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An Interferometric Study of Moving Contact Line Dynamics

Spreading of Fluids and Precursor Layer

• Hardy (1919) reported the existence of a very thin film in front of moving
wetting line.

• Cottington et al. (1964) used ellipsometry to observe precursor film.
• Hervet & de Gennes  (1984) theory on 1-D thin spreading edge.
• Existence of large extrapolation length for velocity field of polymeric liquids

near a smooth surface predicted by de Gennes (1985).
• Huppert (1982) and Goodwin & Homsy (1991) studies of  gravity currents and

spreading of viscous drops on inclined plates.

(Kistler, Hydrodynamics of wetting, 1993)(Adamson & Gast, Physical chemistry of surfaces, 1997)

Project Goal: Develop a non-invasive optical technique that has sufficient spatial
                           and temporal resolution to investigate contact line evolution.

Phase-shifted Laser Feedback Interferometer(psLFI)

• Feedback into the laser eliminates the
need for a beam splitter and separate
reference arm.

• Electro-optical modulator (EOM) is used
to impose a series of controlled phase
changes.

• Vertical spatial resolution of 10 nm is
achieved using phase-shifting algorithm.

• Diffraction-limited lateral resolution
achieved using high N.A. objectives.

(Ovryn & Andrews, Appl. Opt., 1999)
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PSLFI  in The Vicinity of Contact Line

• Resolve the precursor layer film in front of a spreading drop by
observing drop in fringe visibility, m, and variation of drop height, h.

• Spreading of viscous Newtonian silicone oil on silicon substrate.

drop in fringe visibility, m, at beginning of the precursor layer
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Dynamic Contact Angle, θa

• Local slope is calculated by numerical differentiation of drop profile.

• Dynamic contact angle, θa , corresponds to maximum value of slope.

Inflection point

θa dh dx= ( )( )−tan
max

1

θa

Confirmation of Tanner’s Law

• Vary spreading velocity by using several different silicone oils.

• Dynamic contact angle is proportional to the capillary number, Ca1/3. (Tanner, 1979)
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Precursor Layer Length, LP

• LP  is determined by comparing spatial variation of visibility and drop heights.

• Theoretical prediction: LP ~(SA/6πσ2)1/2 /Ca  (De Gennes, 1985).
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where:
 A: Hamaker constant [J]
 S: Spreading coefficient [N/m]

  For our experiment:
 (SA/6πσ2)1/2  = 6.1×10-10 m
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Gravity Current on an Inclined Plate

• Spreading of viscous drops on an inclined plate under gravitational body force.

• Measure droplet profile and and compare with self-similar profile predicted by Huppert (1982)

• Shift data so that  ξ = 0 corresponds to inflection point of profile.

➝ Dimensionless coordinates:

• Close to contact line similarity solution predicts: α 
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Power-laws for Spreading Drops on Inclined Plates

• For small inclination angles(α → 0),

lubrication theory remains valid.

• For α → 0 and for Ca << 1 Tanner’s law

recovered:

• On “steeply inclined” plates, lubrication
theory is not valid, Bo~O(1)

 (Goodwin & Homsy, 1991; Hocking, 1983).

• Spreading is driven by a quasi-steady static
balance, hence: Ca Bo gh≡ = ρ α σ2 sin  

θa Ca~ 1 3 θa Ca~ 1 2
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Conclusions

• Non-invasive optical technique has been used to investigate dynamical evolution

at the vicinity of the dynamic contact line of spreading droplets.

• Existence of an “inflection point” close to the contact line is confirmed.

➝ Macroscopic spreading is of form predicted by “Tanner’s Law”: θa~ Ca1/3.

• Length of precursor layer, LP, is determined by comparing spatial variation of

visibility and drop heights.

➝ LP, is inversely proportional to the capillary number of the spreading drop

 as theory predicted.

• Shape of spreading drop on inclined plate close to the contact line follows the

similarity solution given by Huppert (1982).

➝ For Bo~O(1), dynamic contact angle follows a new regime: θa ~Ca1/2.

➝ For Bo<<1, regardless of the slop of plate, θa ~Ca1/3.
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