented that when a firm attempts to
maximize expected profits while learning the de-
mand, higher capacity levels are justified compared
with the case in which there is no value to learning so
as to mitigate censoring, a phenomenon that the litera-
ture terms “information stalking” (see, e.g., Lariviere
and Porteus 1999). It can be readily checked that in
our model, the first-period capacity is, accordingly,
larger in the presence of learning considerations
rather than in their absence; that is, Q̄1

X ≥ Q̄⊥
X, for both

X ∈ {N,F}. We denote the resulting relative capacity
expansion due to learning considerations by

κX ≡ Q̄1
X − Q̄⊥

X

Q̄⊥
X

, X ∈ N,F{ }.

As in previous sections, we conduct our compari-
son of the two systems under the breakeven cost
of flexibility c̃F so as to isolate any effects from
risk pooling.

Proposition 4. Suppose that x � 0 and ξ � 0. Then there
exist ζ and ζ such that κN ≥ κF(c̃F) if and only if the profit
margin satisfies ζ ≤ p−c

p ≤ ζ.

This result suggests that unless profit margins are
too low or too high, learning prompts a higher ca-
pacity expansion for the nonflexible system than for the
flexible system. Under the assumptions in Proposition 4,
we find the lower and upper profit thresholds between
which the flexible system exhibits a lower capacity
expansion to be ζ ≈ 4% and ζ ≈ 76.5%, respectively.

Figure 7 depicts the relative capacity expansions
for the two systems, κN and κF(c̃F), as functions of
the profit margin for the base-case parameter set-
ting. We observe that for profit margins outside the
range established in Proposition 4, the two sys-
tems aim for rather diminishing and almost identi-
cal expansions.
The key takeaway is that the relative expansion in

capacity installed at the beginning of the first period
for the flexible system tends to be less than that for
the nonflexible system. Hence, flexibility’s learning
benefits—the monetary benefits established in Propo-
sition 1, as well as the forecasting benefits established
in Proposition 3—appear to be achieved precisely
through the efficient use of resources that flexibility
allows, not through excess capacity.

5.3. Censoring and Learning
We have seen so far that flexibility’s (monetary and
informational) learning benefits are achieved through
the efficient use of resources that it allows. What does
efficient use really mean though? We show that flex-
ibility mitigates censoring more effectively than dedi-
cated capacity, unless the products have very different
economic characteristics or their demand character-
istics exhibit certain asymmetries. Interestingly, we
find this to hold true regardless of whether the firm is
myopic or takes learning into account. These findings
provide an intuitive explanation regarding the origins
of its learning benefits.
First, let us attempt to put things in a broader

perspective. Apart from generating revenues, a firm’s
sales produce exact or censored demand observa-
tions, or demand signals. One can envision a variety of

Figure 7. The Capacity Expansions for the Nonflexible
System, κN (Dashed Line), and for the Flexible System,
κF(c̃F) (Solid Line), as Functions of the Profit Margin for the
Base-Case Parameter Setting

Figure 6. The Variance Reduction for the Flexible System,
rF(c̃F) (Solid Line), and for the Nonflexible System, rN
(Dashed Line), as Functions of the Profit Margin for the
Base-Case Parameter Setting
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situations where demand signals are subsequently
used to update the firm’s prior, and this updating can
generate value. For instance, there are many differ-
ent ways in which the prior can be updated: de-
mand could be autocorrelated across time, and the
demand signals can be used to improve demand fore-
cast for a future period, as in the model of Section 2;
alternatively, the demand signals could be used to
update the estimate of an uncertain demand distri-
bution parameter, again to improve demand forecast
for a future period. There are also many different
ways in which the updated prior can generate value:
the firm can use it, for example, to make better future
capacity decisions, as in the model of Section 2, or
assortment or pricing decisions, or it can use it to
simply provide better service quality by knowing its
customers better, or it could even sell it to third-party
firms that specialize in market research.

As the aforementioned examples illustrate, the prior
updating process and the resulting value-generation
process are both context specific, and their analyses
would require very different models. However, a uni-
fying feature of all such models is that exact demand
observations lead to more accurate updating of the
prior and thus could generate more value for the firm
than censored demand observations. Our intention in
this part of the analysis is to abstract away from the
specifics of both prior updating and value-generation
processes while capturing in the most parsimonious
fashion the core idea that these processes are more
efficient under exact demand observations. Therefore,
we focus on the static model of Section 2.1, and we
investigate the ability of flexible resources to mitigate
censoring and thus produce exact demand observa-
tions. Specifically, in each of the two systems, flexible
and nonflexible, we count the number of product
demands that the firm observes censored, that is,

CX ≡ ∑2

i�1
1 SX,i < Di( ), X ∈ N,F{ },

and define the censoring mitigation capability of each
system as

LX ≡ 2 − E CX[ ], X ∈ N,F{ }. (15)
We say that the flexible system mitigates censoring
more effectively than the nonflexible one if LF ≥ LN ,
that is, if the firm expects (with respect to the prior
distributions/beliefs) to observe more product de-
mands uncensored by using the flexible system.

In what follows, we compare the censoring miti-
gation capabilities of the two systems for the case of
the breakeven unit cost of flexibility. Again, we first
study the symmetric case in which the two products
have independent and identically distributed de-
mands and equal margins. Studying the symmetric

case is already of practical interest, given that prod-
ucts that can be produced using the same flexible
resources are often inherently similar to each other,
for example, cell phones with Global System for
Mobile Communications or Code Division Multiple
Access antennas. Furthermore, studying the sym-
metric case enables us to arrive at baseline results that
prove useful in the second step of this analysis, in
which we explore the effect of each product charac-
teristic on the comparison of the censoring mitigation
capabilities of the two systems.

Proposition 5(a). Consider the static model of Section 2.1
with cF � c̃F. Assume that the demands are independent and
distributed identically to a uniform distribution and that
the products have the same margin; that is, p1 � p2. Then the
flexible system mitigates censoring more effectively than the
nonflexible one; that is,

LF ≥ LN .

In the presence of heterogeneity with respect to the
demand or the economic characteristics of the two
products, we establish the following result.

Proposition 5(b). Consider the static model of Section 2.1
with cF � c̃F. Assume that the demands are independent and
uniformly distributed with means µ and standard devia-
tions σ. The flexible system mitigates censoring more ef-
fectively than the nonflexible one; that is, LF ≥ LN ,
i. If μ1 �� μ2 and σ1 � σ2, p1 � p2;
ii. If σ2 ≤ λ̃σ1 and μ1 � μ2, p1 � p2, for some λ̃ > 1;
iii. If p1 ≤ 3 p2 and μ1 � μ2, σ1 � σ2.

We conclude by showing that when underage
is costlier than overage, the effect of different de-
mand characteristics that we find in our previous
result fades.

Proposition 5(c). Consider the setting in Proposition 5(b)
and further assume that pi − c ≥ c. Then we can select
λ̃ → ∞, and the results continue to hold. Notably, the effect
of different economic characteristics persists in this case, so
the learning capabilities of flexible resources dominate in this
scenario only if margins do not differ by too much, specif-
ically, if p1 ≤ 3 p2.

We also compare the censoring mitigation capa-
bilities of the two systems, assuming normally dis-
tributed demands, in an extensive numerical study
whose details are provided in Section B.1 of Online
Appendix B. In summary, we compareLF toLN while
varying the fractile (pi − c)/pi, the demand variability
σi/μi, the demand correlation ρ, the asymmetry in
mean demand μ2/μ1, the asymmetry in demand var-
iability σ2/σ1, the asymmetry in unit revenues p2/p1,
and the various combinations thereof. We find that
flexibility mitigates censoring more effectively than
dedicated capacity as long as the economic charac-
teristics of the two products are not vastly different.
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Namely, the only instances in which LF < LN are
those in which p1 ≥ 4p2.

In Section B.2 of Online Appendix B, we analyze
two more scenarios, one of equal costs, where flexi-
ble capacity has the same unit cost as dedicated ca-
pacity, and the other of equal capacities, where the
flexible system’s resource capacity equals the sum of
dedicated capacities of the nonflexible system. The
former case simply provides a benchmark, and, as
expected, the flexible system dominates the non-
flexible one in terms of censoring mitigation, irre-
spective of the demand distribution and the profit
margin. The latter case could be relevant, for example,
when preinstalled dedicated resources can be con-
verted to flexible resources at a fixed cost (and neg-
ligible variable cost).

Although the technical analysis of each of the three
scenario presents its own nuances, the following
unifying finding emerges: the flexible system mitigates
censoring more effectively than the nonflexible one unless
the products have very different economic characteristics
or their demand characteristics exhibit certain asymmetries.

In Section B.3 of Online Appendix B, we perform a
robustness check wherein learning is accounted for
in the firm’s objective, and we derive findings that
further back the preceding statement.

Finally, we extrapolate from the three individual
scenarios to the entire range of cF that justifies in-
vesting in flexibility even in the absence of learning,
namely the interval [c, c̃F]. Note that as cF decreases,
the optimal capacity, and thus the capability of the
flexible system to mitigate censoring, increases or, in
the worst case, stays the same. This implies that as cF
decreases, the conditions for flexibility to mitigate
censoring more effectively than dedicated capacity
become less stringent. This monotonicity, together
with Proposition 5(b) and Proposition 6 in Section B.2
of Online Appendix B, give rise to the following re-
sults for the general case of arbitrary cF.

Corollary 1. Consider the static model of Section 2.1 with
cF ∈ [c, c̃F]. Suppose that the assumptions of Proposition 5(b)
are satisfied. If conditions (i)–(iii) are met, then

LF ≥ LN , ∀cF.
Otherwise, there exists a threshold ĉF ∈ [c, c̃F) such that

LF ≥ LN , ∀cF ≤ ĉF, and LF < LN , ∀cF > ĉF.

Corollary 1 reinforces the insight that flexibility
always mitigates censoring more effectively, unless
the demand distributions or margins are too differ-
ent from each other—where “too different” is used in
the sense of Proposition 5(b). Figure 8 provides a
graphical illustration of these results.

6. Conclusions, Limitations, and
Future Research

In this paper, we establish a heretofore unknown
benefit of resource flexibility: it can facilitate learning
the demand when the latter is not fully observable or
censored. In turn, this allows for more accurate future
forecasting and better-informed operational decisions ex
ante uncertainty resolution in future periods, ultimately
increasing profitability and operations performance.
Our analysis shows that for low to moderate profit

margins, the learning benefits of flexibility could be
substantial and of the same order of magnitude as the
celebrated risk-pooling benefits in terms of profit-
ability. We also illustrate how these benefits derive
from a more efficient use of resources—rather than
excess capacity—that mitigates censoring. The effects
tend to accentuate as prior uncertainty increases or
as correlation between prior and future demands
increases because demand observations have greater
informational content in predicting the future.
For settings in which margins are high, ample ca-

pacities are already justified, and censoring becomes
rare. Consequently, learning benefits fade. Similarly,
our theory is less relevant to settings inwhich demand
is observed in a credible way, as is the case, for ex-
ample, in certain business-to-business interactions.
Our work has the potential to change the way

operations managers think about flexibility in busi-
ness environments in which demand learning is valu-
able: beyond the mere ability to hedge against uncer-
tainty, flexibility can help reduce it, allowing firms to
make better-informed decisions in future periods.
Because learning capabilities often represent a com-
petitive priority in today’s rapidly changing business

Figure 8. Range of the Unit Cost of Flexible Capacity for
Which the Flexible System Mitigates Censoring More
Effectively Than the Nonflexible One

(a)

(b)

Notes. Panel (a) depicts a scenario in which the conditions of
Proposition 5(b) are satisfied. In this case, flexibility facilitates learning
in the entire range of the relevant unit cost of flexible capacity [c, c̃F].
Panel (b) depicts the situation otherwise. In this case, flexibility fa-
cilitates learning only in the interval [c, ĉF], for some ĉF < c̃F.
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landscape, learning emerges as one of flexibility’s
distinct benefits alongside risk pooling, revenue maxi-
mization, and operational hedging. This also suggests
that the true value of flexibility could be greater than
suggested by the existing models, which account
merely for its reactive abilities. Therefore, a firm that
cares about learning would be willing to paymore for
flexibility than a firm that does not; see Figure 9 for a
graphical illustration.

Our research could open up a whole new range
of possible research avenues. To point out a few, it
would be interesting to quantify the monetary value
of the learning benefits of flexibility in additional
settings. In this paper, we make the first step toward
this goal, but one could explicitly model other con-
tingent decisions that may benefit from superior
demand forecasts, such as assortment, promotions,
and pricing.

This line of research also can be thought of as
extending the seminalworks of Fine and Freund (1990)
and Van Mieghem (1998). Given the learning benefits
of flexibility, how would the insights of these papers
be affected in multiperiod settings? Another inter-
esting research direction would be to study learning
benefits of process flexibility in the context of Jordan
and Graves (1995). Does limited flexibility, config-
ured to chain products and resources together to the
greatest extent possible, yield most of the learning
benefits of total flexibility? Finally, we focus on re-
source flexibility, which subsumes many different
forms, such as employing a flexible manufacturing
system, cross-training workforce, or delaying product

differentiation. How about different types of flexibility,
such as quick response or lowering setup costs?

Endnotes
1We revisit the demand-fulfillment process in Section B.3 of Online
Appendix B.
2The parameters in the base-case setting take the values p � 1, x � 50,
U � 100, and ξ � 0.
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