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C Upstream contraction flow is numerical and

experimental benchmark problem 

C Complex flow containing mixture of shear near

walls and extensional effects near contraction

C Combination of global and local flow

measurements used to extensively characterize

flow

C Characteristic Deborah number

C Creeping flow regime

Re < 10-3
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conformation

The Axisymmetric Contraction-Expansion

R1 / R2  = $ = 2, 4, 8
Lc / R2  = 0.5, 1, 2 
      Rc = 0, 0.1R2, 0.2R2, 0.5R2

(Cartalos & Piau, 1992; Szabo et al., 1997; Rothstein & McKinley,1999)
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4:1:4 Contraction-Expansion

with Rounded Corners

C These discrepancies may be due to the internal, purely-dissipative stresses arising from non-

equilibrium molecular conformations.

C Presence of stress-conformation hysteresis in transient uniaxial elongation suggests need for

global (pressure drop) and local (birefringence) probes of conformation and stress.

Motivation

C There is a lack of agreement between experiments and computations in non-homogeneous flows
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Fluid Shear Rheology

C Monodisperse polystyrene Mw = 2.03×106 g/mol dissolved in oligomeric polystyrene

C Dilute solution with concentration c = 0.025wt%   Y   c/c* = 0.23

C Model viscoelastic fluid to probe flow in the absence of polydispersity and inertial effects

C Small amplitude oscillatory shear rheology:

6 well fit by Rouse-Zimm bead-spring model

h* ï 0.1  Y do minant hydrodynamic
interactions

81 = 3.08s  
8i = 81 / i1.77

0s/00 = 0.92

C Steady shear rheology: 
6 poorly fit by FENE-P model ‘&&’ (L = 88)
6 well fit by Bird-DeAguiar model ‘&’ 

(L = 88, F = 0.62, $ = 1.0)

C Extensional rheology also very important

T0 = 25EC
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Corner 
Vortex

De = 2.6

4:1:4 Contraction/Expansion 2:1:2 Contraction/Expansion

C At moderate Deborah numbers, two distinct patterns of vortex growth exist

C For β $ 4, vortex grows out fro m salient corner, grows upstrea m and eventually beco mes unstable

C For β = 2, ‘lip’ vortex e merges near re-entrant corner, grows toward salient corner and upstrea m

Vortex Growth Dynamics

Lip 
Vortex

De = 0.9
>

P
.



Contraction Ratio ($ = R1/R2)

Lip
Vortex

Vortex Growth

Pulsing Rotating

PIB/PB Boger Fluids
(McKinley; Binnington & Boger)

Contraction Ratio

Lip
Vortex

Vortex Growth

Rotating

0 2 4 6 8 10 0 2 4 6 8 10

PAA/CS Boger Fluids
(Nguyen, Boger & coworkers)

PS/PS Boger Fluids
(Rothstein & McKinley)

Contraction Ratio

Lip
Vortex

Vortex Growth

Rotating

0 2 4 6 8 10

C Flow stability diagram of PS/PS Boger fluid is very similar to PAA/CS Boger fluid and

dissimilar to PIB/PB Boger fluid

  C Why do vortex growth dynamics depend on both contraction ratio and test fluid used?

  Y Many have speculated that fluid dependence of flow structure arises from differences in

extensional viscosity of different Boger fluids.

Flow Stability Diagram for PS/PS Boger Fluid
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C PIB/PB and PS/PS Boger fluids

exhibit similar stress growth

C Results are approximately independent

of    (for DeZ > 1)

Accumulated strain along centerline

C Lip vortex present for

PS/PS 6 , < 2.77 Y

PIB/PB 6 , < 4.16 Y Tr < 200

Transient Extensional Rheology 

C   Independent knowledge of extensional and

shear rheology alone does not explain choice

of lip or corner vortex!

C Need to understand how upstream shear flow

affects extensional flow entering contraction.
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Contraction Ratio

C Systematic differences between fluids can be understood by considering relative importance

of elastic normal stresses generated in shear to elastic normal stresses generated in transient

uniaxial extension.

Normal Stress Ratio

C For each fluid, a lip vortex does not develope for normal stress ratios (! < 0.055).



Need for Birefringence Measurements

C Normal stress ratio formed with rheological data from homogeneous transient uniaxial

extension and simple steady shear flow.

  
...but entry flow is a complex flow with nonhomogeneous extensional kinematics

C Would be nice to be able to form normal stress ratio from in situ stress measurements. 

Flow Induced Birefringence (FIB) Y )nN, P ] (Jzz - Jrr), Jrz

C FIB measurements are also an excellent comparative tool for evaluating the ability of

constitutive models to capture small scale physics. 

Bernaudo et al.  (1998) - Flow of a LLDPE melt into a 8:1 planar contraction
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birefringence

Li and Burghardt (1995)

2D

Axisymmetric

stress constant
along path 

stress varies
across diameter

C Integrated measures dependent on optical train used.

Axisymmetric Flow Induced Birefringence

C FIB typically used in two-dimensional flows because it is a line-of-sight technique.
stress-optical coefficient

chain end-to-end vector 

X

Flow

Flow

extinction angle

retardation

C Axisymmetric flow result in an integrated measure of FIB and polymer chain conformation.
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C Axial compression (δN > 0) near

contraction (z = 0) due to shear flow

along contraction plane.

C At large De, strong axial elongation (δN < 0) results from extensional flow along centerline.

C Growth in size and strength of axial elongation region coincides with corner vortex growth.
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C Region of axial compression (z=-3)

resulting from deceleration of flow

out of contraction.

C Magnitude and amplitude of compression doesn’t change with Deborah number.

C At large Deborah numbers, strong axial elongation near re-expansion plane resulting from

extensional flow upstream and strong shear in the throat.
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C Again, strong extension is observed upstream corresponding to vortex growth.

C Very little compression is observed from the shearing flow at the contraction plane.

Y No other distinct qualitative differences are observed between different contraction ratios.
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6 Use simple shear rheology to determine

N1 at the contraction wall.

  6 Assume all extensional stress is held by a

single uniformly stretched filament of

width 2R2.  

C Normal stress ratio strongly dependent on

contraction ratio.

C Final test would be to compare with FIB

measurements of PIB/PB Boger fluids.

C Can now form a normal stress ratio from axisymmetric FIB measurements.

C To calculate normal stress ratio from FIB measurements we:
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C We have coupled global flow field measurements of the effect of viscoelasticity with local

conformation measurements for a model polymer solution in a prototypical complex flow.

C These measurements generate a comprehensive data set for the validation of constitutive

equations and numerical methods. 
6 Pressure drop measure ments

6 Axisymmetric flow induced birefringence measure ments

6 Velocity measure ments (PIV and LDV)

6 Vortex growth measurements

6 Characterization of an elastic flow instability

C We have rationalized the dependence of elastic lip and corner vortices on contraction ratio

and test fluid rheology with a new dimensionless group, the normal stress ratio.
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C Can use FIB to determine microscopic anistropy in polymer chain conformation
stress-optical coefficientbirefringence chain end-to-end vector 

Photoelastic 
Modulator @ 45E

* = Acsin Tt

C Need a technique to measure retardance (* ) and extinction angle (P) simultaneously

?
Polarizer @ 0E Flow Cell

P = ?
* = ?

Analyzer @ -45E Photodetector

measures I(t)

***  Polarization Modulated Flow Birefringence  ***

Flow Induced Birefringence (FIB)


