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C Analog of ‘orifice plate’ in Newtonian fluid

mechanics!

Sampson (1891)

Dagan et. al (1982)

C Upstream contraction flow is numerical and  

  experimental benchmark problem 

C Complex flow containing mixture of shear near

walls and extensional effects in vicinity of contraction

C Characteristic Deborah number

C Determine extra pressure drop ∆Pext across orifice

   C Insight into existence of purely dissipative
‘internal’ stress

uniaxial
stretch

biaxial
expansion

equilibrium 
conformation

The Axisymmetric Contraction-Expansion

R1 / R2  = $ = 2, 4, 8
Lc / R2  = 0.5, 1, 2 
      Rc = 0, 0.1R2, 0.2R2, 0.5R2

(Cartalos & Piau, 1992; Szabo et al., 1997; Rothstein & McKinley,1999)
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Motivation

C Existence of a purely dissipative ‘internal’ stress in homogeneous uniaxial elongation
   resulting in a stress-conformation hysteresis proposed by Ryskin(1987) and Doyle et al.(1998)

C  Stress increases along one pathway
as fluid filament is extended and
relaxes down a very different
pathway once flow is removed

C  Result of stress-conformation
hysteresis is large energy loss

C  FENE dumbbell models
demonstrate little hysteresis

C  FENE dumbbell models with
additional conformation dependent
drags can increase hysteresis but
cannot quantitatively match
experimental data
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Manifestation of Hysteresis in Complex Flows 

Observation [Cartalos & Piau (1992)] Computation [Szabo et al. (1997)]

C We wish to observe impact on prototypical non-homogeneous flow

B Large Enhancement in pressure drop B Entropic elasticity and energy storage
   Y Reduced pressure drop

Question: Is this discrepancy due to ‘dissipative’ or ‘internal’ stresses arising from 
  non- equilibrium conformation?

C Similar discrepancies between observations and computation present in other complex flows
B CD of spheres [Solomon & Muller  (1996)] 

B Pressure drop across banks of cylinders [Khomami & Moreno (1997)]

L = 3.3

L = 5

L = 4

500 ppm

FENE-CR model

HPAM in glucose

100 ppm
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Contraction Ratio

Overview of Flow Stability in Abrupt Contractions

Contraction Ratio ($ = R1/R2)

Lip
Vortex

Vortex Growth

Pulsing Rotating

PIB/PB Boger Fluids
(McKinley; Binnington & Boger)

Contraction Ratio
0 2 4 6 8 10 

Lip
Vortex

Vortex Growth

Rotating

PAA/CS Boger Fluids
(Nguyen, Boger & coworkers)

PS/PS Boger Fluids
(Rothstein & McKinley)

?
0 2 4 6 8 10

C Why do vortex growth dynamics change with contraction ratio and Boger fluid?

C Competing roles of upstream shear rate 
and accumulated strain 

C Measurements by Shelley Anna (SF3) of transient 
extensional viscosity may yield insights
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Fluid Rheology

C Monodisperse polystyrene Mw = 2.03×106 g/mol dissolved in oligomeric polystyrene

C Dilute solution with concentration c = 0.025wt%   Y   c/c* = 0.23

C Model viscoelastic fluid to probe hysteresis in the absence of polydispersity effects

C Small amplitude oscillatory shear rheology  
 well fit by Rouse-Zimm bead-spring model

h* ú 0.1  Y dominant hydrodynamic
interactions

81 = 3.08s $ / 0s/00 = 0.92
8i = 81 / i

1.77

C Weakly elastic polymeric solvent
8ps = 2.5×10-4 s

C Steady shear data poorly fit by FENE-P       
   model with a finite extensibilty of L = 88

C Temperature variations described by
   shift factor of WLF theory.
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 2:1:2 Contraction-Expansion
 4:1:4 Contraction-Expansion
 8:1:8 Contraction-Expansion
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Pressure Drop Across Contraction/Expansions of β =2,4 and 8

C All contraction ratios show similar pressure growth trends.

C Pressure drop increase with De before onset of elastic flow instability.

C  Newtonian-like response 

)PnN -Q

0 < De . 1

C  Pressure drop increases quadratically

with flow rate

)PnN -Q 2

1 . De . 5

C  Pressure drop increases more slowly

approaching a linear dependence on

flow rate

)PnN -Q

De / 5



 

 



0 1 2 3 4 5 6 7 8
0

1

2

3

4

5

∆P
round

(De) / ∆P
Sampson

 = 0.33

∆P
sharp

(De) / ∆P
Sampson

 = 1.0

Onset of
Elastic Instability

T
0
 = 25EC 

 

 4:1:4 Rounded Contraction/Expansion
 4:1:4 Sharp Contraction/Expansion
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Effect of Re-entrant Lip Curvature on Pressure Drop

C Sharp and rounded entrance lip pressure drop data follow same trends

C Small changes in lip curvature have huge effect on pressure drop

C Rounding lip entrance delays onset of each pressure drop transition and elastic flow instability 
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Onset of Elastic Instability

• Small amplitude
oscillations seen in Laser
Doppler Velocimetry
(LDV) measurements at
large De

• Higher harmonics of
fundamental frequency
appear as De increases

Location of LDV Probe

( r/R2 = 0.63, z/R2 = -1.26 )



Critical Deborah Number for Onset of Instability
2.4 ± 0.14:1:4 Sharp Contraction/Expansion
3.6 ± 0.24:1:4 Round Contraction/Expansion
4.2 ± 0.18:1:8 Sharp Contraction/Expansion
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Characterization of Elastic Instability

C Lip curvature delays the onset of the elastic instability

C Solid lines denote theoretical
result for supercritical Hopf
bifurcation

      f1% (De - Decrit) 
½

C Dimensionless frequency of
elastic flow instability
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Nonlinear Dynamics: Jetting

Location of LDV Probe

C Localized elastic jetting instability seen in 4:1:4
contraction-expansion after onset of vortex   
asymmetry

C We postulate that instabilityis helical jet of high
speed fluid traveling down the interior of vortex
structure

( r/R2 = 1.57, z/R2 = -0.16 )
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4:1:4 Sharp Contraction/Expansion

C At low De, Newtonian-like Moffatt vortex exist

C At moderate De, two distinct patterns of vortex growth exist
C For β $ 4 vortex grows out from salient corner, grows upstream

and eventually becomes unstable
C For β = 2 new lip vortex emerges near re-entrant corner, grows

toward the salient corner and then proceeds to grow upstream

Vortex Growth Dynamics

2:1:2 Contraction/Expansion

De = 2.6
4:1:4

.



A Proper Taxonomy of Vortex Structure
De=0.5β = 4

Elastic Vortex Enhancement

Moffatt Corner Vortex

Elastic Lip Vortex

Elastic Vortex Growth Upstream Elastic Vortex Enhancement

Vortex Remains StableUnstable Elastic Vortex 

β = 2

De = 1.6

De = 2.6

De = 3.6

De=0.7

De=1.5

De=2.7



Flow Stability Diagram for PS/PS Boger Fluid

Contraction Ratio ($ = R1/R2)

Lip
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Vortex Growth

Pulsing Rotating

PIB/PB Boger Fluids
(McKinley; Binnington & Boger)

Contraction Ratio
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Vortex Growth

Rotating

PAA/CS Boger Fluids
(Nguyen, Boger & coworkers)

PS/PS Boger Fluids
(Rothstein & McKinley)
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C Flow stability diagram of PS/PS Boger fluid is very similar to PAA/CS Boger fluid
and dissimilar to PIB/PB Boger fluid
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C  Why do two fluids with similar shear properties behave so differently in complex flows?

C PIB and PS Boger fluids
exhibit markedly different
stress growth

C Results    are 
approximately independent 
of                  ( for Dez > 1 )

C How much stress growth do
we get in an axisymmetric
contraction?

Accumulated Strain
Along Centerline

Transient Extensional Rheology   (In collaboration with Shelley Anna)
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Comparison of PS and PIB Boger Fluids

C Experiments suggest that the lip vortex is present for smaller contractions (with larger shear
component) while the corner vortex is present in flows dominated by extension.

C However, extensional viscosity alone still cannot differentiate between the PS and PIB Boger
fluids if we consider only the pure extension along the centerline.

C Does the shearing near the wall increase the effective Hencky strain?  Can we investigate this
by preshearing the fluid before stretching it?

Corner Vortex

Lip Vortex

PIB   β # 4

PS  β = 2
PAA

PIB   β > 4

PS  β > 2
PAA



Concluding Remarks

C Observed large monotonic increase in pressure drop not correlated with the onset of elastic
flow instability and not qualitatively affected by changes in lip curvature

Y Is this the result of the stress-conformation hysteresis observed in transient uniaxial
extension?

C To answer this question more concretely, molecular simulations in transient inhomogeneous
flows need to be performed

C Evolution in flow structure of PS/PS Boger fluid similar to PAA/CS Boger fluids and
dissimilar to PIB/PB Boger fluids

Y Are variations in vortex growth dynamics the result of differences in transient
extensional rheology of fluids? 

C Results of simple transient uniaxial extension are inconclusive

C Preliminary results of preshear to transient uniaxial extension show considerable impact on
Trouton ratio. 


