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Slippage and migration in Taylor–Couette flow of a model
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Abstract9

We explore the rheological predictions of a constitutive model developed for dilute or semi-dilute worm-like micellar solutions in an axisymmetric
Taylor–Couette flow. This study is a natural continuation of earlier work on rectilinear shear flows. The model, based on a bead-spring microstructure
with non-affine motion, reproduces the pronounced plateau in the stress–strain-rate flow curve that is observed in laboratory measurements of
steady shearing flows. We also carry out a linear stability analysis of the computed steady-state solutions. The results show shear-banding in the
form of sharp changes in velocity gradients, spatial variations in number density, and in alignment or stretching of the micelles. The velocity
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 Profiles obtained in numerical solutions show good qualitative agreement with those of laboratory experiments.
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. Introduction

Worm-like micellar solutions are of special interest due to
heir extensive commercial applications and due to their un-
sual behavior under different flow conditions [30]. Worm-like
icelles are very long cylindrical structures composed of am-

hiphilic surfactant molecules which self-assemble in solution.
hese structures are flexible and can entangle and behave much

ike polymers in solution, however they can also spontaneously
reak and reform on different time scales. Thus, they have earned
he name “living polymers” [8]. Of special interest is the behav-
or of dilute and semi-dilute worm-like micellar solutions un-
er shearing flow. Two characteristics observed in experiments
f dilute micellar solutions have been the source of consider-
ble experimental and theoretical investigation. First, solutions
an become turbid with increasing shear rate as the result of a
hear-induced phase separation (SIPS) [21,22]. Second and of
ore interest to the present study, the flow curve of steady shear

tress versus shear-rate presents a distinct plateau [3,4]. Flow
isualization of micellar solutions in this plateau region shows
he formation of shear-bands [20,32,21,22,17,16]. A number of

odels have been proposed to explain these phenomena. In this

paper, we apply a bead-spring model including a non-affine slip-
page term developed in Ref. [9] to describe worm-like micellar
solutions in circular Taylor–Couette flows.

One of the suggested mechanisms for shear banding is that
of a constitutive instability. That theory suggests that an un-
derlying non-monotone relationship between stress and strain-
rate, in steady shearing flow, is responsible for the existence
of shear banded solutions. In this description, specific shear-
bands consist of identical stress states on different branches
of the flow curve corresponding to different strain rates. A
number of studies of this behavior have focused on Johnson–
Segalman-like models, that is models in which the convected
derivative is a Gordon–Schowalter derivative. In early papers,
studies were carried out investigating possible mechanisms for
a unique choice of shear banding possibilities [11,15,26]. In or-
der to have a model which selects unique states, higher order
derivative (diffusive) terms were needed in the stress equation
[27]. In conjunction with this diffusive terms were added to
the constitutive relation [24,27–29]. More recently two-fluid ef-
fects and couplings between the flow and the microstructure,
for example coupling between the stress and the mean micel-
lar length, have been investigated [12–14]. Some of the most
recent studies are especially relevant to experimental studies
which suggest that a steady-state banding pattern is not achiev-
U∗ Corresponding author. able, and instead oscillatory banding patterns appear [34,14]. In 64

particular the recent NMR study by Lopez-Gonzalez et al. [23] 65
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demonstrated a clear connection between shear-band instability66

and flow-microstructure coupling. In those studies mentioned67

above in which the Gordon–Schowalter derivative is used in the68

modeling, it is used phenomenologically, rather than being sys-69

tematically derived from a fundamental principle or microscopic70

model.71

In an earlier paper [9], a new model was presented for72

semi-dilute solutions of worm-like micellar solutions in which73

the non-affine motion was tracked consistently in the model-74

ing process. Recent studies of worm-like micellar solutions75

have demonstrated that there can be a sequence of rheologi-76

cal transitions as the concentration of surfactant and counter-77

ion are progressively increased; from the dilute to the semi-78

dilute/entangled and ultimately to the concentrated/entangled79

regime. The present model is most appropriate for the semi-80

dilute/entangled regime in which the deformation of individ-81

ual worm-like micelles (rather than network segments) is fol-82

lowed. The effects of chain overlap and entanglement and the83

continuous breaking and reforming of the worm-like micelles84

in the semi-dilute regime are modeled by the non-affine de-85

formation of the microstructure. The model was derived us-86

ing kinetic theory assuming that the viscoelastic characteristics87

of the semi-dilute solution properties could be lumped into a88

bead-spring mechanism. The model self-consistently incorpo-89

rates “slippage/tumbling” as well as the spatial extension of the90

bead-spring. This work is a generalization of the Bhave et al.91
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In the previous paper, the predictions of our model were ex- 123

amined in rectilinear steady-state shearing flow. It was shown, 124

computationally, as anticipated [27] that the addition of the extra 125

terms, especially the diffusive terms, removed the indeterminacy 126

in the steady-state shear-banded state. Calculation of the steady- 127

state shear stress versus shear-rate curve for this model shows 128

that the shear stress first increases with shear rate, then plateaus, 129

and only rises again at much higher shear rates. Thus, the vis- 130

cosity as a function of shear rate first decreases slowly (slight 131

shear thinning) as the shear-rate increases, then drops quickly 132

proportional to γ̇−1 and then, at much higher shear rates, levels 133

off to its asymptotic solvent limit. 134

The inclusion of slippage/tumbling effects incorporates a 135

non-affine motion into the model [19]. This non-affine motion 136

is consistent with breakage and re-formation of the worm-like 137

micelles under an imposed shearing deformation. The measure 138

of the non-affine motion is ξ = 1 − a. When a = 1, ξ = 0, the 139

motion is affine. As a decreases from 1, the motion becomes 140

more strongly non-affine. Shear banding behavior and the con- 141

current stress plateau can only occur if the underlying flow curve 142

is nonmonotone, that is if ξ �= 0, or more precisely if |a| < 1 and 143

β < n0a
2/8, where n0 is the number density and β = ηs/η0 is 144

the solvent viscosity ratio (see Section 3). 145

The generic trends observed in the flow curve discussed above 146

are typical of results of experimental measurements of worm- 147

like micellar solutions which exhibit shear banding and turbidity 148
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odel for dilute polymers [5], as presented and corrected by
eris and Mavrantzas [2], to non-affine motions. In particular,

he model equations form a system of partial differential equa-
ions in which the number density, velocity gradients, velocity
nd stress are coupled. The inclusion of “slippage/tumbling” in
he model yields the Gordon–Schowalter convected derivative
n the stress equation and the incorporation of spatial exten-
ion couples the stress equation with an evolution equation for
he local number density of micellar chains. The latter equation
s dependent on shear-rate variations, stress variations, and the
lippage parameter.

Taking into account the spatial inhomogeneity of the system
eads to incorporation of a spatial diffusion term in the stress
quation, thus leading to the necessity of stress boundary con-
itions for the model. This term was included in the work of
have et al. [5], of El-Kareh and Leal [10] (albeit both exam-

ned affine motion), in work of Olmsted as we have pointed
ut earlier, and more recently in a paper of Black and Gra-
am [7]. The most appropriate form of this boundary condition
s not clear. The micelles may be modeled to select a specific
lignment with the wall (a Dirichlet boundary condition) or the
all may only passively interact with the fluid (so that there is
o net flux of configurations into, or out of, the wall; a Neu-
ann boundary condition. In our work we have duplicated and

xplored the (Dirichlet) boundary conditions used in Ref. [5].
e have also explored the (Neumann) boundary condition as

sed in Black and Graham [7]and in Olmsted et.al. [28]. This
iffusive term was not included in the Taylor–Couette study
f Apostolakis et al. [1]. In that work, slippage is not mod-
led so the flow curve is monotone and diffusion is not neces-
ary.
JNNFM 2554 1–14

17,21]. The shear banding behavior and increasing turbidity oc-
ur in the intermediate shear-rate region when the stress plateaus.
n the rectilinear shear situation, shear banding does occur for
his model, albeit in a very small interval of shear-rates. The
hear banding behavior is characterized by a velocity profile
hat quickly falls from the wall value through a boundary layer,
hen levels off, then falls rapidly again through an internal shear
ayer to a lower velocity through the middle of the gap, before
ising symmetrically on the other side. For the rectilinear shear
ase no number density layers were seen for this model other
han the depletion layers at the wall [9]. This situation may be
onsiderably different in the case of a torsional shear flow such
s a cone-plate or Taylor–Couette flow, due to the effects of spa-
ial curvature. Experiments definitely suggest [32,21,17] that
hear layers first form near the inner wall where the curvature is
ighest.

In this paper, we examine the non-affine model developed
n the previous paper, but in a circular Taylor–Couette flow.

e compare the predictions with those available from exper-
ments on micellar solutions [17,20,21,32]. The geometry we
tudy consists of two concentric cylinders with an inner cylin-
er of radius R1, an outer cylinder of radius R2 and a gap width
f H = R2 − R1. The inner cylinder is held fixed while the outer
ylinder rotates at velocity ṽ|w. We compute the flow curve and
tudy the linear stability of steady-state solutions to 1D perturba-
ions under shear-rate controlled conditions, in which the outer
ylinder velocity is fixed, and under stress-controlled boundary
onditions. Calculations show the formation of shear banding
tructures manifested both as sudden changes in the velocity
radient and as number density fluctuations. Results from the
odel are compared with experimental results for a micellar so-
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lution (surfactant system of 6% cetylpyridium chloride and 1.4%180

sodium salicylate (2:1 molar ratio) dissolved in 0.5 M NaCl brine181

[17]).182

2. Model183

The physical variables involved in the analysis are denoted184

with a (̃) and are non-dimensionalized as follows: r = r̃
H

, t =185

t̃
λ
, v = λṽ

H
, τ = τ̃

navkT
, n = ñ

nav
, where H is the gap width, k the186

Boltzmann constant, T the temperature, and nav is the average187

number density of micelles nav = ∫ R2
R1

r̃ñ(r̃) dr̃.188

Note that the typical velocity scale is based on the gap width189

and relaxation time. This non-dimensionalization results in two190

non-dimensional parameters for a given v|w; namely the Debo-191

rah number De = λṽ|w
H

, the ratio of the relaxation time λ to the192

typical fluid flow time, and the Peclet number Pe = Hṽ|w
Dtr

, where193

Dtr is the translational diffusivity of the micelles. With this scal-194

ing both shear-rate controlled and stress-controlled cases can be195

examined easily through changes in boundary conditions only.196

The ratio of De to Pe, ε = De
Pe

= λDtr
H2 , is typically small [5].197

The parameter ξ = 1 − a measures the extent of non-affineness198

in the model, β = ηs
ηp

measures the solvent viscosity relative to199

the average “polymer” (micellar contribution to the) viscosity,200

ηp = navekTλ. The Reynolds number for the flow is typically201

small, hence only inertialess flows are considered. Notation con-202
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beads ν = 1 and 2. Note that in the affine limit this model agrees 224

with the essential elements of several models derived by different 225

means; see Beris and Mavrantzas [2]. 226

The boundary conditions for the problem are as in Refs. [9,5]: 227

(1) No flux of micelles through the boundaries: 228

n̂ · jp = n̂ · a∇n + ∇ · τp + ξ∇ · [(τp − anδ) · γ̇] = 0. (7) 229

(2) Conservation of the total number of micelles: 230∫
�

∫
ndA = π(r2

0 − r2
i ). (8) 231

(3) Either; alignment of the molecules at the wall: 232

τpw = anw

(
δ − Hs{Q2}w

kT ñw
(t̂t̂)
)

. (9a) 233

Here ñw = navnw is the dimensional number density at the 234

wall, and t̂ is a unit tangent to the wall. Since flows consid- 235

ered in this paper will have no z dependence, t̂ is the unit 236

tangent vector in the flow direction. Future work will ex- 237

amine three dimensional effects and thus will examine the 238

effect of alignment of the micelles along the wall, but not 239

necessarily solely in the flow direction; or, no flux of the 240

conformation across the wall: 241

n̂ · ∇{QQ} = 0, (9b) 242
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entions are as in Ref. [6].
The dimensionless governing equations for the fluid flow are

s follows. Conservation of mass:

· v = 0. (1)

Conservation of momentum (inertialess flow):

· � = 0, (2)

here

= pδ − βγ̇ + τp (3)

s the total stress. Here γ̇ = ∇v + (∇v)t . The dimensionless
umber density n and deviatoric stress τp are given by

Dn

Dt
= ε(a∇2n + ∇∇ : τp + ξ∇∇ : ((τp − anδ) · γ̇)), (4a)

p + τp(♦) − ε∇2τp −
(

a
Dn

Dt
− εa∇2n

)
δ = −a2nγ̇. (4b)

Here ()(♦) represents the Gordon–Schowalter derivative:

)(♦) = D()

Dt
− (∇v)t · () − () · ∇v + ξ

2(γ̇ · τp + τp · γ̇)
, (5)

nd

p = anδ − aHs

navkT
{QQ}, (6)

here Hs is the Hookean spring force, Q is the connector vector
etween the two beads (from bead 1 to bead 2) in the bead-
pring, and {} signifies the ensemble average distribution. That
s {QQ} =∑ν

∫
QQ	p dQ where 	p(r̃ − (−1)νQ/2, Q, t) and

=∑ν

∫
	 dQ (see Refs. [5,9]), where the sum is over the two
JNNFM 2554 1–14

where n̂ is the unit normal to the wall. Further discussion of
these boundary conditions is given below.

4) Specification of either the velocity v (shear-rate controlled)
or the stress τ · t̂ (stress-controlled) at the solid walls.

In this paper, we focus on the computation of steady solutions
nd their stability. Future work will examine time evolution of
he flows from rest, dependence on initial state, and further in-
estigate boundary conditions at the wall.

. Axisymmetric Taylor–Couettev flow

We consider axisymmetric solutions to the system (1)–(19)
or which the velocity has the form ur = 0, uθ = v(r), uz = 0.
ere the subscripts indicate the component, and no variations

n the θ or z directions are considered. Mass is automatically
onserved and the components of the momentum Eq. (2) reduce
o

1

r2

∂

∂r

(
r2
[
τprθ − βr

∂

∂r

(v

r

)])
= 0, (10a)

here β = ηs/ηp as defined earlier:

1

r

∂

∂r
(rτprr) − τpθθ

r
+ ∂p

∂r
= 0. (10b)

The equations for the number density (4a) and extra stress
omponents (4b) reduce to:

∂

∂t
n − ε

(
a

1

r

∂

∂r

(
r
∂n

∂r

)
+ 1

r

∂2

∂r2 (rτprr) − 1

r

∂

∂r
τpθθ

+ ξ

[
1

r

∂

∂r

{
r

∂

∂r

[
τprθ

(
r

∂

∂r

(v

r

))]}])
= 0, (10c)
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∂

∂t
τpθθ + τpθθ − 2τprθr

∂

∂r

(v

r

)
+ ξτprθr

∂

∂r

(v

r

)

− ε

[
1

r

∂

∂r

(
r

∂

∂r
τpθθ

)
+ 2

r2

(
τprr − τpθθ

)]

− ε

(
1

r

∂2

∂r2 (rτprr) − 1

r

∂

∂r
τpθθ

+ ξ

[
1

r

∂

∂r

{
r

∂

∂r

[
τprθ

(
r

∂

∂r

(v

r

))]}])
= 0, (10d)

and
∂

∂t
τprθ + τprθ − τprrr

∂

∂r

(v

r

)
+ ξ

2
r

∂

∂r

(v

r

)
(τprr + τpθθ)

− ε

(
1

r

∂

∂r

(
r

∂

∂r
τprθ

)
− 4

r2 τprθ

)
= −a2nr

∂

∂r

(v

r

)
, (10e)

∂

∂t
τprr + τprr + ξr

∂

∂r

(v

r

)
τprθ

− ε

(
1

r

∂

∂r
r

∂

∂r
τprr − 2

r2 (τprr − τpθθ)

)

− ε

(
1

r

∂2

∂r2 (rτprr) − 1

r

∂

∂r
τpθθ

+ ξ

[
1 ∂

{
r

∂
[
τprθ

(
r

∂ (v))]}]) = 0. (10f)
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that the solution consists of pieces of an “outer” solution joined 282

by boundary layers in which the solution variables (including the 283

velocity field and number density) vary rapidly. In the “outer” 284

regions the stress derivatives are order 1, in the boundary/shear 285

layers the stress derivatives are order 1
ε1/2 . The lowest order outer 286

stress for ε = 0 is the solution to the Johnson–Segalman equa- 287

tion: 288

τ
(0)
prθ = −a2γ̇ (0)

1 + (1 − a2)(γ̇ (0))2 , (12) 289

N
(0)
1 = τ(0)

prr − τ
(0)
pθθ = 2a2(γ̇ (0))2

1 + (1 − a2)(γ̇ (0))2 , (13) 290

and also n(0) = 1. Here γ̇ (0) = r( v0
r

)′ is one of the roots of (12). 291

Note that the non-dimensional value of shear rate γ̇ (0) is related 292

to the dimensional value as in Section 2: 293

γ̇ (0) = r̃λ
∂

∂r̃

(
ṽ

r̃

)
= λ ˜̇γ (0)

. (14) 294

The determination of which root should be selected can be 295

made through matching with the shear/boundary layers. Notice 296

that for a fixed value of a, N(0)
1 increases with γ̇ (0) up to a maxi- 297

mum plateau value of 2a2

1−a2 for a < 1. Thus the maximum value 298

of the first normal stress difference increases as a gets closer 299

to 1. If a is identically 1 then the shear stress is monotone as 300

a function of shear rate, and N
(0) increases, as (γ̇ (0))2, without 301
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r ∂r ∂r ∂r r

The boundary conditions at the walls (r = r1 = R1
H

, r = r2 =
R2
H

) are that there is no flux:

∂n

∂r
+ 1

r

∂

∂r
(rτprr) − τpθθ

r
+ ξ

{
∂

∂r

(
τrθr

∂

∂r

(v

r

))}
= 0,

nd either we specify the stress components at the wall:

τprr|w = anw,

τprθ|w = 0,

τpθθ|w = anw

{
1 − Hs

kT
{QQ}θθ |w

ñw

}
= anw(1 − d),

(11a)

r we specify the normal derivative of the conformation

∂

∂r
{QQ}|w = 0. (11b)

Here d is a measure of the number of dumbbells and their
xtension of the springs at the wall in the flow direction, and

˜ w = nwnav is the dimensional value of the number density at
he wall. We also specify either shear-rate controlled boundaries
n which the velocity v|w is specified at both walls, or stress-
ontrolled boundary conditions (v = 0 specified at one wall and
tress specified on the other). Finally, the dimensionless number
ensity must be conserved:

r1+1

r1

rn dr = 1

2
[(r1 + 1)2 − r2

1] = r1 + 1

2
.

The problem outlined above is a singular perturbation prob-
em in ε. For this problem ε is small. If ε = 0 then there are no
patial derivatives of the stress left in the model, and the stress
oundary conditions can not be satisfied. One expects, therefore,
JNNFM 2554 1–14

1
ound.

. Calculations and results

We calculate steady solutions to the system of Eq. (10) to
xplore general flow characteristics for comparison with similar
aboratory experiments, and we also calculate the steady flow
urve to confirm the existence of a plateau in the stress/shear-
ate relationship. The non-dimensional geometric and parameter
alues are shown in Table 1. The non-dimensionalized geom-
try of our flow calculations are similar to the geometries of
17,32,21]. The value of ε was suggested by Rothstein [31]. The
esults are presented in terms of the dimensionless gap variable
= r̃−R1

H
. The ratio of viscosities, β is the same as that used

n Ref. [5]. Most calculations were carried out with a = 0.8.
owever, we present results for a = 0.9 and 1 where necessary

o show parameter sensitivities. Note that for a = 1 the motion
s affine. The choice of specifying Dirichlet conditions on the
tress at the wall, that is the alignment of the micelles at the walls,
ollows the choice of Ref. [5] and the analysis of Ref. [25]. In
act in Ref. [25] the conformation tensor C is decomposed as

= nc, where c is a single molecule or specific configuration
ensor. Mavrantzas and Beris found that not only does c align
arallel to the wall, but that also nw = 0. In our formalism n
s allowed to adjust itself at the wall. The choice of d, that is
he projection of the scaled second moment in the wall direction
t the wall, needs more investigation. As will be seen, in the
ange 0 ≤ d ≤ 1 the model predictions are relatively insensitive
o d. Note that for this model, the quantity {QQ} is a weighted
nsemble average of the molecular length which intrinsically in-
olves the number density. The alternative choice of specifying
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Table 1
Flow geometry and fluid solution parameters for the calculations presented in
this paper

Parameter Value

r1 15
v1 0
v2 De

ε 10−3

ξ or 1 − a 0.2
d 1/8
β 2.41 × 10−2

All values are dimensionless.

no conformation flux at the wall, a Neumann condition on the331

stress, follows the choice of Black and Graham [7]. It is interest-332

ing that in this case the values of d, the dimensionless micellar333

alignment at the wall, selected by the model are not the same at334

the inner and outer wall, at least along the plateau region of the335

flow curve.336

The numerical techniques used for these calculations are very337

similar to those used in Refs. [9,18,33]. We solve the boundary338

value problem with either shear-rate or stress controlled bound-339

ary conditions using fourth order spatial collocation where the340

number density at the inner cylinder wall, n(r1), is specified.341

Thus, the integral
∫ r1+1
r1

n(r)r dr is now a function of a single342

variable which is the number density at the inner wall n(r1).343

Thus, the number density constraint reduces to finding the root:344 ∫ r1+1

r1

n(r)r dr − r1 − 1

2
345

as a function of n(r1). We find that secant iterations work well.346

“Adams family” continuation methods are used to calculate so-347

lutions along the flow curve τrθ(γ̇). The choice of shear-rate con-348

trolled or stress-controlled boundary conditions is not important349

except where the flow curve is close to horizontal (vertical) at350

which time it is necessary to use shear-rate (stress) controlled351

boundary conditions to continue solutions along the flow curve.352

For instance, when the flow curve is close to horizontal, the so-353

l354

F indica
b ientat

but one can converge rapidly to a solution by specifying the shear 355

rate. 356

4.1. Dirichlet stress boundary condition computations 357

To construct the flow curve for the Dirichlet conditions (stress 358

specified at the wall), we calculate steady solutions for a typical 359

Couette cell geometry and typical flow parameters as shown in 360

Table 1. In Fig. 1, we see that the new model produces a flow 361

curve with a distinct plateau. The vertical axis represents the 362

total shear stress: 363

τrθ = τprθ − βr
(v

r

)′
, 364

measured at the outer wall r = R2. (Hereafter ()′ represents d
dr

or 365

∂
∂r

as the case may be.) The horizontal axis is the dimensionless 366

apparent shear rate De = λv/H . Notice that in Fig. 1(a) for a 367

small range of shear rates (10 < De < 12.5) there are two pos- 368

sible stable shear-rate controlled solutions. This non-uniqueness 369

does not occur in the stress-controlled case shown in Fig. 1(b). 370

As we see in Fig. 2, the local velocity gradient of ∂vθ

∂y
is not 371

uniform across the gap. Hence, we plot the spatial variations in 372

the velocity profile for various apparent shear rates. Along the 373

flow curve, as we increase the Deborah number up to the plateau 374

values of stress, a boundary layer in the velocity field forms at 375

the inner cylinder. The velocity field in the high shear band that 376

d 377

i 378

c 379

i 380

h 381

t 382

m 383

t 384

p 385

r 386

i 387

s

U
N

C
O

R
R

Eution is very sensitive to stress-controlled boundary conditions,

ig. 1. Flow curves using parameters provided in Table 1. Regions of stability are
oundary conditions (b). The total stress is measured at the outer wall. (With or
JNNFM 2554 1–14

ted with either shear-rate controlled boundary conditions (a) or stress-controlled
ion and wall stress specified.)

evelops at the inner cylinder exhibits a linear profile, and grows
nto the gap as the apparent shear-rate increases. As De is in-
reased from 2.5 to 10, the total stress remains constant, that
s the flow curve corresponding to the imposed stress/strain-rate
as a plateau. The width of the high shear-rate band, starting from
he inner cylinder, grows as the apparent shear-rate increases. A

odest boundary layer also forms at the outer cylinder to at-
ain the correct outer cylinder velocity. The computed velocity
rofile shows a two banded structure with one sharp transition
egion (and a third boundary layer near the outer wall as shown
n Fig. 2a, the width of which goes to zero as ε goes to zero)
imilar to those profiles measured by Hu and Lips [17], Liber-
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Fig. 2. Flow velocity and number densities along the left stable branch of the flow curve at positions A–F. (Wall stress specified.) Solutions at point F are linearly
unstable when stress-controlled boundary conditions are applied at the outer wall.

Fig. 3. In (a), radial variations in the first normal stress difference are plotted against the apparent shear rate. At right, (b) we show the spatial extent of first normal
stress difference contour for N1 = 3 as Deborah number is increased (wall stress specified). Solutions at point F are linearly unstable when stress-controlled boundary
conditions are applied at the outer wall.

atore et al. [21] and Salmon et al. [32] in Couette geometries,388

although the latter profiles do not exhibit the boundary layer389

at the outer cylinder. In the latter two cases, the outer cylinder390

remains stationary whilst the inner rotates.391

As observed in our study of rectilinear flow there is a deple-392

tion in the local concentration of micelles near the wall. How-393

ever, in this cylindrical geometry, two distinct local maxima or394

number density bands form, one near the inner and one near the395

outer cylinder walls. In Fig. 2, we see that the inner aggregation396

layer of micelles moves into the gap as the shear-rate increases.397

The much smaller local maxima near the outer wall remains398

roughly unchanged as the shear-rate grows and this is a conse-399

quence solely of the no flux/no penetration boundary condition.400

By contrast, the notable local maximum in concentration toward401

the inner wall occurs in the region where the velocity gradient402

changes sharply. This local change in fluid density may well be403

connected to the onset of turbidity that is observed experimen- 404

tally [4]. 405

To understand the alignment and stretching of the molecules, 406

we examine the first normal stress difference: 407

N1 = −(τpθθ − τprr) = aHs

navkT
({QQ}θθ − {QQ}rr). (15) 408

At the wall, the first normal stress difference is specified to 409

be a small but nonzero value, see (11a): 410

N1 = −(τpθθ − τprr)|w = aHs

navkT
{QQ}θθ = anwd. (16) 411

In Fig. 3, we see that a region with strong molecular align- 412

ment or stretching originates near the inner cylinder and grows 413

into the gap as the apparent shear-rate grows. This alignment 414

reaches a maximum value for large enough shear rates, De � 4, 415
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Fig. 4. Flow velocity and number densities along the right stable branch of the flow curve at positions I–L. The number density curves superpose one another. (Wall
stress specified.)

and the maximum is subsequently independent of De. The value416

of this maximum depends only on a as predicted by the outer417

solution (12) for large γ̇ (0) and as discussed in the next para-418

graph. The sharp downward transition in the first normal stress419

difference that signifies the end of the aligned/stretched region420

is associated with the local maximum in number density (see421

Fig. 2 for comparison). In experiments, the shear-induced phase422

transitions that develop as the shear rate is steadily increased423

are associated with strong local stretching and concomitant in-424

creases in the turbidity or local number density [23] that are425

reminiscent of those predicted by the present model. Fig. 3(a)426

shows the growth of the alignment/stretched region across the427

gap. Fig. 3(b) follows the steady propagation of the N1 = 3 con-428

tour across the gap as the De number increases. Although we429

have chosen this contour arbitrarily this criterion may represent430

– at least qualitatively – a suitable condition for the onset of a431

shear-induced structural transition beyond a critical degree of432

stretching that results in sample turbidity. Note that this high-433

stress turbidity-prone region is not at the wall, but is located close434

Fig. 5. First normal stress difference for a = 0.9 (a) and a = 1 (b). These sho

to the inner surface and expands into the gap as the shear-rate 435

increases. This is also consistent with birefringence experiments 436

[20,22]. 437

Continuing along the flow curve past the plateau, the right 438

hand (stable) branch exhibits solutions with flow profiles that are 439

close to Newtonian, and the number density distribution remains 440

unchanged with increasing De (as shown in Fig. 4). 441

To examine the sensitivity of the first normal stress difference 442

to variations in constitutive parameters, we varied the parameters 443

a and d. Calculations show that there are no changes in the first 444

normal stress difference across the gap as d is varied between 0 445

and 1. The model predictions are insensitive to variations in d in 446

this range. Note from (11) that the boundary conditions assume 447

that the micelles are aligned at the wall ({QQ}rr = 0) and d mea- 448

sures the scaled extension of the micelles along the wall. The 449

results are thus insensitive to this parameter at least in the range 450

0 ≤ d � 1. Fig. 5 shows a comparison of the first normal stress 451

difference with variations in a. It is particularly interesting to 452

note the extreme sensitivity of the model to changes in a. When
JNNFM 2554 1–14

uld be compared with Fig. 3 (a) where a = 0.8. (Wall stress specified.)
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Fig. 6. A flow curve using parameters provided in Table 1 analogous to Fig. 1 but using Neumann stress boundary conditions on the conformation tensor {QQ}.

a = 1 the underlying flow curve is monotone and the model re-453

duces to the (corrected) Bhave et al. model. The first normal454

stress difference has a large maximum near, but not at, the outer455

wall for a = 1. As a decreases, a maximum in N1 develops near,456

but not at, the inner wall, and the location at which this max-457

imum is obtained propagates into the gap as De increases. As458

a decreases the magnitude of this maximum decreases, but the459

growth of the region of maximum first normal stress propagates460

more quickly into the interior. Since calculations show that the461

radial variation in the number density n(r) does not vary appre-462

ciably with a (certainly not as strongly as N1), the increase of463

the first normal stress is primarily due to an increase in either464

the number of molecules aligned in the flow direction and/or465

the length of these molecules. Note that the plateau values of466

N1 agree with the values of N1 predicted for the outer (ε = 0)467

(Johnson–Segalman) solution for large γ̇ (see (13)). That predic-468

tion, for homogeneous flows, was that for large γ̇, N1 ∼ 2a2

1−a2 .469

Note that this value, the asymptote of the zeroth order solution470

Fig. 7. Flow velocity and number densities along the left stable branch of the flow c
Neumann boundary conditions on the conformation tensor.

and the maximum observed in the full inhomogeneous numeri- 471

cal calculations, is independent of γ̇ . 472

4.2. Computations with Neumann conformation boundary 473

conditions 474

To construct the flow curve for the Neumann conditions (nor- 475

mal derivative of the conformation tensor specified at the wall) 476

we again use the parameters of Table 1. Since we specify the 477

stress normal derivatives, d is computed rather than imposed on 478

the system, and we shall see later that di and do, values of d at 479

the inner/outer wall, respectively, differ in some regions of the 480

flow curve. The flow curve for the shear-rate controlled case is 481

shown in Fig. 6(a) and for the stress-controlled case in Fig. 6(b). 482

These flow curves differ from those obtained with the Dirichlet 483

stress condition case (Fig. 1) in two ways. First, the Neumann 484

curves have a peak located at De = 1.2, τrθ = −0.54. Second, 485

these curves have two stable branches in the “plateau” region.
JNNFM 2554 1–14

urve at positions A–F following the lower plateau as indicated in Fig. 6 with
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Fig. 8. In (a), radial variations in the first normal stress difference are plotted for different values of the apparent shear rate following the left ascending stable branch
and then the lower plateau as indicated in Fig. 6. At right, (b) we show the spatial extent of first normal stress difference contour for N1 = 3 as Deborah number is
increased with Neumann boundary conditions on the conformation tensor.

We could not numerically resolve a clear connection between486

the two “plateau” curves and the left or right stable branches,487

and this remains a topic for further exploration.488

Fig. 7 shows the velocity and number density profiles across489

the gap for this Neumann stress condition following the rising490

left curve and then the bottom plateau curve. The flow veloc-491

ity curves are similar to those of Fig. 2(a) except that there is492

no longer a weak boundary layer at the outer cylinder. In other493

words these velocity profiles, with the Neumann stress condi-494

tions at the wall, following the lower branch, resemble those of495

Hu and Lips [17]. The number density curves, Fig. 7(b), also496

are quite different from those of Fig. 2(b) (Dirichlet condition).497

In the present case (Neumann conditions) the number density498

no longer depletes at the wall. Rather, the number density de-499

creases from the inner cylinder to the outer cylinder with one500

localized bump/maximum at the interface of the shear bands501

which, in the Dirichlet condition case, moves outward as the502

Deborah number (inner wall velocity) increases. Fig. 8 shows503

the radial variations in the first normal stress difference for the504

Neumann stess condition. Again, there is no boundary layer at505

the walls in notable contrast to the Dirichlet condition case (Fig.506

3). Also these curves do not show the maximum near the outer507

cylinder. Rather these curves show a region of high alignment508

and stretching near the inner wall which grows outward with509

increased Deborah number similar to that in Fig. 3. In addition510

these results show that the value of the first normal stress dif-511

f512

c513

c514

515

D516

fl517

f518

I519

d520

z521

for De > 1.2, that is on the plateau, the values of the projected 522

micellar alignment at each wall diverge so that di ∼ 5 � do ∼ 523

1.8. Thus, along the plateau this system selects a solution for 524

which the molecules are longer and/or more highly aligned at the 525

inner cylinder wall than at the outer cylinder wall. The separation 526

point, and the peak in do, mirror the peak in the flow curve. 527

Along the top plateau curve in Fig. 6(a) the situation is quite 528

different, the solutions here are close to the mirror image in y of 529

those on the bottom curve, approximately obeying the following 530

the symmetry: 531

n(y) ↔ n(1 − y), (17a) 532

τp(y) ↔ τp(1 − y), (17b) 533

vθ(y) ↔ De − vθ(1 − y). (17c) 534

Fig. 9. Computed values of the dimensionless micellar stretch at the inner (solid)
and outer (broken) walls as a function of De in shear-rate controlled flows.
Solutions obtained using Neumann conformation boundary conditions.
U
N

Cerence at the inner wall increases monotonically with De in
ontrast with results obtained using Dirichlet stress boundary
onditions.

In Fig. 9, we explore values of the alignment d as we increase
e moving up the left curve and onto the bottom plateau of the
ow curve shown in Fig. 6. We plot the values of the alignment
actor at the inner (di) and outer (do) walls as we increase De.
n the Newtonian-like region of the flow curve, De � 1.2, the
egree of alignment is equal, d = do = di, and d increases from
ero to a value just greater than 2 as De increases. However,
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Fig. 10. A comparison of solutions along the upper and lower branch in the flow curves with Neumann stress boundary conditions. The velocity profiles are shown
at left (a) at positions D/D′ and E/E′. Similarly, the number density distributions are shown at right (b).

The symmetry is approximate because it does not account for535

the curvilinear geometry. Thus, in contrast to the solutions on536

the lower branch, these solutions show a high shear-rate layer at537

the outer wall, a high amount of stretching/alignment at the outer538

wall, and a peak in number density that moves inward from near539

the outer wall, towards the inner wall, as De increases. The ex-540

istence of similar transposed solutions was reported by Olmsted541

et al. in their study of the Taylor-Couette flow of the Johnson–542

Segalman model with a diffusive term [28]. We compare upper543

plateau and lower plateau velocities and number densities in544

Fig. 10. Such inverted velocity profiles have not been observed545

to date in velocimetry studies of worm-like micellar solutions546

[17,32]; however as Olmsted et al. note it may be necessary to547

explore specific loading/unloading protocols to access such so-548

lution structures, and furthermore they may be metastable with549

long diffusive transients. We have not been able to resolve nu-550

merically the steady solutions and the branch structure in the551

region s and s′ of Fig. 6(a), but we shall see in the next section552

that we can still understand the dynamics of this system without553

precise information on this specific part of the branch structure.554

5. Stability555

To calculate the (one-dimensional) linear stability of the556

steady solutions that are obtained along the flow curve, we con-557

sider the growth or decay of small perturbations to steady solu-558

t559

n560

τ561

τ562

τ563

v564

w565

c566

value/eigenfunction problem: 567

λñ = ε

[
1

r
(rñ′)′ + �/a

]
, (19a) 568

λτ̃prr = −τ̃prr − ξ

[
r

(
v̄

r

)′
τ̃prθ + τ̄prθr

(
ṽ

r

)′]

+ ε

[
1

r
(rτ̃′

prr)
′ + 2

r
(τ̃pθθ − τ̃prr) + �

]
, (19b)

λτ̃pθθ = −τ̃pθθ + (2 − ξ)

[
r

(
v̄

r

)′
τ̃prθ + τ̄prθr

(
ṽ

r

)′]

+ ε

[
1

r
(rτ̃′

pθθ)′ + 2

r
(τ̃prr − τ̃pθθ) + �

]
, (19c)

λτ̃prθ = −τ̃prθ +
[
τ̄prr − ξ

2
(τ̄prr + τ̄pθθ)

]
r

(
ṽ

r

)′

+
(

1 − ξ

2

)
r

(
v̄

r

)′
τ̃prr − ξ

2
r

(
v̄

r

)′
τ̃pθθ

+ ε

[
1

r
(rτ̃′

prθ)′ − 4

r
τ̃prθ

]
−a2

[
n̄r

(
ṽ

r

)′
+r

(
v̄

r

)′
ñ

]
,

(19d)
569

λ

{ [ ( )′]}′
570

w

�

571

r 572
U
N

C
Oions:

(r, t) = n̄(r) + δñ(r) eλt, (18a)

prr(r, t) = τ̄prr(r) + δτ̃prr(r) eλt, (18b)

pθθ(r, t) = τ̄pθθ(r) + δτ̃pθθ(r) eλt, (18c)

prθ(r, t) = τ̄prθ(r) + δτ̃prθ(r) eλt, (18d)

(r, t) = v̄(r) + δṽ(r) eλt, (18e)

here δ 	 1 and λ is complex. Substituting (18) into (10) and
ollecting all terms at order δ, we obtain the following eigen-
JNNFM 2554 1–14

Re ṽ = − 1

r2 r2 τ̃prθ − βr
ṽ

r
, (19e)

here

= 1

r

(
(rτ̃prr)

′′ − τ̃′
pθθ + ξ

{
r

[
r

(
v̄

r

)′
τ̃prθ

+ τ̄prθr

(
ṽ

r

)′]′}′)
. (19f)

For the last condition, it is understood that Re 	 1, so the
esulting equation is integrated numerically and implicitly in-
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cluded in Eqs. (19a–f). From (19e), we see that573

r

(
ṽ

r

)′
= 1

β
τ̃prθ − C

βr2 (20)574

on r1 ≤ r ≤ r1 + 1, where C is a constant that must be deter-575

mined from the boundary conditions. Solving (20) for v, we576

have:577

v(r) = ṽ(r1)r

r1
+ 2C

β

(
1

r
− r

r2
1

)
+ r

β

∫ r

r1

τ̃prθ(s)

s
ds. (21)578

In this paper, v(r1) is always zero so the first term vanishes.579

We shall see later that C is a linear transformation acting on the580

variables ñ, τ̃p so that the problem is a classic eigensystem.581

The boundary conditions for the perturbed equations in the
case where the wall stress is specified (Dirichlet) are{

añ′ + 1

r
(rτ̃′

prr)
′ − 1

r
τ̃pθθ

+ ξ

[
r

(
v̄

r

)′
τ̃prθ + τ̄prθr

(
ṽ

r

)′]′}∣∣∣∣∣
w

= 0, (22a)

(τ̃prr − añ)|w = 0, (22b)582

[τ̃pθθ − a(1 − d)ñ]|w = 0, (22c)583

τ584

v585

(586

(587

c

τ588

τ589

τ590

v591

(592

(593

594

a595

perturbations with controlled shear-rate, we can solve for C in 596

(20) by applying the zero velocity perturbation at R2: 597

C = 1

2

(
1

r2
1

− 1

r2
2

)−1 ∫ r2

r1

τ̃prθ(s)

s
ds. (24) 598

For perturbations with controlled stress at the outer wall, 599

C = 0. In either case, C is a linear transformation acting on the 600

perturbation number density and stress, so the resulting system 601

(19a–d,f) and (21) is a classic eigenvalue/eigenfunction prob- 602

lem. 603

If x̃ is a vector representing discretized number density and 604

stress over the domain, excluding the boundary, on m − 2 points 605

then we can define a (m − 2) × m matrix ABC which maps x̃ 606

from the interior of the domain excluding the boundary values 607

out to full domain including the boundaries. Similarly, we can 608

discretize (19a–d,f) and (21) as a mapping from the full domain 609

including the boundaries to the interior of the discretized domain 610

as an (m − 2) × m matrix ADE. Selecting Dirichlet or Neumann 611

stress boundary conditions or stress- or strain-rate controlled 612

boundary conditions on the outer wall determines ABC but not 613

ADE. The full discretized eigensystem is 614

λx̃ = ADEABCx̃. (25) 615

Next, we turn our attention to specific results from different 616

combinations of stress boundary conditions and strain-rate or 617

s 618

619

s 620

t 621

s 622

a 623

s 624

f 625

T 626

p 627
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629

a 630

( 631
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˜prθ|w = 0, (22d)

˜(r1) = 0, (22e)

strain rate controlled) ṽ(R2) = 0, (22f)

stress-controlled) r

(
ṽ

r

)′∣∣∣∣
r=R2

= 0. (22g)

The boundary conditions for the perturbed equations in the
ase where the derivative of the wall stresses are specified are{
añ′ + 1

r
(rτ̃′

prr)
′ − 1

r
τ̃pθθ

+ ξ

[
r

(
v̄

r

)′
τ̃prθ + τ̄prθr

(
ṽ

r

)′]′}∣∣∣∣∣
w

= 0, (23a)

˜ ′
prr − añ′|w = 0, (23b)

˜ ′
pθθ − añ′|w = 0, (23c)

˜ ′
prθ|w = 0, (23d)

˜(r1) = 0, (23e)

shear-rate controlled) ṽ(R2) = 0, (23f)

stress-controlled) r

(
ṽ

r

)′
− 1

β
τ̃prθ

∣∣∣∣
r=R2

= 0. (23g)

We calculate the linear stability for both shear-rate controlled
nd stress-controlled boundary conditions at the outer wall. For
JNNFM 2554 1–14

tress-controlled boundary conditions on the outer wall.
We seek to understand the evolution of the flow as a progres-

ion of steady states if the input parameterDe (for shear-rate con-
rolled) or τrθ at the outer wall (for stress-controlled) is changed
lowly. In the experimental literature, this is often termed upward
nd downward “sweeps.” When 
(λ) is negative, solutions are
table and if it is positive solutions are unstable. Therefore, we
ocus on points along the flow curve where 
(λ) changes sign.
he eigenfunction corresponding to an eigenvalue with a small
ositive real part indicates the form of the growing disturbance
o the steady solution as the system becomes unstable.

For Dirichlet boundary conditions where we specify the stress
t the walls, the evolution of the spectrum of the perturbed system
19) along the plateau and at the cusp on Fig. 1(a), character-
zes the transitions to instability. All transitions are saddle-node
nstabilities where a single pure real eigenvalue crosses from
he left half-plane to the right half-plane. The structure of these
nstabilities along the plateau is shown for both the shear-rate
ontrolled boundary conditions Fig. 11(a) and (b) near point G
n Fig. 1(a) and stress-controlled boundary conditions Fig. 11(c)
nd (d) near point F in Fig. 1(b). If one were to perform a shear-
ate controlled experiment, one would climb up past points A
hrough G along the plateau at which point one would jump onto
he right branch. From the right branch, one could decrease the
hear-rate and traverse the right branch downward toward point I
fter which one would jump back to the left branch. With stress-
ontrolled experiments, one would experience similar behavior
xcept one would jump to the right branch from the plateau near
oint F.

For Neumann stress boundary conditions, we have not been
ble to resolve numerically the solution (using these steady-state
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Fig. 11. Modes of instability for Dirichlet stress boundary conditions. Plots (a) and (b) are perturbations about point G in Fig. 1a. Plot (a) shows the the number
density perturbation corresponding to the saddle node, and (b) shows the first normal stress difference perturbation for shear-rate controlled boundary conditions on
the outer wall. Plots (c) and (d) are perturbations about point G in Fig. 1b. Similarly, plots (c) and (d) show the saddle node perturbation number density and first
normal stress difference for stress-controlled boundary conditions at the outer wall.

solutions) in the region s, nor in the region s′ indicated in Fig.649

6(a). The branch structure near these regions is an area for future650

investigation. There is a continuation branch of each of the two651

plateau curves towards the left (in region s), but it is unstable652

as indicated in the figure. In our model with Neumann stress653

boundary conditions, our results suggest that one will never see654

the middle branches with stress-controlled boundary conditions655

at the outer wall. One can see that the unstable perturbation656

shown in Fig. 12 is similar to the unsteady perturbation for the657

Dirichlet stress problem with stress-controlled boundary condi-658

tions (Fig. 11(c) and (d)). The key difference is that the steady659

solution with Dirichlet stress boundary conditions (Fig. 2) has a660

boundary layer at the outer wall whereas the steady solution with661

Neumann stress boundary conditions (Fig. 7) does not. Thus, the662

unstable perturbation with Dirichlet stress boundary conditions663

has spatial structure near the outer wall while the unstable per-664

turbation with Neumann stress boundary conditions does not.665

As the stress slowly increases one expects the system will666

move up the up the left branch of the flow curve shown in Fig.667

6(b) to its top, then as the stress increases further jump to the668

right branch. As the stress is reduced from a high value, one 669

expects to move down the right hand curve, then jump to the left, 670

thus avoiding the plateau region. This is similar to the hysteretic 671

behavior reported in Yesilata et al. [35]. On the other hand in a 672

shear-rate controlled slow ramp up one would expect to move up 673

the left curve, then jump down to the top plateau curve and move 674

to the right across this plateau, then jump down to the right hand 675

branch and continue moving to the right thus climbing the right 676

hand branch. In the opposite case, as the shear rate is ramped 677

down, one expects to come down the right hand curve to its 678

end, then jump up to the bottom plateau curve, continue moving 679

across and then as it ends jump up to a point near s on the left hand 680

curve and move on down. For a specific shear-rate jump up from 681

rest it is unclear which solution would be chosen and presumably 682

that would depend on the complete history. Assuming the system 683

jumps to the “nearest steady solution” the lower plateau curve 684

would be chosen. For a specific shear-rate jump up from rest it is 685

unclear a priori what solution would be chosen and presumably 686

that would depend on the complete history as demonstrated by 687

Olmsted et al. [28]. 688
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Fig. 12. Modes of instability for Neumann stress boundary conditions. Plots (a) and (b) represent perturbations about a point between E and F in Fig. 6. Plot (a) shows
the the number density perturbation corresponding to the saddle node, and (b) shows the first normal stress difference perturbation with stress controlled boundary
conditions at the outer wall.

6. Conclusions689

In this paper, we have examined a model for dilute and690

semidilute unentangled worm-like micellar solutions with cou-691

pled stress and number density in axisymmetric Taylor-Couette692

flows. We have applied this model with parameters selected to693

characterize an experimental geometry that is similar to those of694

a number of investigators in their laboratory experiments. Calcu-695

lations of the stress/strain-rate flow curve exhibit a pronounced696

plateau region similar to those measured in laboratory experi-697

ments. We find that coupling stress and number density provides698

a selection mechanism for regions in which the stress/strain-rate699

curve are multi-valued in agreement with our earlier results for700

rectilinear shear flows. However, the circular geometry reveals701

several notable differences. With the curvilinear geometry, the702

shearbands that develop in the gap are no longer symmetric about703

each wall. Rather, the inner boundary layer grows with apparent704

shear-rate until it is no longer a boundary layer but rather a full705

fledged shear-rate band that extends over 50% of the gap. This706

is an agreement with several recent particle image velocime-707

try experiments in worm-like micellar solutions [32,17]. At the708

same time, the weak outer boundary layer experiences very lit-709

tle change. The precise structure of the flow curve and these710

boundary layers depends sensitively on the choice of bound-711

ary conditions on the micellar confirmation near the walls. In712

the present study we have considered both Dirichlet and Neu-713

m714
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