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Motivation
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- Existence of apurely dissipative ‘internal’ stress in homogeneous uniaxial elongation
resulting in astress-conformation hysteresis proposed by Ryskin(1987) and Doweal.(1998)

» Stress increases along one pathway
as fluid filament isextendecand
relaxesdown a very different
pathway once flow is removed
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» Result ofstress-conformation
hysteresis is large energy loss

Stress (Pa)

 FENE dumbbell models
demonstrate little hysteresis

 FENE dumbbell models with
additional conformation dependent
drags can increase hysteresis but
cannot quantitatively match
experimental data
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Manifestation of Hysteresis in Complex Flows i

» \We wish to observe impact on prototypical non-homogeneous flow

Observation [Cartal 0s & Piau (1992)]
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o Large Enhancement in pressure drop
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Computation [ Szabo et al. (1997)]
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o Entropic dasticity and energy storage

— Reduced pressure drop

Question: Isthisdiscrepancy due to ‘dissipative’ or ‘internal’ stresses arising from

non- equilibrium conformation?

« Similar discrepancies between observations and computation present in other complex flo
o Cp of spheres[Solomon & Muller (1996)]

o Pressure drop across banks of cylinders [Khomami & Moreno (1997)]




Overview of Flow Stability in Abrupt Contractions

PIB/PB Boger Fluids PAA/CS Boger Fluids PS/PS Boger Fluids
(McKinley; Binnington & Boger) (Nguyen, Boger & coworkers) (Rothstein & McKinley)
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« Why do vortex growth dynamics change with contraction ratio and Boger fluid?

 Competing roles of upstream shear rate y, /i, = 3 3
and e = In(?) ™~ 7

* Measurements by Shelley Anna (SF3) of transient 1 \
extensional viscosity may yield insights () A
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Fluid Rheology i
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« Monodisperse polystyrene Mw = 2.03x10 g/mol dissolved in oligomeric polystyrene
o Dilute solution with concentration= 0.025wt% = c/c* = 0.23

» Model viscoelastic fluid to probe hysteresis in the absence of polydispersity effects

100 g ¢ Small amplitude oscillatory shear rheology
: ' well fit by Rouse-Zimnbead-spring model
h* = 0.1 = dominant hydrodynamic
interactions
A, = 3.08s B =ndn,=0.92
A=A it
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Material Properties

» Steady shear data poorly fit BY-NE-P
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0L e« Temperature variations described b
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shift factor of WLF theory.

Shear Rate, Frequency [1/s, rad/s]




Pressure Drop Across Contraction/Expansions of 5=2,4 and 8

o All contraction ratios show similar pressure growth trends.

» Pressure drop increase with De before onset of elastic flow instability.
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» Newtonian-like response
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 Pressure drop increases quadratically
withflow rate
AP, ~Q?
1<Dex<5

* Pressure drop increases more slowly
approaching alinear dependence on
flow rate

AP ~Q
De =5






Effect of Re-entrant Lip Curvature on Pressure Drop Taaip)

 Sharp and rounded entrance lip pressure drop data follow same trends

« Small changesin lip curvature have huge effect on pressure drop
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» Rounding lip entrance delays onset of each pressure drop transition and eastic flow instability
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Onset of Elastic Instability
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Characterization of Elastic Instability (o)
Critical Deborah Number for Onset of Instability -

4:1:4 Sharp Contraction/Expansion 24+0.1

4:1:4 Round Contraction/Expansion 3.6+0.2

8:1:8 Sharp Contractior/Expansion 42+0.1

o Lip curvature delays the onset of the elastic instability
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o Solid lines denote theoretical
result for supercritical Hopf
bifurcation
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« Dimensionless frequency of
elastic flow instability
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Nonlinear Dynamics: Jetting

Velocity [mm/s]

Power [V]

Localized elastic jetting instability seenin 4:1:4
contraction-expansion after onset of vortex
asymmetry

We postulate that instabilityis helical jet of high
speed fluid traveling down the interior of vortex
structure
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Vortex Growth Dynamics

o Atlow De, Newtonian-like M offatt vortex exist

» At moderate De, two distinct patterns of vortex growth exist
» For 3> 4 vortex grows out from salient corner, grows upstream
and eventually becomes unstable
o For B=2new lip vortex emerges near re-entrant corner, grows  y
toward the salient corner and then proceeds to grow upstream
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Flow Stability Diagram for PS/PS Boger Fluid

PIB/PB Boger Fuids
(McKinley; Binnington & Boger)
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o FHow stability diagram of PS/PS Boger fluid is very similar to PAA/CS Boger fluid
and dissimilar to PIB/PB Boger fluid



Transient Extensional Rheology (in collaboration with Shelley Anna) ﬁﬂ@

Why do two fluids with similar shear properties behave so differently in complex flows’?
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Comparison of PS and PIB Boger Fluids
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o Experiments suggest that the lip vortex is present for smaller contractions (with larger shear
component) while the corner vortex is present in flows dominated by extension.

« However, extensional viscosity aone still cannot differentiate between the PS and PIB Boger
fluidsif we consider only the pure extension along the centerline.

o Doesthe shearing near the wall increase the effective Hencky strain? Can we investigate this
by preshearing the fluid before stretching it?



Concluding Remarks Q‘I’iﬁjl

» Observed large monotonic increase in pressure drop not correlated with the onset of eastic
flow instability and not qualitatively affected by changesin lip curvature

— |sthistheresult of the stress-conformation hysteresis observed in transient uniaxial
extension?

» Toanswer this question more concretely, molecular simulations in transient inhomogeneous
flows need to be performed

« Evolution in flow structure of PS/PS Boger fluid similar to PAA/CS Boger fluids and
dissimilar to PIB/PB Boger fluids

— Arevariationsin vortex growth dynamics the result of differences in transient
extensional rheology of fluids?

» Results of simpletransient uniaxial extension are inconclusive

o Preliminary results of preshear to transient uniaxial extension show considerabl e impact on
Trouton ratio.



