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Viscoelastic Flows in Abrupt Contraction-Expansions

II. Relaxation Time and the Deborah Number

NB In what follows we use viscometric information from Note I ( Fluid Rheology).

To determine the Deborah number for the axisymmetric contraction-expansion we need to

select both a characteristic timescale for the flow and a representative measure of the spectrum of

relaxation times of the fluid.  A characteristic strain rate based on the local flow conditions near the

plane of the contraction region is defined by Ú / +vz,2 / R2 where +vz,2 = Q/ R2 
 2 is the average velocity

into the contraction and R2 is the radius of the contraction.  A characteristic convective time of the

flow can then be taken to be /  / R2 / +vz,2 = Ú !1.  The simplest choice for the fluid time scale is of

course the longest or Zimm relaxation time z determined from the linear viscoelastic measurements.

Even though the viscosity does not have a strong rate dependence, the first normal stress coefficient

does.  It is therefore  important to note that the average relaxation time, which can be calculated from

the viscometric properties of the fluid previously determined, is a function of shear rate [1]. 

Discrepancies between different estimates of the relaxation time have been discussed at length

by Keiller et al. [2] and by Boger et al. [3].  In particular, they point out that numerical calculations

based on the (constant) longest relaxation time need to achieve a very large values of Deborah

number.  For scaling purposes, in our present work the characteristic relaxation time of the 0.025%

PS/PS solution is reported using the Maxwell relaxation time evaluated in the limit of  zero shear rate.

After substituting for the asymptotic value of 10 obtained from the Rouse-Zimm model the

characteristic relaxation time becomes

The zero-shear-rate Deborah number expressed with this choice of constant characteristic

relaxation time becomes De = 0 Ú.  It is this number that we report in our paper [4].  Note that
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This ratio is so small because the solution is so dilute.  For a numerical simulation using a single mode

model chosen to match the longest relaxation time in the fluid this corresponds to setting the model

parameters to

 In polymer melts it is customary to use a shear-rate-dependent relaxation time of the form

The dimensionless product (Ú)Ú is thus equivalent to half the stress ratio [5].  The actual shear-rate-

dependent Deborah number for flow through a 4:1:4 axisymmetric contraction is then expressed as

and may also be thought of as a Weissenberg number [6] or recoverable shear because it is a direct

estimate of the ratio of the normal stress difference to the total shear stress in the fluid at a given 

deformation rate Ú.  We refer to this generically as a stress ratio SR which was used in early

publications to report the magnitude of viscoelastic effects in flow through a contraction [5].  

Figure 1 shows a plot of the stress ratio, SR / N1(Ú)  / 12(Ú), as a function of strain rate to

demonstrate the rate dependence of the elastic stress difference in the fluid.  The filled circles

represent the experimentally measured steady shear viscometric data and the broken line represents

the linear approximation to the stress ratio if the constant relaxation time is used; SR0 = 2 0 Ú.  The

non-monotonicity in the dynamic data is a consequence of the additional elasticity contributed from

the polymeric solvent at high deformation rates.  The short dashed line represents the same



© 1999 Jonathan P. Rothstein & Gareth H. McKinley, MIT
Version 1.0

jproth@mit.edu

3

SR0SRz

SRs

SRd

Experimental Range

SRF

0.01 

0.1 

1 

10 

100 
S

tr
es

s 
R

at
io

0.1 1 10 100 1000 

Shear Rate [1/s] 

T 0 = 25ºC

Figure 1: Various estimates of the stress ratio SR / xx / yx of the 0.025wt% PS/PS solution in steady shear.
The data includes: ‘�’, the experimental stress ratio from steady shear data SRs = N1 / yx = 1  /  ; ‘4’,Ú

experimental stress ratio from dynamic data SRd = GN / GO = O / N; ‘- -’, the stress ratio predicted using the
longest relaxation time of the Zimm model SRZ = 2 Z ; ‘– –’, the stress ratio predicted using the zero-shear-rateÚ

relaxation time SR0 = 2 0 ; ‘––’, the stress ratio SRF predicted by the FENE-P model.Ú

approximation if the longest “Zimm” relaxation time was used SRz = 2 z Ú and it clearly over predicts

the magnitude of elastic effects in the actual test fluid.  The solid line represents the stress ratio,  SRF,

predicted by the shear thinning single mode FENE-P model.  As expected, the experimental values

of the stress ratio SRS increase with strain rate and begin to approach a maximum around one.  At low

shear rates, the experimental values of SR approach the linear function SR0, but throughout the range

of deformation rates attained in the experiments, they remain up to an order of magnitude smaller.

We hope to obtain additional first normal stress coefficient data at lower shear rates in the near future

and will modify this plot as data is obtained.  Even though SR0 is clearly a better approximation than
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SRz it is by no means an ideal description of the actual magnitude of the elasticity in the flow of the

0.025% PS/PS solution and shear-thinning effects must be incorporated to achieve a quantitative

description of the data.  However, even with a shear-thinning first normal stress coefficient, the

FENE-P model does not accurately predict the magnitude of the stress ratio. 

Conclusion

We recommend that single mode simulations be made using the values for parameters given

on page 2.  The key conversion factor to remember when reporting data is Equation 2 on page 2.
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