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The Axisymmetric Contraction-Expansion
(Cartalos & Piau, 1992; Szabo et al., 1997; Rothstein & McKinley,1999)
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Motivation
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Deborah Number
C These discrepancies may be due to the internal, purely-dissipaive stresses arising from non-

equilibrium molecular conformations.

C Presenceof stress-conformation hygeresisin transient uniaxial elongation suggests need for
global (pressure drop) and local (birefringence) probes of conformation and stress.



Fluid Shear Rheology

C Monodisperse polystyrene M, = 2.03x10° g/mol dissolved in oligomeric polystyrene

C Dilute solution with concentration ¢ = 0.025wt% Y c/c* =0.23

C Model viscodlastic fluid to probe flow in the absence of polydispersity and inertial effects
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C Small amplitude oscillatory shear rheology:
6 well fit by Rouse-Zimm bead-spring model
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domi nant hydrodynamic
I nteractions

C Steady shear rheology:
6 poorly fit by FENE-P model ‘ &&’ (L = 88)
6 well fit by Bird-DeAqguiar mode ‘&’
(L=88,F=0.62,$=10)

C Extensional rheology also very important



Vortex Growth Dynamics
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Vortex

P
De=2.6 ¢

DimensionlessLength[ L /R ]

C At moderate Deborah numbers, two distinct patterns of vortex growth exist

C For b $ 4, vortex grows out from salient corner, grows upstream and eventually becomes unstable

C For b =2, lip’ vortex emerges near re-entrant corner, grows toward salient corner and upstream
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Flow Stability Diagram for PS/PS Boger Fluid
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C Flow stability diagram of PS/PS Boger fluid isvery smilar to PAA/CS Boger fluidand
dissimilar to PIB/PB Boger fluid

C Why do vortex growth dynamics depend on both contraction ratio and test fluid used?

Y Many have speculated that fluid dependence of flow sructure arises from differences in
extensional viscosity of different Boger fluids.



Transient Extensional Rheology

C PIB/PB and PSPSBoger fluids
exhibit similar stress growth

C Resultsare approximately independent
of De, =\,€ (for De, > 1)
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C Independent knowledge of extensional and
shear rheology alone does not explain choice
of lip or corner vortex!

C Need to undergand how upsream shear flow
affectsextensional flow entering contraction.



Normal Stress Ratio

C Systematic differencesbetween fluids can be understood by considering relative importance
of elastic normal sresses generated in shear to elastic normal sresses generated in transient

uniaxial extension.
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C For each fluid, a lip vortex does not developefor normal stressratios (X < 0.055).



Need for Birefringence Measurements

C Normal stressratio formed with rheological datafrom homogeneous transient uniaxial
extension and simple seady shear flow.

...but entry flow is a complex flow with nonhomogeneous extensional kinematics

C Would be nice to be able to form normal gressratio from in Situ stress measurements.
Flow Induced Birefringence (FIB) Y Dn\,P ] (@J,-J.), J,

C FIB measurementsare also an excellent comparative tool for evaluating the ability of
constitutive models to capture small scale physics.

Bernaudo etal. (1998) - How of a LLDPE médt into a 8:1 planar contraction




Axisymmetric Flow Induced Birefringence

Li and Burghardt (1995)

C FIB typically used in two-dimensional flows because it isa line-of-sight technique.

birefri ngence
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C Axisymmetric flow result in an integrated measure of FIB and polymer chain conformation.

C Integrated measures dependent on optical train used.
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Axisymmetric FIB Upstream of 4:1:4 Contraction-Expansion
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C AtlargeDe, srong axial elongation (di < 0) results from extensional flow along centerline.

C Growth in size and strength of axial elongation region coincides with corner vortex growth.



Axisymmetric FIB Downstream of 4:1:4 Re-expansion
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C Magnitude and amplitude of compression doesn’'t change with Deborah number.

C At large Deborah numbers, strong axial elongation near re-expansion plane resulting from
extensional flow upstream and strong shear in the throat.



Axisymmetric FIB in a 2:1:2 Contraction-Expansion
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C Again, strong extension is observed upstream corresponding to vortex growth.
C Very little compression is observed from the shearing flow at the contraction plane.

Y No other distinct qualitative differences are observed between different contraction ratios.



Normal Stress Ratio from FIB Measurements

C Cannow formanormal stressratio fromaxisymmetric FIB measurements.
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measurements of PIB/PB Boger fluids.



Conclusions

C We have coupled global flow field measurements of the effect of viscoelagticity with local

conformation measurementsfor a model polymer solution in a prototypical complex flow.

C These measurements generate acomprehensive data set for the validation of constitutive

eguations and numerical methods.
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Pressure drop measurements

Axisy mmetric flow induced birefringence measurements
Velocity measurements (P1V and LDV)

Vortex growth measurements

Characteri zation of an elastic flow instability

C Wehaverationalized the dependence of elagic lip and corner vortices on contraction ratio

and ted fluid rheology with a new dimensionless group, the normal stressrétio.
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Flow Induced Birefringence (FIB)

C Can use FIB to determine microscopic anistropy in polymer chain conformation
chain end-to-end vector

birefringence stress-optical coefficient
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C Need atechnique to measure retardance (* ) and extinctionangle (P) simultaneously

*** Polarization Modulated Flow Birefringence ***
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