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Abstract

This paper presents new results on adaptive nonlinear con-
trol using wavelet basis functions. First, it considers how
to deal effectively with a potentially infinite number of un-
known parameters, rather than using a priori truncations of
wavelet expansions. This is done by constructing formally
an ideal “infinite” controller, able to manage infinitely many
unknown parameters in a convergent fashion, and only then
designing a way to approximate its behavior with a finite
controller. Besides being theoretically satisfying, the ex-
istence of such a consistent underlying infinite controller
is easy to guarantee in practice and considerably improves
convergence properties in the high frequency range of the
unknown function. The paper also shows the advantages of
specific multiresolution analysis wavelets over the “Mexi-
can hat”–type wavelet frames now commonly used in con-
trol and learning applications. Finally, it discusses several
possible constructions in the multidimensional case, and
their properties.

Introduction

Adaptive control has been widely developed to cope with
nonlinear plants with partially unknown behavior, and stan-
dard techniques can provide stable on-line adaptation to a
finite number of unknown physical parameters (e.g., iner-
tias or lengths). However, such approaches still require sig-
nificant prior knowledge of the plant, and so there has been
active research aimed at developing control techniques that
would directly adapt to the whole system dynamics or to its
unknown unparameterized components (see, e.g., [4] for a
recent survey)

Wavelet networks are especially well suited for such func-
tion learning tasks, and the problem of adapting to an un-
known dynamics can be replaced by that of adapting to the
coefficients of its expansion in a wavelet base or a wavelet
frame (e.g., [1], [8]), although the number of such coeffi-
cients can potentially be infinite. This paper derives a num-
ber of new technical results in this context.

In section 1, we focus on the design of the wavelets them-
selves, and show the advantages of particular multiresolu-

tion wavelet systems over functions commonly used “by de-
fault” in control applications, such as Mexican hat wavelets.
In section 2, we discuss and compare several ways to de-
sign multidimensional wavelet representations. Section 3
describes the derivation of an ideal “infinite” adaptive con-
troller, able to manage infinitely many unknown wavelet co-
efficients in a convergent fashion, and quantifies how its per-
formance can be approximated by finite wavelet expansions.

1 Function approximation framework

Approximation of a function is mostly done by expanding
this function over a basis, or more generally over any kind of
family. Several such families have been used, like Fourier
expansions, radial basis functions, Gaussian functions [7],
and most lately wavelet families. Wavelets combine differ-
ent advantages, like allowing inexpensive high accuracy ap-
proximation and low computational costs, and are therefore
already massively used for signal and image compression
[6].

1.1 Wavelets
Any function with some zero moments1 can be consid-
ered as a possible mother wavelet for a wavelet frame [3].
Given a functionw(x) (e.g. the Mexican hat wavelet:w(x) = d2=dx2e�x2 , used in [1], [8]), the familywjk(x) =2j=2w(2jx� k�) for some step size� 2 R can be proven
to be a frame ofL2(R).
We will say that a wavelet basis is just a basis(wjk)jk2Z
that has that dyadic structurewjk(x) = N(j)w(2jx� k) (1)N(j) is a normalization factor that will depend on the un-
derlying topology.

Advantages of a wavelet structure The only expansion
method that can compete with wavelets in terms of com-
pleteness and fast error decay is the complex exponential1A function f is said to haven zero moments iff

R f(x)xkdx = 0 fork = 0 : : : n� 1, or equivalentlyf̂(k)(0) = 0, k = 0 : : : n� 1.



basis2. Advantages of the wavelet basis structure are of sev-
eral kinds:

Compression abilities Compared to a complex exponen-
tial basis, a wavelet basis has better compression abil-
ities if the function we approximate is smooth with
some local singularities [3][5][6]. In the case of a
uniformly smooth function, both bases have similar
compression abilities.

Computational efficiency is definitely an advantage of
wavelet bases. Estimation of af(x) for a givenx re-
quiresO(logN) computations iff is expanded over
a wavelet basis andN computations for a complex
exponential basis (whereN is the number of co-
efficients retained after truncation, which is always
smaller for wavelets). Moreover, gradient based func-
tion estimate updates have similar complexities, and
thus also favor the use of wavelets.

Border effects As a last argument towards use of a wavelet
structure, wavelets are much better designed to cope
with approximation of functions over an interval
while complex exponential functions can only well
approximate functions over the real line, a torus, and
any Cartesian product thereof [3][6].

What kind of wavelets? Usually, if the wavelet is de-
signed so as to have a simple algebraic expression, the re-
sulting family can at best be a frame. Also, such families
cannot represent the low-frequency content of a function in
a very economical way. For this reason we will use another
approach called multiresolution analysis.

1.2 Multiresolutions
Multiresolution analysis [3][5][6] is a powerful tool that can
easily provide families with a minimal redundancy: bases.
Simple criteria are used to check whether the resulting fam-
ilies are orthogonal or interpolating, and to bound the decay
rate of the expansion coefficients, and thus of the truncation
error.

We will see that the minimal redundancy of the base is an
advantage over a more general frame, since the approxima-
tion process in adaptive learning is usually closer to a gra-
dient method (which is of low effectiveness in exploiting
redundancy) than to matching pursuit (where redundancy is
sought and thus frames are desirable).

1.3 Mother wavelet expansion
Most wavelet families are typically bases ofL2(R). Given
a mother wavelet , the wavelet base is( jk)j;k2Z, where jk(x) = 2j=2 (2jx � k). Any function inL2(R) can be2Note for instance that Taylor expansions and fixed-grid Spline expan-
sions are not complete representations.

expanded as f =Xj;k cjk(f) jk
where the right hand infinite sum converges in anL2(R)
sense. More precisely,Z  f � X�J::J X�K::K cjk jk!2 dx! 0
asJ andK both go to+1.

However, since the wavelets have a zero mean, truncations
of such expansion approximate nonzero mean functions
very poorly. To go around this problem, we will approxi-
mate separately the low frequency content of the functionf
with father wavelets.

1.4 Father and mother wavelet expansion
Multiresolution analysis theory provides an extra “father”
wavelet [3][5][6]� of non zero integral, that can be used to
build hybrid expansionsf = +1Xk=�1 aj0k(f)�j0k + +1Xj=j0 +1Xk=�1 cjk(f) jk
The left hand sum represents the low frequency content of
functionf and the right hand sum the high frequency con-
tent. Such expansions are much sparser as the former ones,
and can represent nonzero integral functions in a more nat-
ural way.

Multiresolution theory also provides a convenient way to
compute dual wavelets~� and ~ such that3ajk(f) =< ~�jk ; f > andcjk(f) =< ~ jk ; f >
The two following theorems, whose proofs can be found
in the appendix, show that such expansion can approximate
any continuous function, and give an estimate of the error
decay depending on the function smoothness.

Theorem 1 Letf be a continuous function defined overR.
The sequence of partial sumsfJ =Xk2Za0k�0k + X0�j�JXk2Zcjk jk (2)

is equal to Xk2ZaJk�Jk (3)

and converges tof uniformly on any compact set.3The dual normalization factor to define~�jk = ~N(j)~�(2jx� k) and~ jk = ~N(j) ~ (2jx � k) is ~N(j) = 2j=N(j). The inner product<f; g > is defined as< f; g >= RRf(x)g(x)dx.



Theorem 2 If f is d times differentiable, and if the dual
wavelet has at leastd zero moments, then there exists a
boundM depending on the wavelet shape and ond, such
that sup jf � fJ j �M sup jf (d)j2�Jd
UsuallyM is close to1. Also note that any polynomial of
degree less thand will be approximated exactly with a sole
father wavelet expansion

Pk a0k�0k .

Remark. These theorems can be extended to higher di-
mensions quite simply. The resulting formulae grow sig-
nificantly. An example can be given for dimension2, where
truncation error is bounded byjf � fJ j < M �sup ����@df@xd ����+ sup ����@df@yd ����� 2�dJ
for someM depending on the wavelet shape and on the
derivation orderd.

1.5 Different kinds of multiresolutions
There exists many different kinds of multiresolutions, with
two mainly used cases: orthogonal and interpolating mul-
tiresolutions. Orthogonality of a wavelet family speaks
for itself, while for interpolating multiresolutions, the fa-
ther wavelet is an interpolation function. The most known
orthogonal wavelets are Daubechies wavelets, and the
most common interpolating ones are Deslauriers-Dubuc
wavelets. Some advantage of the latter are symmetry, higher
smoothness, and a quite simple restriction to a finite inter-
val. However, orthogonal wavelets are more natural when
quadratic error metrics are used, since they then correspond
toL2 or Sobolev error metrics.

Deslauriers and Dubuc designed a dyadic refinement
scheme to build a smooth interpolating function from a se-
quence of regularly spaced samples. Such interpolation pro-
cesses are equivalent to building an interpolantf(x) from
the samplesf [k] asf(x) =Xk f [k]�(x� k)
where � is the Deslauriers-Dubuc interpolating father
wavelet. This function is compactly supported and matches
a two-scale refinement equation�(x) = 2Xk2Zm[k]�(2x� k)
and can therefore be used as a starting point to build a mul-
tiresolution analysis. Such interpolation scheme and func-
tion can have various support size and shape, depending on
an integer parameterp.
Donoho suggested to define as a mother wavelet (x) =�(2x � 1). Unlike other wavelet families, the mother

wavelet has exactly the same shape as the father wavelet,
except for that it is compressed by a factor of two. More-
over, it does not have a zero integral.

For interpolation wavelets, the most natural normalization
factor is justN(j) = 1 (and thus~N(j) = 2j).
Remark. The dual wavelet family is not inL2(R). The
dual father wavelet is ~�(x) = �(x)
and the dual mother wavelet~ (x) = 2Xk2Zm[k](�1)k�(x� (k + 1)=2).
The dual wavelets are compactly supported Radon mea-
sures, and inner products< ~�jk ; f > or < ~ jk ; f > only
make sense iff is continuous. Thanks to theorem1, this
wavelet family can be considered as a basis of the locally
convex vector space of continuous functions defined overR, whose dual vector space happens to be the set of com-
pactly supported Radon measures.

2 Multidimensional wavelets

2.1 Function approximation over a multidimensional
domain

Definition 1 We call a tensor product ofn single variable
functionsf1; : : : ; fn then–variable function defined asF (x1; : : : ; xn) = f1(x1)� : : :� fn(xn)
This tensor product is usually notedF = f1 
 : : :
 fn.

We will also note from now the father wavelet 0 = � and
the mother wavelet 1 =  , to have simpler higher dimen-
sion expressions.

2.1.1 Standard tensor product: Given a basisB =fbk : k 2 Kg for a functional vector space onR, a straight-
forward way to build a basis for functions overR2 consists
in taking tensor productsB2 = B
B = fbk 
 bk0 : k; k0 2 Kg
This construction can be used for any kind of bases, and ex-
tension to higher dimensions or number of bases is straight-
forward.

2.1.2 Homogeneous tensor product: Given a
wavelet base( 0j0k)k2Z[ ( 1jk)j�j0 ;k2Z of a R function
space, we can build a wavelet base for function defined overR2 with father wavelets 00j0kk0 = �j0k 
 �j0k0



for any integersk, k0 and mother wavelets 10jkk0 =  jk 
 �jk0 01jkk0 = �jk 
  jk0 11jkk0 =  jk 
  jk0
for j � j0 and for any integersk, k0. For higher dimensionsn � 2, this construction can be easily extended to define one
father wavelet 0:::0 and2n � 1 mother wavelets "1:::"n
where"i 2 f0; 1g and

P "i � 1.

2.1.3 Comparison: Both constructions have quite
different properties. Grouping variables of an unknown
function with the latter construction implies assuming simi-
lar characteristic scales according to those variables. This
can happen for physical variables of the same kind (two
lengths, two velocities inx andy). The former construc-
tion on the contrary does not imply such an assumption, but
it can be used to group variables with different units.

Moreover, both construction can be combined to first group
variables of the same kind and then group all variables to-
gether to make up the approximation space for our unknown
function.

2.2 Vector valued functions
Without any a priori information, learning a vector valued
function consists in learning all vector coordinate functions
separately. Some more physical approaches can be done, if
we suspect that the unknown vector field is a gradient field
or can be very well approximated by such a field.

As an example, if we know that the vector field we are trying
to learn is a gradient field, we can use as a wavelet family
the gradients of a basis of scalar valued wavelets. This will
allow to estimate in parallel the underlying potential field.

3 Control and Adaptation

In this section, we consider the standard problem of control-
ling the dynamical system defined asx(n) = f(x; : : : ; x(n�1)) + u
wheref is an unknown function. The measurable state is
supposed to be(x; : : : ; x(n�1)). Let xd be the desired tra-
jectory, known up to then-th derivative. Defining the track-
ing error~x = x� xd, the composite tracking errors = � ddt + ��n�1 ~x
where� is a strictly positive gain. Ensuring thats converge
to 0 guarantees that~x; : : : ; ~x(n�1) converge to0. We first
briefly summarize the usual derivation (as in e.g. [7][9]),
and then focus on the case of an infinite basis.

3.1 Non adaptive case
If f is known, then a control law is easily derivable. Defin-
ing x(n�1)r = x(n�1) � s (4)= x(n�1)d � n�1Xk=1�n� 1k �� �k �x(n�1�k) � x(n�1�k)d �

(5)

we can see from (5) thatx(n)r can be computed from the
state(x; _x; : : : ; x(n�1)) and the desired trajectory.

Therefore settingu = x(n)r �f(x)�kDs ensures, according
to (4) _s = �kDs
thuss! 0 and~x! 0. Convergence to0 is exponential.

3.2 Adaptive case
If we assume we can expand our unknown function over a
basis( K)K2K ,f(x) = XK2K cK K(x) =  (x)T c
We build an estimate of the unknown functionf̂ =  (x)T ĉ.
Settingu = x(n)r � f̂(x)� kDs, the widely used adaptation
law _̂c = � (x)s
guarantees that the positive semidefinite Lyapunov function
candidate V = 12s2 + 12~cT��1~c
(where~c = ĉ � c) has a negative semidefinite time deriva-
tive. Indeed,_~c = _̂c and therefore_V = �kDs2 (6)

Equation (6) proves uniform global stability of the system,
and uniform continuity ofs2. A standard result is then that
uniform continuity ofs2 implies thanks to Barbalat’s lemma
that s converges to0. However, no bound on the conver-
gence speed can be given without any further assumptions.

3.3 Case of infiniteK index set
Let us first assume we can deal with infinite sequences and
compute infinite sums. We will still have to ensure that
those infinite sums converge. To simplify our discussion,
we assume that our gain matrices� are always diagonal and
positive definite. We will note our wavelet indices(j; k) in
a condensed way “K”.



We first want our Lyapunov function (esp.~cT��1~c) to be
finite. This can be achieved whenever bothc and ĉ are in
the Hilbert spaceE� = fc : cT��1c < +1g.
Next, we want expansionscT (x) to converge reasonably
fast to a reasonably smooth function, thus the infinite sumcT to converge absolutely and uniformly on any finite in-
terval. At last, we need̂c to remain inE� at all times, thus_̂c to be inE�, which is true if� (x) 2 E� for all x.

These last two conditions can be fulfilled if the matrix�
matches the hereafter defined admissibility condition.

Definition 2 An infinite diagonal matrix� is said to bead-
missibleiff  (x)T� (x) is an absolutely converging series
for anyx. Moreover, this absolute convergence has to be
uniform with respect tox on any compact set.

For admissible gain matrices�, the corresponding spaceE�
only contains continuous functions, and the sumscT (x)
are uniformly absolutely convergent, sinceXK jcK K(x)j �sXK �1K c2K sXK K K(x)2
Moreover, any� (x) will be in E�, since(� (x))T��1(� (x)) =  (x)T� (x) < +1
Note that if there exists a strictly positive sequence(j)
such that�(jk);(j0 ;k0) = �jj0�kk0j 8k and

Xj j < +1
then� is admissible.

If we choosej = 2��j , then the restriction on coefficientscK thatcT��1c be convergent is not very strong, since any
compactly supported function that is�–Lipschitz for some� > (1 + �)=2 has an expansionc in E�. Conversely, any
function inE� is at least�=2–Lipschitz.

Convergence analysis In a case where the chosen� is ad-
missible, the same proof as for a finite number of unknown
parameters holds. Namely,s is bounded because the Lya-
punov function takes only finite values and is decreasing,
and again equation_s = �kDs+ ~cT	(x)
leads toj _sj � kDjsj+p~cT��1~c q	(x)T�	(x)
thanks to the Cauchy-Schwarz inequality, and therefore_s is
also bounded. As consequence, the conclusion of Barbalat’s
lemma also holds in this case.

Finite approximate controller If now f is approximated
with finite expansionf [ wherec[ is a vector of finite known
support, we impose thatĉ has the same support. The control
law u = x(n)r � kDs� ĉT (x)
and the finite adaptation law as in [7][9]_̂c = � [s�
where s� = � s��� sign(s) if jsj > �0 else.

ensure that the Lyapunov–like function of the infinite modelV = 12s2� + 12~cT��1~c;
has time derivative_V = �kDss� + s�(f � f [)
which can be easily proven to be always less than�kDs2�,
which in turn shows through Barbalat’s lemma thats� ! 0.

Note that the support of the finite expansionsc[ can be time–
varying and managed in a similar way to [8] since the value
of V is only affected by the set of non-zero values in the
vectorĉ. Also,� can vary accordingly as in [9]. As com-
pared to previous work, existence of this infinite model Lya-
punov functions also turns out to enhance significantly the
high frequency behavior of the learning algorithm.

Conclusion

As compared to previous work, this paper relies on a model
of a controller able to stably handle infinitely many parame-
ters, whose behavior we then approximate with a finite size
controller. It also goes further into the specific design of
wavelets, and into higher dimension function approxima-
tion. Finally, pointwise convergence bounds on the expan-
sion allow us to obtain a stronger convergence result on the
tracking error.
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Appendix A

Proof of Theorem 1
Equality of formulae 2 and 3 is a consequence of the two-
scale refinement formula that� matches.



We therefore only have to prove that asJ ! +1,JXj=�J +1Xk=�1 cjk jk(x)! f(x)
uniformly. This proof relies on the following points:� f is continuous;� for anyx,

P+1k=�1 �(x+ k) = 1;� P+1k=�1 j�(x+ k)j is bounded byBp, wherep is the
Deslauriers-Dubuc interpolation parameter;� � is compactly supported, on[�2p+ 1; 2p� 1].

Let [a; b] be a compact interval, and supposex 2 [a; b]. Let" > 0. According to the Heine theorem,f is uniformly
continuous on[a� 1; b+1]. As a consequence, there exists� > 0 such that for anyx, y in [a� 1; b+1], jx� yj < � )jf(x)� f(y)j < ".
If rj = +1Xk=�1 f(2�jk)�(2jx� k)� f(x)
thenrj = +1Xk=�1 �f(2�jk)� f(x)� �(2jx� k)� f(x)
Since� is supported on[�2p + 1; 2p � 1], the above sum
can be bounded asjrj j � d2jx+2p�1eXk=b2jx�2p+1c ��f(2�jk)� f(x)�� :j�(2jx� k)j
If j > log(2p=�)= log 2, which implies thatj2�jk�xj � �,
and if we also havej > log 2p= log 2 which implies that2�jk 2 [a� 1; b+ 1], thenjrj j � " +1Xk=�1 j�(2jx� k)j � "Bp
which proves the convergence.

Proof of Theorem 2
Let us supposef is d times continuously derivable withd � 1. ~ has2p zero moments, which means that it has
a 2p order integral that is compactly supported:~ = 	(2p)
where	 is compactly supported.

Thus, ifd � 2p, we haveZ ~ f = Z 	(2p)f = (�1)d Z 	(2p�d)f (d)
andZ ~ jkf = Z ~ (x� k)f(2�jx)dx= (�1)d2�dj Z 	(2p�d)(x� k)f (d)(2�jx)dx

DefiningM1 = R j	(2p�d)(x)jdx, then have the boundjcjk j � 2�djM1 supx2[k�2p+1;k+2p�1] jf (d)(2�jx)j
As a consequence, for a given compact interval[a; b], we
have the boundjrj j � sup[a�2p2�j ;b+2p2�j ] jf (d)j � 2�dj1� 2�dM1Bp
For an examplep = 2 andd = 4, we haveBp < 1:26, andR j	(2p�d)(x)jdx = 3=8. The bound is thereforejrj j � 0:51� 2�4j sup[a�2�j+3;b+2�j+3] jf (4)j
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