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Viscoelastic Flows in Abrupt Contraction-Expansions

IV. Pressure Drop Definition

In our experiments we measure the total pressure drop across the axisymmetric abrupt

contraction-expansion geometry.  We then systematically correct this to report an ‘extra pressure

drop’ associated with the contraction-expansion alone.

Table 1 shows the axial distance of each possible pressure transducer location from the

contraction plane.  For clarity, it is useful to define several differential pressures by the location of

the pressure transducers used.  For instance, the pressure drop across the contraction-expansion

measured between pressure transducers 2 and 4 is denoted as P24 = (P2 ! P4).  Several different

pressure transducers locations were created sufficiently far upstream of the contraction plane to

ensure that the pressure transducers were not affected by the presence of the elastically-driven growth

of the upstream (and downstream) vortices.  In the subsequent measurements only the upstream

pressure transducer at location P2 was used.

Pressure Transducer
i

Distance From Contraction Plane
zi [cm]

Upstream: P1 !22.86  

P2 !7.62

P3 !2.54

Downstream: P4 +8.26
Table 1: Location of the flush mounted pressure transducers with respect to the contraction plane (located
at z = 0).

  

As the flow rate is increased, the pressure transducers measure a combination of the pressure

drop arising from fully-developed rectilinear flow in the straight pipe and the extra pressure drop

caused by the presence of the orifice plate  P(Q) = Pstraight pipe + Pext..  We are only interested,

however, in the extra pressure drop which we denote as PN24 where the prime indicates that the

contribution to the total pressure drop resulting from the Poiseuille flow in the pipe connecting the

pressure transducers and in the contraction-expansion has been removed in order to isolate the extra

pressure drop across the contraction-expansion.  In other words, we linearly decompose the pressure
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measurements according to

where L /  z4 ! ( z2 + Lc ) is the length of straight tubing of radius R1 between the pressure

transducers and the contraction-expansion plate, Q is the volume flow rate of the fluid and  is the

fluid viscosity.  Lastly, we define a dimensionless pressure drop

PN24( Q, De = 0) is the pressure drop across a given contraction-expansion orifice of the Newtonian

oligomeric polystyrene oil at a given flow rate and PN24(Q, De) is the pressure drop across the same

contraction-expansion ratio of the viscoelastic 0.025% PS/PS polymer solution at the same flow rate.

This dimensionless pressure drop differs from the Couette correction often used to present

contraction flow pressure drop data by a constant factor which we be determine below.

In 1891, R. A. Sampson first solved the pressure-driven flow of a Newtonian fluid at low

Reynolds number through an infinitesimally thin circular hole in an unbounded rigid plane wall using

oblate spheroidal coordinates [1].  Of particular interest is Sampson’s result for pressure drop across

the orifice which may be simply expressed 

where Q is the volume flow rate of the fluid and R2 is the radius of the hole in the orifice plane.  For

large contraction ratios  = R1 / R2 >> 1, Sampson’s solution should approximate the flow near the

plane of the contraction reasonably well.  In our paper we show that we can replace the measured

pressure drop of the oligomeric polystyrene PN24(Q, De = 0) by Sampson’s solution (∆PS) for   $4

[2].  However, because our orifice plate is not infinitely thin, and has finite aspect ratio (Lc / R2 û 0)

there is an additional contribution to the pressure drop.  This has been considered analytically by

Dagan et al. [3].  They show that their numerical calculations can be accurately approximated by
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linearly combining the pressure drop associated with Sampson flow and the pressure drop of the

assumed Poiseuille flow through the orifice itself to give:

In our experiments, because of the finite size of the contraction ( 0.5 # Lc / R2 # 2 ) the

additional pressure drop arising from the latter term in Equation 2 is not negligible.  In fact, it is of

the same order as the Sampson pressure drop.

An alternative approach commonly used in presenting contraction flow results is to report a

Couette correction [4] in which the extra pressure drop arising from the orifice is scaled with the wall

shear stress in the downstream tube C = PNext / 2 w, where w = 4 s +v2, / R2 = 4 s Q /  R2 
 3.  For 

>> 1, the Couette correction for a Newtonian fluid entering an abrupt contraction computed using

the Sampson solution thus predicts 

which is in good agreement with simulations and measurements for  $4 [5]. 

Results and Discussion

Figure 1 shows a comparison of the dimensionless pressure drop between contraction-

expansion ratios of β = R1 / R2 = 2, 4 and 8.  For convenience, all pressure drops in this figure have

been normalized with the Newtonian pressure drop associated with the 4:1:4 axisymmetric

contraction-expansion.  In all cases, at low Deborah numbers the pressure drop of the PS/PS solution

across the contraction-expansion are equal to the pressure drop observed for a Newtonian fluid with

the same zero-shear-rate viscosity ( -  = 1).  As the Deborah number is increased, the dimensionless

pressure drop across the contraction-expansion grows linearly with Deborah number until at a critical

Deborah number is reached at which point the dimensionless pressure drop begins to saturate and the

value of the dimensionless pressure drop increases at a greatly reduced rate.  

Figure 2 shows a comparison between a 4:1:4 axisymmetric contraction-expansion with a
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Figure 1: Comparison of dimensionless pressure drops for $ = 2, 4 & 8.

sharp entrance lip (Rc  ð 0 ) and with a entrance lip rounded with a radius of curvature equal to

Rc = 0.5 R2.  One observes that rounding the entrance lip does not change the pressure growth

dynamics, but simply delays the transition into each pressure growth regime.

Conclusions

We have shown how we systematically decompose our data into a dimensionless extra

pressure drop - ( De, $ ).  Our experimental data is typically scaled with the measured

PN24(Q, De = 0). For comparing pressure drops associated with different contraction-expansions we

choose to scale our data with the Sampson solution of Equation 1.  We would be very interested

in hearing from other groups performing numerical simulations of the validity of the linear

decompostion of Equation 1.  
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Figure 2: Comparison of dimensionless pressure drops for ρ = 0 & 0.5R2.

For a copy of any or all of these data sets please contact Jonathan Rothstein by email at

jproth@mit.edu.
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